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A few examples of random matrices

Consider a Hermitian M ×M random matrix Q normalized so that ‖Q‖ � 1.

(a) Wigner matrix. The entries (Qij
.. 1 6 i 6 j 6M) are independent and

satsify
EQij = 0 , E|Qij |2 = M−1 .

(Hamiltonian of a disordered mean-field quantum system.)

(b) Band matrix. Like a Wigner matrix, except that

E|Qij |2 = W−1 1(|i− j| 6W ) ,

where 1�W �M is the band width.

(Hamiltonian with spatial structure.)



(c) Sample covariance matrix. Q = XX∗, where X ∈ CM×N has independent
entries satisfying

EXij = 0 , E|Xij |2 = N−1 .

(Sample covariance matrix of uncorrelated data.)

(d) Random graph. Graph on M vertices,

Qij
..= α1(i ∼ j)

is the (rescaled) adjacency matrix. Example: Erdős-Rényi graph G(M,p)
with M−1 � p� 1 and α = (pM)−1/2.



The resolvent

Goal: distribution of eigenvalues

λ1 > λ2 > . . . > λM

and eigenvectors
u1,u2, . . . ,uM ∈ SM−1

of Q.

Right tool: the resolvent

R(z) ..= (Q− zI)−1 , z = E + iη ∈ C+ .

Contains the complete information about the eigenvalues and eigenvectors:

R(z) =
M∑
i=1

uiu
∗
i

λi − z
.



Global and local laws

From the spectral decomposition of Q we get

Im
1

M
TrR(z) = π

1

M

M∑
i=1

η/π

(λi − E)2 + η2

Eηλi

Observation: η is the spectral resolution.

• Global law: Control of R(z) for η � 1.

• Local law: Control of R(z) for η �M−1.

A local law is required to understand the distribution of individual eigenvalues
and eigenvectors.

In fact, for all of these applications one has to control R(z) as a matrix.



Isotropy

For the models (a)–(d) one can show that

R(z) ≈ m(z)I (η �M−1)

with high probability, where m is the Stieltjes transform of the asymptotic
eigenvalue density. (Erdős-Schlein-Yau-Yin (2009-2010), Erdős-K-Yau-Yin
(2011-2013), K-Yin (2012), Pillai-Yin (2012).)

R(z) is asymptotically isotropic.

From this one can deduce (under some additional assumptions) that
ui ∼ Unif(SM−1) for all i.

More complicated models, typically with correlated entries, are anisotropic.



Main example: sample covariance matrix

Correlated M -dimensional data a = (a1, . . . , aM )∗ ∈ RM with population
covariance matrix

Σij
..= E

[
(ai − Eai)(aj − Eaj)

]
.

Take N independent copies A = [a1 · · ·aN ] ∈ RM×N of a, and define the
sample covariance matrix

Qij ..=
1

N − 1

N∑
µ=1

(Aiµ − [A]i)(Ajµ − [A]j) , [A]i
..=

1

N

N∑
µ=1

Aiµ .

Without loss of generality, Ea = 0.

For simplicity, consider

Qij
..=

1

N

N∑
µ=1

AiµAjµ

instead of Qij . All of the following results hold for Q and Q.



Model for population a

• a = Tb, T ∈ RM×M̂ is deterministic and b ∈ RM̂ has independent entries.

• Entries of b have enough uniformly bounded moments.

• M � M̂ � N .

• Σ ..= Eaa∗ 6 C.

Example. Signal + noise model

a =

r∑
l=1

ylul + z ,

where y1, . . . , yr (signal) and z1, . . . , zM (noise) are independent random
variables, and ul are deterministic vectors.



The asymptotic eigenvalue density

Asymptotic eigenvalue density of Q

Eigenvalue density of Σ



Denote by π the empirical spectral measure of Σ: π ..= 1
M

∑M
i=1 δσi where {σi}

are the eigenvalues of Σ.

Define

f(x) ..= − 1

x
+
M

N

∫
π(ds)

x+ s−1
.

Then for each z ∈ C+ the equation z = f(m) has a unique solution
m ≡ m(z) ∈ C+

The function m(z) is the Stieltjes transform of a probability measure %.

Global law:

Theorem [Marchenko-Pastur (1967), Silverstein (1995)]. For η � 1 we have

1

M
TrR(z) = m(z) + oP (1) .



The anisotropic local law

Theorem [K–Yin (2014)]. Suppose that π satisfies a regularity condition (see
later). Then for η �M−1 we have

〈v , R(z)w〉 = 〈v , P (z)w〉+OHP(Ψ(z)|v||w|) ,

where

P (z) ..= −
(
z(I +m(z)Σ)

)−1
, Ψ(z) ..=

√
Imm(z)

Mη
+

1

Mη
.

The rate of convergence given by Ψ is optimal.

Previously, an anisotropic global law (for η � 1) for a related model was derived
in Hachem-Loubaton-Najim-Vallet (2013).



Trivial consequence: complete delocalization of eigenvectors

For η > αM−1 we have ‖P (z)‖ 6 C and Ψ(z) 6 C.

With z ..= λi + iαM−1 we get for any v ∈ SM−1

C &HP Im〈v , R(z)v〉

=

M∑
j=1

η

(λi − λj)2 + η2
|〈v ,uj〉|2

> η−1|〈v ,ui〉|2

=
M

α
|〈v ,ui〉|2 .

Complete delocalization of all eigenvectors with respect to an arbitrary basis.



The regularity condition

Fact: the edges of % in (0,∞) are given by E ..= {f(x) .. f ′(x) = 0}.

a

b

f(x)=− 1
x+

1
N

∑
i

1
x+1/σi

x

• The edge a = f(x) is regular if ∃δ > 0: mini|x+ 1/σi| > δ and
minb∈E\{a}|a− b| > δ. (El Karoui (2007), Hachem-Hardy-Najim (2014))

• The bulk component [a, b] is regular if ∀ε > 0 ∃δ > 0: d%(E)/dE > δ for
E ∈ [a+ ε, b− ε].

The anisotropic local law holds in the vicinity of every regular edge, in every
regular bulk component, and outside of the spectrum.



Application: edge universality

Theorem. [K-Yin (2014)]. The asymptotic joint eigenvalue distribution of any
finite family of eigenvalues near the regular edges depends only on π.
(Independent of distribution of X, left and right singular vectors of T , and
dimensions of T .)

%

Combine with Hachem-Hardy-Najim (2014) for Gaussian case:
Tracy-Widom-Airy-statistics, distribution of condition number, etc.

Previously: Tracy-Widom-Airy-statistics near top edge if a are uncorrelated. (El
Karoui (2007), Onatski (2008), Bao-Pan-Zhou (2014), Lee-Schnelli (2014)).



Application: outliers

Suppose Σ has a finite number of spikes that violate the regularity condition.
Treat them separately:

Σ = Σ0 (I + V DV ∗) ,

where Σ0 satisfies the regularity condition and D is r × r with fixed r ∈ N.

%

Deduce information about R using identities such as

V ∗RV =
1

z

(
D−1 −

√
I +D

D

1

D−1 + V ∗R0V

√
I +D

D

)
.

Use that R0 satisfies anisotropic local law. Allows a very precise analysis of
eigenvalues and eigenvectors, also near BBP transition.



Prelude to the proof

For simplicity, let Q = Σ1/2XX∗Σ1/2, where (Xik) ∈ R are independent and
satisfy EXik = 0 and EX2

ik = N−1.

Linearization. Replace R(z) and P (z) with the block matrices

G(z) ..=

(
−Σ−1 X
X∗ −zI

)−1
, Π(z) ..=

(
−Σ(I +m(z)Σ)−1 0

0 m(z)I

)
.

We estimate G(z)−Π(z). Corollary: estimate of R(z)− P (z) (from Schur’s
complement formula).

Three main steps to prove the anisotropic local law

〈v , G(z)w〉 = 〈v ,Π(z)w〉+OHP(Ψ(z)|v||w|) .

• Step (A). X Gaussian; Σ diagonal; v,w standard basis vectors. (“easy”)

• Step (B). X Gaussian; Σ general; v,w general. (“easy”)

• Step (C). X general; Σ general; v,w general. (hard)



Step (A)

Extension of previous works (Erdős-K-Yau-Yin (2013)). Main new observation:
the equation z = f(m) arises as a double application of Schur’s complement
formula. Formally, this is very easy to see.

Use notations i 6M and µ > M . Let G(µ) denote the matrix obtained from G
by setting Xiµ = 0 for all i = 1, . . . ,M . Similarly, G(i) is obtained from G by
setting Xiµ = 0 for all µ = M + 1, . . . ,M +N .

Using the approximation Gµµ ≈ m we find

1

m
≈ 1

Gµµ
= −z −

(
X∗G(µ)X

)
µµ
≈ −z − 1

N

∑
i

G
(µ)
ii ≈ −z −

1

N

∑
i

Gii .

Moreover,

1

Gii
= − 1

σi
− (XG(i)X∗)ii ≈ −

1

σi
− 1

N

∑
µ

Gµµ ≈ −
1

σi
−m.

This yields z = f(m).

The actual proof requires a control of errors in ≈. Stability of the resulting
self-consistent equation follows from regularity assumptions.



Conclusion

• We prove the anisotropic local law R(z) = P (z) + (error), where

R(z) ..= (Q− zI)−1 , P (z) ..= −
(
z(I +m(z)Σ)

)−1
.

• Applications: complete delocalization of eigenvectors, edge universality,
spikes and outliers.

• Similar results hold for deformed Wigner matrices Q = W +A, where
W = W ∗ is a Wigner matrix and A = A∗ is deterministic.

Coming up in Jun Yin’s talk:

• Application: distribution of eigenvectors.

• Core of the proof: self-consistent comparison and Step (C).


