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What is Yang-Mills theory about ? How is it
related to unitary Brownian motion/bridge ?

A quantuum particle in a classcial electromagnetic field can be described
by its wave function ¥ (x, t), which is defined up to a phase.
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Yang and Mills (1954) : introduction of non abelian gauge theories

The “physical Yang-Mills measure” is a probability distribution on the
space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ~ 2000) : a connexion
on a surface M maps each loop to an element of G. One can define a
probability distribution on the space of functions from Lo(M) to G.

For M = R? and a sequence of simple loops of area t, the corresponding
random process will be a Brownian motion on G; if M is a sphere, we get
a Brownian bridge.

“Large N limit" : master field (Singer 1995, Lévy 2011)

A lot of results concerning Yang-Mills on a cylinder or a sphere
(Douglas-Kazakov, Gross-Matytsin (circa 1995)), in particular

Some properties of large N two-dimensional Yang-Mills theory
[Nucl.Phys. B437 (1995)]
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Unitary Brownian motion

One can define a Brownian motion on the unit circle
U:={z € C/|z| =1}, as follows : U;(t) = eB() where B is a standard
Brownian motion on R.

Otherwise stated, U; is a solution of the following very simple SDE :
dUy(t) = idB(t) Uy (t) — 3 Us(t)dt.

For N > 1, this can be generalized as follows :
1
dUn(t) = dKn(t)Un(t) — EUN(t)dt,

with Ky a Brownian motion on u(/N) eqquipped with
(X, Y)uwy = NTr(X*Y).
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Probability distribution of Uy/(t)

We recall that U;(t) = eB(), where B is a standard Brownian motion
on R.
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Poisson summation formula : if f(x) = Jg €™ F(u)du,

D F(x 4 2km) =Y F(€)e’x.
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In dimension N,
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Unitary Brownian bridge

It is obtained by conditionning the Brownian motion to go back to the
identity matrix at time T :

EIF(Wx, 7(t1), - - - s Wy, 7(t0))] :/M(W F(Ur Un, -+, Un)Qu, ey (Un)Quty o (U U3)

_ _ 1. dUp ... dU,
Qe —t,_ (Un 1 Un)Qu Ty (U, ) ———

— n
n=1 Zn,T

For any t € (0, T), the density Qy , 7 : U(N) — R of the distribution of
W, 7(t) is given by
_ Que(V)Qu,r—e(U™)

QE,t,T(U) - ZN T )

with

(o)
N T I:/ Qn.(V)Qn.7—:(UH)dU = Qu.7(In) = Z e v s, (Iy)?.
U(N)

N
AEZY
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Convergence of the u.B.m in large dimension
(Biane, 97)

If fin i= 3 3011 O, (e)s then [ x"diin(x) = & SN A ()" = 5 Tr(Un(t)").

We are seeking for

(0)i= Jim B | T (Un(0))]

N—oo

1 (o)t —_

= |lim — e_ZNsaIN/ So () Tr(UM)dmp(U).

e W) [, (0T dmn(U)
1

N n—1
Pn(Xl, e ,XN) = ZX;" = Z(_1)r5(nfr,1,1,...,1,0,...,0)(Xl7 S 7XN)-
i=1 r=0

and / sa(U)sg(U)dmp(U) = da,8Lo(a)<n-
U(N)
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For a(n,r,N):=(n—r,1,1,...,1,0,...,0) (with r < n < N), one can
explicitely compute

c(a(n, r,N)) = Nn+n® — (2r +1)n
and

B (N+n—r—1)
Sa(n,r,N)(IN) - (N —r — 1)!r!n(n —r— 1)'

to obtain

Proposition (Biane, 97)

= th n 1
c(t)y=e 2 ) (—1)k—pk-1 (k N 1) = e_7;Ln,1(nt).

For any t > 0, we denote by v; the probability measure on U such that,
forall n >0, [z7"dv(z) = [ z2"dve(z) = ca(t).
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Unitary Brownian bridge : shape of the
dominant representation

(o)
Znr =Y e Tsy(In).

aEZQ’

From harmonic analysis, we get that
Iyt =Cnr ) e Nir(he),
¢
with -
() == [ [ Inlx = ylduC)dn(r) + [ 5 xdut)

and

1 N
He ‘= N E 5&,—+NN—:'.
i=1 10
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Proposition
For all T > 0,

1 T 3
im — = 42— inf
Nllm 2 InZy 1 %t 3 j!;ngl (1),

with

Ir(p) = —//lnlx—y\du(X)du(yH/ngdu(X)

Tools : large deviations results.
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Third order phase transition

Proposition (...)
For any T > 0, there exists a unique minimizer of the functional It over
the set L, that we denote by ;1.

> If T < x2, the density of Wy with respect to Lebesgue measure is

given by
dut(x) T /4 )
= — _— = 1
o VT g

> If T > w2, the density of u% is described in terms of elliptic
functions.

Consequence : The function F is of class C2 on R* and of class C* on
q +

R% \ {x2}. At 72, FO) has a discontinuity of first kind.

12



Potential theory under constraint

13



Potential theory under constraint

ur+Q=>C
UF + Q = C on the support

13



Potential theory under constraint

ur+Q=>C
UF + Q = C on the support

13



Potential theory under constraint

-
T

ur+Q=>C
UF + Q = C on the support

U* + Q > C outside the support
U* 4+ Q = C on the “free” part
U* 4+ Q < C where it saturates
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Some final remarks

» Fascinating model for which everything can be computed
explicitely

> In a recent work of Liechty and Wang, % appears as the
equilibrium measure associated to orthogonal poynomials for a
discrete gaussian measure (also linked with Unitary brownian

bridge)

> for some parameters (t, T), the asymptotic spectral measure of
uBb is known and related to the family p% in a way which is still
to be understood in details (work in progress with T. Lévy).
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