Yang Mills, unitary Brownian bridge and potential theory under constraint

Mylène Maïda

Université Lille 1, Laboratoire Paul Painlevé
Hong Kong - January, 2015

Outline of the talk

Outline of the talk

- A very brief introduction to the physical context

Outline of the talk

- A very brief introduction to the physical context
- Unitary Brownian motion/bridge

Outline of the talk

- A very brief introduction to the physical context
- Unitary Brownian motion/bridge
- Unitary Brownian motion : asymptotics

Outline of the talk

- A very brief introduction to the physical context
- Unitary Brownian motion/bridge
- Unitary Brownian motion : asymptotics
- Unitary Brownian bridge : shape of the dominant representation

Outline of the talk

- A very brief introduction to the physical context
- Unitary Brownian motion/bridge
- Unitary Brownian motion : asymptotics
- Unitary Brownian bridge : shape of the dominant representation
- Some concluding remarks

What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge?

What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge?

A quantuum particle in a classcial electromagnetic field can be described by its wave function $\psi(x, t)$, which is defined up to a phase.

What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge?

A quantuum particle in a classcial electromagnetic field can be described by its wave function $\psi(x, t)$, which is defined up to a phase.

What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge ?

A quantuum particle in a classcial electromagnetic field can be described by its wave function $\psi(x, t)$, which is defined up to a phase.

What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge?

A quantuum particle in a classcial electromagnetic field can be described by its wave function $\psi(x, t)$, which is defined up to a phase.

Yang and Mills (1954) : introduction of non abelian gauge theories

Yang and Mills (1954) : introduction of non abelian gauge theories
The "physical Yang-Mills measure" is a probability distribution on the space of connexions on a fiber bundle

Yang and Mills (1954) : introduction of non abelian gauge theories
The "physical Yang-Mills measure" is a probability distribution on the space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ~ 2000) : a connexion on a surface M maps each loop to an element of G. One can define a probability distribution on the space of functions from $L_{0}(M)$ to G.

Yang and Mills (1954) : introduction of non abelian gauge theories
The "physical Yang-Mills measure" is a probability distribution on the space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ~ 2000) : a connexion on a surface M maps each loop to an element of G. One can define a probability distribution on the space of functions from $L_{0}(M)$ to G.

For $M=\mathbb{R}^{2}$ and a sequence of simple loops of area t, the corresponding random process will be a Brownian motion on G;

Yang and Mills (1954) : introduction of non abelian gauge theories
The "physical Yang-Mills measure" is a probability distribution on the space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ~ 2000) : a connexion on a surface M maps each loop to an element of G. One can define a probability distribution on the space of functions from $L_{0}(M)$ to G.

For $M=\mathbb{R}^{2}$ and a sequence of simple loops of area t, the corresponding random process will be a Brownian motion on G; if M is a sphere, we get a Brownian bridge.

Yang and Mills (1954) : introduction of non abelian gauge theories
The "physical Yang-Mills measure" is a probability distribution on the space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ~ 2000) : a connexion on a surface M maps each loop to an element of G. One can define a probability distribution on the space of functions from $L_{0}(M)$ to G.

For $M=\mathbb{R}^{2}$ and a sequence of simple loops of area t, the corresponding random process will be a Brownian motion on G; if M is a sphere, we get a Brownian bridge.
"Large N limit" : master field (Singer 1995, Lévy 2011)

Yang and Mills (1954) : introduction of non abelian gauge theories
The "physical Yang-Mills measure" is a probability distribution on the space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ~ 2000) : a connexion on a surface M maps each loop to an element of G. One can define a probability distribution on the space of functions from $L_{0}(M)$ to G.

For $M=\mathbb{R}^{2}$ and a sequence of simple loops of area t, the corresponding random process will be a Brownian motion on G; if M is a sphere, we get a Brownian bridge.
"Large N limit" : master field (Singer 1995, Lévy 2011)
A lot of results concerning Yang-Mills on a cylinder or a sphere (Douglas-Kazakov, Gross-Matytsin (circa 1995)), in particular

Some properties of large N two-dimensional Yang-Mills theory [Nucl.Phys. B437 (1995)]

Unitary Brownian motion

Unitary Brownian motion

One can define a Brownian motion on the unit circle
$\mathbb{U}:=\{z \in \mathbb{C} /|z|=1\}$, as follows: $U_{1}(t)=e^{i B(t)}$, where B is a standard Brownian motion on \mathbb{R}.

Unitary Brownian motion

One can define a Brownian motion on the unit circle $\mathbb{U}:=\{z \in \mathbb{C} /|z|=1\}$, as follows: $U_{1}(t)=e^{i B(t)}$, where B is a standard Brownian motion on \mathbb{R}.

Otherwise stated, U_{1} is a solution of the following very simple SDE : $d U_{1}(t)=i d B(t) U_{1}(t)-\frac{1}{2} U_{1}(t) d t$.

Unitary Brownian motion

One can define a Brownian motion on the unit circle
$\mathbb{U}:=\{z \in \mathbb{C} /|z|=1\}$, as follows: $U_{1}(t)=e^{i B(t)}$, where B is a standard Brownian motion on \mathbb{R}.

Otherwise stated, U_{1} is a solution of the following very simple SDE : $d U_{1}(t)=i d B(t) U_{1}(t)-\frac{1}{2} U_{1}(t) d t$.

For $N \geq 1$, this can be generalized as follows :

$$
d U_{N}(t)=d K_{N}(t) U_{N}(t)-\frac{1}{2} U_{N}(t) d t
$$

with K_{N} a Brownian motion on $\mathfrak{u}(N)$ eqquipped with $(X, Y)_{\mathfrak{u}(N)}=N \operatorname{Tr}\left(X^{*} Y\right)$.

Probability distribution of $U_{N}(t)$

Probability distribution of $U_{N}(t)$

We recall that $U_{1}(t)=e^{i B(t)}$, where B is a standard Brownian motion on \mathbb{R}.

Probability distribution of $U_{N}(t)$

We recall that $U_{1}(t)=e^{i B(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$
Q_{1, t}\left(e^{i \theta}\right)=\sqrt{\frac{2 \pi}{t}} \sum_{k \in \mathbb{Z}} e^{-\frac{(\theta+2 k \pi)^{2}}{2 t}}
$$

Probability distribution of $U_{N}(t)$

We recall that $U_{1}(t)=e^{i B(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$
Q_{1, t}\left(e^{i \theta}\right)=\sqrt{\frac{2 \pi}{t}} \sum_{k \in \mathbb{Z}} e^{-\frac{(\theta+2 k \pi)^{2}}{2 t}}
$$

Poisson summation formula : if $\check{f}(x)=\int_{\mathbb{R}} e^{i u x} f(u) d u$,

$$
\sum_{k \in \mathbb{Z}} \check{f}(x+2 k \pi)=\sum_{\xi \in \mathbb{Z}} f(\xi) e^{i \xi x} .
$$

Probability distribution of $U_{N}(t)$

We recall that $U_{1}(t)=e^{i B(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$
Q_{1, t}\left(e^{i \theta}\right)=\sqrt{\frac{2 \pi}{t}} \sum_{k \in \mathbb{Z}} e^{-\frac{(\theta+2 k \pi)^{2}}{2 t}}=\sum_{\xi \in \mathbb{Z}} e^{-\frac{t}{2} \xi^{2}} e^{i \xi \theta}
$$

Poisson summation formula : if $\check{f}(x)=\int_{\mathbb{R}} e^{i u x} f(u) d u$,

$$
\sum_{k \in \mathbb{Z}} \check{f}(x+2 k \pi)=\sum_{\xi \in \mathbb{Z}} f(\xi) e^{i \xi x} .
$$

Probability distribution of $U_{N}(t)$

We recall that $U_{1}(t)=e^{i B(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$
Q_{1, t}\left(e^{i \theta}\right)=\sqrt{\frac{2 \pi}{t}} \sum_{k \in \mathbb{Z}} e^{-\frac{(\theta+2 k \pi)^{2}}{2 t}}=\sum_{\xi \in \mathbb{Z}} e^{-\frac{t}{2} \xi^{2}} e^{i \xi \theta}
$$

Poisson summation formula : if $\check{f}(x)=\int_{\mathbb{R}} e^{i u x} f(u) d u$,

$$
\sum_{k \in \mathbb{Z}} \check{f}(x+2 k \pi)=\sum_{\xi \in \mathbb{Z}} f(\xi) e^{i \xi x} .
$$

In dimension N,

$$
Q_{N, t}(U)=\sum_{\alpha \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha) t}{2 N}} s_{\alpha}\left(I_{N}\right) \overline{s_{\alpha}(U)},
$$

Probability distribution of $U_{N}(t)$

We recall that $U_{1}(t)=e^{i B(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$
Q_{1, t}\left(e^{i \theta}\right)=\sqrt{\frac{2 \pi}{t}} \sum_{k \in \mathbb{Z}} e^{-\frac{(\theta+2 k \pi)^{2}}{2 t}}=\sum_{\xi \in \mathbb{Z}} e^{-\frac{t}{2} \xi^{2}} e^{i \xi \theta}
$$

Poisson summation formula : if $\check{f}(x)=\int_{\mathbb{R}} e^{i u x} f(u) d u$,

$$
\sum_{k \in \mathbb{Z}} \check{f}(x+2 k \pi)=\sum_{\xi \in \mathbb{Z}} f(\xi) e^{i \xi x} .
$$

In dimension N,

$$
Q_{N, t}(U)=\sum_{\alpha \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha) t}{2 N}} s_{\alpha}\left(I_{N}\right) \overline{s_{\alpha}(U)}, \text { with } \quad \Delta s_{\alpha}=-c_{2}(\alpha) s_{\alpha}
$$

Unitary Brownian bridge

Unitary Brownian bridge

It is obtained by conditionning the Brownian motion to go back to the identity matrix at time T :

Unitary Brownian bridge

It is obtained by conditionning the Brownian motion to go back to the identity matrix at time T :

$$
\begin{aligned}
& \mathbb{E}\left[F\left(W_{N, T}\left(t_{1}\right), \ldots, W_{N, T}\left(t_{n}\right)\right)\right]=\int_{\mathcal{U}(N)^{n}} F\left(U_{1}, U_{2}, \ldots, U_{n}\right) Q_{N, t_{1}}\left(U_{1}\right) Q_{N, t_{2}-t_{1}}\left(U_{1}^{-1} U_{2}\right) \ldots \\
& \ldots Q_{N, t_{n}-t_{n-1}}\left(U_{n-1}^{-1} U_{n}\right) Q_{N, T-t_{n}}\left(U_{n}^{-1}\right) \frac{d U_{1} \ldots d U_{n}}{Z_{N, T}} .
\end{aligned}
$$

Unitary Brownian bridge

It is obtained by conditionning the Brownian motion to go back to the identity matrix at time T :

$$
\begin{array}{rl}
\mathbb{E}\left[F\left(W_{N, T}\left(t_{1}\right), \ldots, W_{N, T}\left(t_{n}\right)\right)\right]=\int_{\mathcal{U}(N)^{n}} & F\left(U_{1}, U_{2}, \ldots, U_{n}\right) Q_{N, t_{1}}\left(U_{1}\right) Q_{N, t_{2}-t_{1}}\left(U_{1}^{-1} U_{2}\right) \ldots \\
& \ldots Q_{N, t_{n}-t_{n-1}}\left(U_{n-1}^{-1} U_{n}\right) Q_{N, T-t_{n}}\left(U_{n}^{-1}\right) \frac{d U_{1} \ldots d U_{n}}{Z_{N, T}} .
\end{array}
$$

For any $t \in(0, T)$, the density $Q_{N, t, T}^{*}: \mathcal{U}(N) \rightarrow \mathbb{R}$ of the distribution of $W_{N, T}(t)$ is given by

$$
Q_{N, t, T}^{*}(U)=\frac{Q_{N, t}(U) Q_{N, T-t}\left(U^{-1}\right)}{Z_{N, T}}
$$

Unitary Brownian bridge

It is obtained by conditionning the Brownian motion to go back to the identity matrix at time T :

$$
\begin{array}{rl}
\mathbb{E}\left[F\left(W_{N, T}\left(t_{1}\right), \ldots, W_{N, T}\left(t_{n}\right)\right)\right]=\int_{\mathcal{U}(N)^{n}} & F\left(U_{1}, U_{2}, \ldots, U_{n}\right) Q_{N, t_{1}}\left(U_{1}\right) Q_{N, t_{2}-t_{1}}\left(U_{1}^{-1} U_{2}\right) \ldots \\
& \ldots Q_{N, t_{n}-t_{n-1}}\left(U_{n-1}^{-1} U_{n}\right) Q_{N, T-t_{n}}\left(U_{n}^{-1}\right) \frac{d U_{1} \ldots d U_{n}}{Z_{N, T}} .
\end{array}
$$

For any $t \in(0, T)$, the density $Q_{N, t, T}^{*}: \mathcal{U}(N) \rightarrow \mathbb{R}$ of the distribution of $W_{N, T}(t)$ is given by

$$
Q_{N, t, T}^{*}(U)=\frac{Q_{N, t}(U) Q_{N, T-t}\left(U^{-1}\right)}{Z_{N, T}}
$$

with
$Z_{N, T}:=\int_{\mathcal{U}(N)} Q_{N, t}(U) Q_{N, T-t}\left(U^{-1}\right) d U=Q_{N, T}\left(I_{N}\right)=\sum_{\lambda \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha)}{2 N}} T_{\alpha}\left(I_{N}\right)^{2}$.

Convergence of the u.B.m in large dimension (Biane, 97)

Convergence of the u.B.m in large dimension (Biane, 97)

If $\widehat{\mu}_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i, N}(t)}$, then $\int_{\mathbb{U}} x^{n} d \widehat{\mu}_{N}(x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i, N}(t)^{n}=\frac{1}{N} \operatorname{Tr}\left(U_{N}(t)^{n}\right)$.

Convergence of the u.B.m in large dimension (Biane, 97)

If $\widehat{\mu}_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i, N}(t)}$, then $\int_{\mathbb{U}} x^{n} d \widehat{\mu}_{N}(x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i, N}(t)^{n}=\frac{1}{N} \operatorname{Tr}\left(U_{N}(t)^{n}\right)$.
We are seeking for

$$
c_{n}(t):=\lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{1}{N} \operatorname{Tr}\left(\left(U_{N}(t)\right)^{n}\right)\right]
$$

Convergence of the u.B.m in large dimension (Biane, 97)

If $\widehat{\mu}_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i, N}(t)}$, then $\int_{\mathbb{U}} x^{n} d \widehat{\mu}_{N}(x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i, N}(t)^{n}=\frac{1}{N} \operatorname{Tr}\left(U_{N}(t)^{n}\right)$.
We are seeking for

$$
\begin{aligned}
c_{n}(t):= & \lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{1}{N} \operatorname{Tr}\left(\left(U_{N}(t)\right)^{n}\right)\right] \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\alpha \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha) t}{2 N}} s_{\alpha}\left(I_{N}\right) \int_{\mathcal{U}(N)} \overline{s_{\alpha}(U)} \operatorname{Tr}\left(U^{n}\right) d m_{N}(U)
\end{aligned}
$$

Convergence of the u.B.m in large dimension (Biane, 97)

If $\widehat{\mu}_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i, N}(t)}$, then $\int_{\mathbb{U}} x^{n} d \widehat{\mu}_{N}(x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i, N}(t)^{n}=\frac{1}{N} \operatorname{Tr}\left(U_{N}(t)^{n}\right)$.
We are seeking for

$$
\begin{aligned}
& c_{n}(t):=\lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{1}{N} \operatorname{Tr}\left(\left(U_{N}(t)\right)^{n}\right)\right] \\
& \quad=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\alpha \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha) t}{2 N}} s_{\alpha}\left(I_{N}\right) \int_{\mathcal{U}(N)} \overline{s_{\alpha}(U)} \operatorname{Tr}\left(U^{n}\right) d m_{N}(U) . \\
& p_{n}\left(x_{1}, \ldots, x_{N}\right):=\sum_{i=1}^{N} x_{i}^{n}=\sum_{r=0}^{n-1}(-1)^{r} s_{(n-r, 1,1, \ldots, 1,0, \ldots, 0)}\left(x_{1}, \ldots, x_{N}\right) .
\end{aligned}
$$

Convergence of the u.B.m in large dimension (Biane, 97)

If $\widehat{\mu}_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i, N}(t)}$, then $\int_{\mathbb{U}} x^{n} d \widehat{\mu}_{N}(x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i, N}(t)^{n}=\frac{1}{N} \operatorname{Tr}\left(U_{N}(t)^{n}\right)$.
We are seeking for

$$
\begin{aligned}
& c_{n}(t):=\lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{1}{N} \operatorname{Tr}\left(\left(U_{N}(t)\right)^{n}\right)\right] \\
& \quad=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\alpha \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha) t}{2 N}} s_{\alpha}\left(I_{N}\right) \int_{\mathcal{U}(N)} \overline{s_{\alpha}(U)} \operatorname{Tr}\left(U^{n}\right) d m_{N}(U)
\end{aligned}
$$

$\mathrm{Ex}: p_{2}:=\sum x_{i}^{2}=\sum_{i \leq j} x_{i} x_{j}-\sum_{i<j} x_{i} x_{j}=s_{(2)}-s_{(1,1)}$

Convergence of the u.B.m in large dimension (Biane, 97)

If $\widehat{\mu}_{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i, N}(t)}$, then $\int_{\mathbb{U}} x^{n} d \widehat{\mu}_{N}(x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i, N}(t)^{n}=\frac{1}{N} \operatorname{Tr}\left(U_{N}(t)^{n}\right)$.
We are seeking for

$$
\begin{aligned}
c_{n}(t):= & \lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{1}{N} \operatorname{Tr}\left(\left(U_{N}(t)\right)^{n}\right)\right] \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\alpha \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha) t}{2 N}} s_{\alpha}\left(I_{N}\right) \int_{\mathcal{U}(N)} \overline{s_{\alpha}(U)} \operatorname{Tr}\left(U^{n}\right) d m_{N}(U) \\
p_{n}\left(x_{1}, \ldots, x_{N}\right):= & \sum_{i=1}^{N} x_{i}^{n}=\sum_{r=0}^{n-1}(-1)^{r} s_{(n-r, 1,1, \ldots, 1,0, \ldots, 0)}\left(x_{1}, \ldots, x_{N}\right) . \\
& \text { and } \quad \int_{\mathcal{U}(N)} \overline{s_{\alpha}(U)} s_{\beta}(U) d m_{N}(U)=\delta_{\alpha, \beta} \mathbf{1}_{\ell(\alpha) \leq N} .
\end{aligned}
$$

For $\alpha(n, r, N):=(n-r, 1,1, \ldots, 1,0, \ldots, 0)($ with $r<n \leq N)$,

For $\alpha(n, r, N):=(n-r, 1,1, \ldots, 1,0, \ldots, 0)$ (with $r<n \leq N$), one can explicitely compute

$$
c_{2}(\alpha(n, r, N))=N n+n^{2}-(2 r+1) n
$$

For $\alpha(n, r, N):=(n-r, 1,1, \ldots, 1,0, \ldots, 0)$ (with $r<n \leq N$), one can explicitely compute

$$
c_{2}(\alpha(n, r, N))=N n+n^{2}-(2 r+1) n
$$

and

$$
s_{\alpha(n, r, N)}\left(I_{N}\right)=\frac{(N+n-r-1)!}{(N-r-1)!r!n(n-r-1)!}
$$

For $\alpha(n, r, N):=(n-r, 1,1, \ldots, 1,0, \ldots, 0)$ (with $r<n \leq N$), one can explicitely compute

$$
c_{2}(\alpha(n, r, N))=N n+n^{2}-(2 r+1) n
$$

and

$$
s_{\alpha(n, r, N)}\left(I_{N}\right)=\frac{(N+n-r-1)!}{(N-r-1)!r!n(n-r-1)!}
$$

to obtain
Proposition (Biane, 97)

$$
c_{n}(t)=e^{-\frac{n t}{2}} \sum_{k=0}^{n-1}(-1)^{k} \frac{t^{k}}{k!} n^{k-1}\binom{n}{k+1}=e^{-\frac{n t}{2}} \frac{1}{n} L_{n-1}(n t) .
$$

For $\alpha(n, r, N):=(n-r, 1,1, \ldots, 1,0, \ldots, 0)$ (with $r<n \leq N$), one can explicitely compute

$$
c_{2}(\alpha(n, r, N))=N n+n^{2}-(2 r+1) n
$$

and

$$
s_{\alpha(n, r, N)}\left(I_{N}\right)=\frac{(N+n-r-1)!}{(N-r-1)!r!n(n-r-1)!}
$$

to obtain
Proposition (Biane, 97)

$$
c_{n}(t)=e^{-\frac{n t}{2}} \sum_{k=0}^{n-1}(-1)^{k} \frac{t^{k}}{k!} n^{k-1}\binom{n}{k+1}=e^{-\frac{n t}{2}} \frac{1}{n} L_{n-1}(n t) .
$$

For any $t>0$, we denote by ν_{t} the probability measure on \mathbb{U} such that, for all $n \geq 0, \int z^{-n} d \nu_{t}(z)=\int z^{n} d \nu_{t}(z)=c_{n}(t)$.

Unitary Brownian bridge : shape of the dominant representation

Unitary Brownian bridge : shape of the dominant representation

$$
Z_{N, T}=\sum_{\alpha \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha)}{2 N} T} s_{\alpha}\left(I_{N}\right)^{2}
$$

Unitary Brownian bridge : shape of the dominant representation

$$
Z_{N, T}=\sum_{\alpha \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha)}{2 N} T} s_{\alpha}\left(I_{N}\right)^{2}
$$

$$
\hat{\mu}_{\ell}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\frac{\alpha_{i}+N-i}{N}}
$$

Unitary Brownian bridge : shape of the dominant representation

$$
Z_{N, T}=\sum_{\alpha \in \mathbb{Z}_{\downarrow}^{N}} e^{-\frac{c_{2}(\alpha)}{2 N} T} s_{\alpha}\left(I_{N}\right)^{2}
$$

From harmonic analysis, we get that

$$
Z_{N, T}=C_{N, T} \sum_{\ell} e^{-N^{2} I_{T}\left(\hat{\mu}_{\ell}\right)}
$$

with

$$
I_{T}(\mu):=-\iint \ln |x-y| d \mu(x) d \mu(y)+\int \frac{T}{2} x^{2} d \mu(x)
$$

and

$$
\hat{\mu}_{\ell}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\frac{\alpha_{i}+N-i}{N}}
$$

Proposition

For all $T>0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \ln Z_{N, T}=\frac{T}{24}+\frac{3}{2}-\inf I_{T}(\mu)
$$

with

$$
I_{T}(\mu)=-\iint \ln |x-y| d \mu(x) d \mu(y)+\int \frac{T}{2} x^{2} d \mu(x) .
$$

Proposition

For all $T>0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \ln Z_{N, T}=\frac{T}{24}+\frac{3}{2}-\inf _{\frac{d \mu}{d \lambda} \leq 1} I_{T}(\mu),
$$

with

$$
I_{T}(\mu)=-\iint \ln |x-y| d \mu(x) d \mu(y)+\int \frac{T}{2} x^{2} d \mu(x) .
$$

Proposition

For all $T>0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \ln Z_{N, T}=\frac{T}{24}+\frac{3}{2}-\inf _{\frac{d \mu}{d \lambda} \leq 1} I_{T}(\mu),
$$

with

$$
I_{T}(\mu)=-\iint \ln |x-y| d \mu(x) d \mu(y)+\int \frac{T}{2} x^{2} d \mu(x) .
$$

Tools : large deviations results.

Third order phase transition

Third order phase transition

Proposition (...)
For any $T>0$, there exists a unique minimizer of the functional I_{T} over the set \mathcal{L}, that we denote by μ_{T}^{*}.

Third order phase transition

Proposition (...)

For any $T>0$, there exists a unique minimizer of the functional I_{T} over the set \mathcal{L}, that we denote by μ_{T}^{*}.

- If $T \leq \pi^{2}$, the density of μ_{T}^{*} with respect to Lebesgue measure is given by

$$
\frac{d \mu_{T}^{*}(x)}{d x}=\frac{T}{2 \pi} \sqrt{\frac{4}{T}-x^{2}} \mathbf{1}_{\left[-\frac{2}{\sqrt{T}}, \frac{2}{\sqrt{T}}\right]}(x)
$$

Third order phase transition

Proposition (...)

For any $T>0$, there exists a unique minimizer of the functional I_{T} over the set \mathcal{L}, that we denote by μ_{T}^{*}.

- If $T \leq \pi^{2}$, the density of μ_{T}^{*} with respect to Lebesgue measure is given by

$$
\frac{d \mu_{T}^{*}(x)}{d x}=\frac{T}{2 \pi} \sqrt{\frac{4}{T}-x^{2} \mathbf{1}_{\left[-\frac{2}{\sqrt{T}}, \frac{2}{\sqrt{T}}\right]}(x), ~ \text {, }} \text {, }
$$

- If $T>\pi^{2}$, the density of μ_{T}^{*} is described in terms of elliptic functions.

Third order phase transition

Proposition (...)

For any $T>0$, there exists a unique minimizer of the functional I_{T} over the set \mathcal{L}, that we denote by μ_{T}^{*}.

- If $T \leq \pi^{2}$, the density of μ_{T}^{*} with respect to Lebesgue measure is given by

$$
\frac{d \mu_{T}^{*}(x)}{d x}=\frac{T}{2 \pi} \sqrt{\frac{4}{T}-x^{2}} \mathbf{1}_{\left[-\frac{2}{\sqrt{T}}, \frac{2}{\sqrt{T}}\right]}(x),
$$

- If $T>\pi^{2}$, the density of μ_{T}^{*} is described in terms of elliptic functions.

Consequence : The function F is of class \mathcal{C}^{2} on \mathbb{R}_{+}^{*} and of class \mathcal{C}^{∞} on $\mathbb{R}_{+}^{*} \backslash\left\{\pi^{2}\right\}$. At $\pi^{2}, F^{(3)}$ has a discontinuity of first kind.

Potential theory under constraint

Potential theory under constraint

$U^{\mu}+Q \geq C$
$U^{\mu}+Q=C$ on the support

Potential theory under constraint

$U^{\mu}+Q \geq C$
$U^{\mu}+Q=C$ on the support

Potential theory under constraint

Some final remarks

Some final remarks

- Fascinating model for which everything can be computed explicitely

Some final remarks

- Fascinating model for which everything can be computed explicitely
- In a recent work of Liechty and Wang, μ_{T}^{*} appears as the equilibrium measure associated to orthogonal poynomials for a discrete gaussian measure (also linked with Unitary brownian bridge)

Some final remarks

- Fascinating model for which everything can be computed explicitely
- In a recent work of Liechty and Wang, μ_{T}^{*} appears as the equilibrium measure associated to orthogonal poynomials for a discrete gaussian measure (also linked with Unitary brownian bridge)
- for some parameters (t, T), the asymptotic spectral measure of uBb is known and related to the family μ_{T}^{*} in a way which is still to be understood in details (work in progress with T. Lévy).

