Anisotropic local laws for random matrices

Antti Knowles

ETH Zürich

with Jun Yin

A few examples of random matrices

Consider a Hermitian $M \times M$ random matrix Q normalized so that $||Q|| \approx 1$.

(a) Wigner matrix. The entries $(Q_{ij}: 1 \le i \le j \le M)$ are independent and satsify

 $\mathbb{E}Q_{ij} = 0, \qquad \mathbb{E}|Q_{ij}|^2 = M^{-1}.$

(Hamiltonian of a disordered mean-field quantum system.)

(b) Band matrix. Like a Wigner matrix, except that

 $\mathbb{E}|Q_{ij}|^2 = W^{-1} \mathbf{1}(|i-j| \leq W),$

where $1 \ll W \ll M$ is the band width. (Hamiltonian with spatial structure.) (c) Sample covariance matrix. $Q = XX^*$, where $X \in \mathbb{C}^{M \times N}$ has independent entries satisfying

 $\mathbb{E}X_{ij} = 0, \qquad \mathbb{E}|X_{ij}|^2 = N^{-1}.$

(Sample covariance matrix of uncorrelated data.)

(d) Random graph. Graph on M vertices,

 $Q_{ij} := \alpha \mathbf{1}(i \sim j)$

is the (rescaled) adjacency matrix. Example: Erdős-Rényi graph G(M,p) with $M^{-1} \ll p \ll 1$ and $\alpha = (pM)^{-1/2}$.

The resolvent

Goal: distribution of eigenvalues

 $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_M$

and eigenvectors

 $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_M \in \mathbb{S}^{M-1}$

of Q.

Right tool: the resolvent

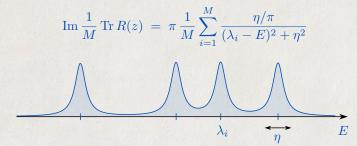
 $R(z) := (Q - zI)^{-1}, \qquad z = E + \mathrm{i}\eta \in \mathbb{C}_+.$

Contains the complete information about the eigenvalues and eigenvectors:

$$R(z) = \sum_{i=1}^{M} \frac{\mathbf{u}_i \mathbf{u}_i^*}{\lambda_i - z} \,.$$

Global and local laws

From the spectral decomposition of Q we get



Observation: η is the spectral resolution.

- Global law: Control of R(z) for $\eta \asymp 1$.
- Local law: Control of R(z) for $\eta \gg M^{-1}$.

A local law is required to understand the distribution of individual eigenvalues and eigenvectors.

In fact, for all of these applications one has to control R(z) as a matrix.

Isotropy

For the models (a)-(d) one can show that

$R(z) ~\approx~ m(z) I \qquad (\eta \gg M^{-1})$

with high probability, where *m* is the Stieltjes transform of the asymptotic eigenvalue density. (Erdős-Schlein-Yau-Yin (2009-2010), Erdős-K-Yau-Yin (2011-2013), K-Yin (2012), Pillai-Yin (2012).)

R(z) is asymptotically isotropic.

From this one can deduce (under some additional assumptions) that $\mathbf{u}_i \sim \text{Unif}(\mathbb{S}^{M-1})$ for all i.

More complicated models, typically with correlated entries, are anisotropic.

Main example: sample covariance matrix

Correlated *M*-dimensional data $\mathbf{a} = (a_1, \dots, a_M)^* \in \mathbb{R}^M$ with population covariance matrix

$$\Sigma_{ij} := \mathbb{E}[(a_i - \mathbb{E}a_i)(a_j - \mathbb{E}a_j)].$$

Take N independent copies $A = [\mathbf{a}_1 \cdots \mathbf{a}_N] \in \mathbb{R}^{M \times N}$ of \mathbf{a} , and define the sample covariance matrix

$$\mathcal{Q}_{ij} := \frac{1}{N-1} \sum_{\mu=1}^{N} (A_{i\mu} - [A]_i) (A_{j\mu} - [A]_j), \qquad [A]_i := \frac{1}{N} \sum_{\mu=1}^{N} A_{i\mu}.$$

Without loss of generality, $\mathbb{E}\mathbf{a} = \mathbf{0}$.

For simplicity, consider

$$Q_{ij} := rac{1}{N} \sum_{\mu=1}^{N} A_{i\mu} A_{j\mu}$$

instead of Q_{ij} . All of the following results hold for Q and Q.

Model for population a

• $\mathbf{a} = T\mathbf{b}, T \in \mathbb{R}^{M \times \widehat{M}}$ is deterministic and $\mathbf{b} \in \mathbb{R}^{\widehat{M}}$ has independent entries.

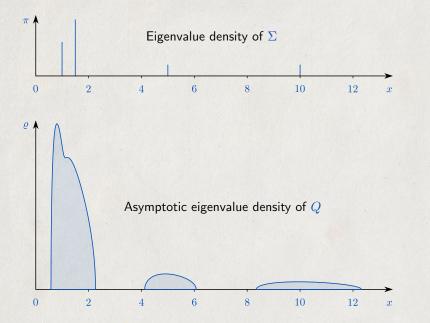
- Entries of b have enough uniformly bounded moments.
- $M \asymp \widehat{M} \asymp N$.
- $\Sigma := \mathbb{E}\mathbf{aa}^* \leqslant C$.

Example. Signal + noise model

$$\mathbf{a} \;=\; \sum_{l=1}^r y_l \mathbf{u}_l + \mathbf{z}\,,$$

where y_1, \ldots, y_r (signal) and z_1, \ldots, z_M (noise) are independent random variables, and \mathbf{u}_l are deterministic vectors.

The asymptotic eigenvalue density



Denote by π the empirical spectral measure of Σ : $\pi := \frac{1}{M} \sum_{i=1}^{M} \delta_{\sigma_i}$ where $\{\sigma_i\}$ are the eigenvalues of Σ .

Define

$$f(x) := -\frac{1}{x} + \frac{M}{N} \int \frac{\pi(\mathrm{d}s)}{x + s^{-1}}$$

Then for each $z\in\mathbb{C}_+$ the equation z=f(m) has a unique solution $m\equiv m(z)\in\mathbb{C}_+$

The function m(z) is the Stieltjes transform of a probability measure ϱ .

Global law:

Theorem [Marchenko-Pastur (1967), Silverstein (1995)]. For $\eta \approx 1$ we have

 $\frac{1}{M}\operatorname{Tr} R(z) = m(z) + o_P(1).$

The anisotropic local law

Theorem [K–Yin (2014)]. Suppose that π satisfies a regularity condition (see later). Then for $\eta \gg M^{-1}$ we have

 $\langle \mathbf{v}, R(z)\mathbf{w} \rangle = \langle \mathbf{v}, P(z)\mathbf{w} \rangle + O_{\mathrm{HP}}(\Psi(z)|\mathbf{v}||\mathbf{w}|),$

where

$$P(z) := -(z(I+m(z)\Sigma))^{-1}, \qquad \Psi(z) := \sqrt{\frac{\operatorname{Im} m(z)}{M\eta} + \frac{1}{M\eta}}$$

The rate of convergence given by Ψ is optimal.

Previously, an anisotropic global law (for $\eta \approx 1$) for a related model was derived in Hachem-Loubaton-Najim-Vallet (2013).

Trivial consequence: complete delocalization of eigenvectors

For $\eta \ge \alpha M^{-1}$ we have $||P(z)|| \le C$ and $\Psi(z) \le C$.

With $z := \lambda_i + \mathrm{i} lpha M^{-1}$ we get for any $\mathbf{v} \in \mathbb{S}^{M-1}$

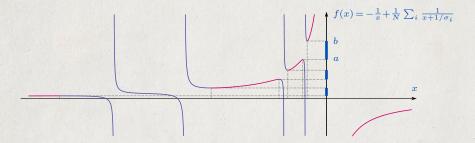
$$C \gtrsim_{\mathrm{HP}} \mathrm{Im} \langle \mathbf{v}, R(z) \mathbf{v} \rangle$$

= $\sum_{j=1}^{M} \frac{\eta}{(\lambda_i - \lambda_j)^2 + \eta^2} |\langle \mathbf{v}, \mathbf{u}_j \rangle|^2$
 $\geqslant \eta^{-1} |\langle \mathbf{v}, \mathbf{u}_i \rangle|^2$
= $\frac{M}{\alpha} |\langle \mathbf{v}, \mathbf{u}_i \rangle|^2$.

Complete delocalization of all eigenvectors with respect to an arbitrary basis.

The regularity condition

Fact: the edges of ϱ in $(0, \infty)$ are given by $E := \{f(x) : f'(x) = 0\}$.

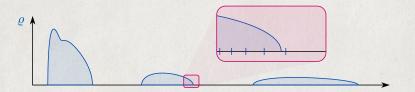


- The edge a = f(x) is regular if $\exists \delta > 0$: $\min_i |x + 1/\sigma_i| \ge \delta$ and $\min_{b \in E \setminus \{a\}} |a b| \ge \delta$. (El Karoui (2007), Hachem-Hardy-Najim (2014))
- The bulk component [a, b] is regular if $\forall \varepsilon > 0 \exists \delta > 0$: $d\varrho(E)/dE \ge \delta$ for $E \in [a + \varepsilon, b \varepsilon]$.

The anisotropic local law holds in the vicinity of every regular edge, in every regular bulk component, and outside of the spectrum.

Application: edge universality

Theorem. [K-Yin (2014)]. The asymptotic joint eigenvalue distribution of any finite family of eigenvalues near the regular edges depends only on π . (Independent of distribution of X, left and right singular vectors of T, and dimensions of T.)



Combine with Hachem-Hardy-Najim (2014) for Gaussian case: Tracy-Widom-Airy-statistics, distribution of condition number, etc.

Previously: Tracy-Widom-Airy-statistics near top edge if a are uncorrelated. (El Karoui (2007), Onatski (2008), Bao-Pan-Zhou (2014), Lee-Schnelli (2014)).

Application: outliers

Suppose Σ has a finite number of spikes that violate the regularity condition. Treat them separately:

 $\Sigma = \Sigma_0 \left(I + V D V^* \right),$

where Σ_0 satisfies the regularity condition and D is $r \times r$ with fixed $r \in \mathbb{N}$.

Deduce information about R using identities such as

$$V^*RV = \frac{1}{z} \left(D^{-1} - \frac{\sqrt{I+D}}{D} \frac{1}{D^{-1} + V^*R_0V} \frac{\sqrt{I+D}}{D} \right)$$

Use that R_0 satisfies anisotropic local law. Allows a very precise analysis of eigenvalues and eigenvectors, also near BBP transition.

Prelude to the proof

For simplicity, let $Q = \Sigma^{1/2} X X^* \Sigma^{1/2}$, where $(X_{ik}) \in \mathbb{R}$ are independent and satisfy $\mathbb{E}X_{ik} = 0$ and $\mathbb{E}X_{ik}^2 = N^{-1}$.

Linearization. Replace R(z) and P(z) with the block matrices

$$G(z) := \begin{pmatrix} -\Sigma^{-1} & X \\ X^* & -zI \end{pmatrix}^{-1}, \quad \Pi(z) := \begin{pmatrix} -\Sigma(I + m(z)\Sigma)^{-1} & 0 \\ 0 & m(z)I \end{pmatrix}.$$

We estimate $G(z) - \Pi(z)$. Corollary: estimate of R(z) - P(z) (from Schur's complement formula).

Three main steps to prove the anisotropic local law

 $\langle \mathbf{v}, G(z)\mathbf{w} \rangle = \langle \mathbf{v}, \Pi(z)\mathbf{w} \rangle + O_{\mathrm{HP}}(\Psi(z)|\mathbf{v}||\mathbf{w}|).$

- Step (A). X Gaussian; Σ diagonal; \mathbf{v}, \mathbf{w} standard basis vectors. ("easy")
- Step (B). X Gaussian; Σ general; \mathbf{v}, \mathbf{w} general. ("easy")
- Step (C). X general; Σ general; \mathbf{v}, \mathbf{w} general. (hard)

Step (A)

Extension of previous works (Erdős-K-Yau-Yin (2013)). Main new observation: the equation z = f(m) arises as a double application of Schur's complement formula. Formally, this is very easy to see.

Use notations $i \leq M$ and $\mu > M$. Let $G^{(\mu)}$ denote the matrix obtained from G by setting $X_{i\mu} = 0$ for all i = 1, ..., M. Similarly, $G^{(i)}$ is obtained from G by setting $X_{i\mu} = 0$ for all $\mu = M + 1, ..., M + N$.

Using the approximation $G_{\mu\mu} \approx m$ we find

$$\frac{1}{m} \approx \frac{1}{G_{\mu\mu}} = -z - \left(X^* G^{(\mu)} X\right)_{\mu\mu} \approx -z - \frac{1}{N} \sum_i G^{(\mu)}_{ii} \approx -z - \frac{1}{N} \sum_i G_{ii}$$

Moreover,

$$\frac{1}{G_{ii}} = -\frac{1}{\sigma_i} - (XG^{(i)}X^*)_{ii} \approx -\frac{1}{\sigma_i} - \frac{1}{N}\sum_{\mu} G_{\mu\mu} \approx -\frac{1}{\sigma_i} - m$$

This yields z = f(m).

The actual proof requires a control of errors in \approx . Stability of the resulting self-consistent equation follows from regularity assumptions.

Conclusion

• We prove the anisotropic local law R(z) = P(z) + (error), where

 $R(z) := (Q - zI)^{-1}, \qquad P(z) := -(z(I + m(z)\Sigma))^{-1}.$

- Applications: complete delocalization of eigenvectors, edge universality, spikes and outliers.
- Similar results hold for deformed Wigner matrices Q = W + A, where $W = W^*$ is a Wigner matrix and $A = A^*$ is deterministic.

Coming up in Jun Yin's talk:

- Application: distribution of eigenvectors.
- Core of the proof: self-consistent comparison and Step (C).