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What is Yang-Mills theory about ? How is it
related to unitary Brownian motion/bridge ?

A quantuum particle in a classcial electromagnetic field can be described
by its wave function ψ(x , t), which is defined up to a phase.

Crédit image : Frédéric Faure, UJF
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Yang and Mills (1954) : introduction of non abelian gauge theories

The “physical Yang-Mills measure” is a probability distribution on the
space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ∼ 2000) : a connexion
on a surface M maps each loop to an element of G . One can define a
probability distribution on the space of functions from L0(M) to G .

For M = R2 and a sequence of simple loops of area t, the corresponding
random process will be a Brownian motion on G ; if M is a sphere, we get
a Brownian bridge.

“Large N limit” : master field (Singer 1995, Lévy 2011)

A lot of results concerning Yang-Mills on a cylinder or a sphere
(Douglas-Kazakov, Gross-Matytsin (circa 1995)), in particular

Some properties of large N two-dimensional Yang-Mills theory
[Nucl.Phys. B437 (1995)]
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on a surface M maps each loop to an element of G . One can define a
probability distribution on the space of functions from L0(M) to G .

For M = R2 and a sequence of simple loops of area t, the corresponding
random process will be a Brownian motion on G ; if M is a sphere, we get
a Brownian bridge.

“Large N limit” : master field (Singer 1995, Lévy 2011)
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on a surface M maps each loop to an element of G . One can define a
probability distribution on the space of functions from L0(M) to G .

For M = R2 and a sequence of simple loops of area t, the corresponding
random process will be a Brownian motion on G ; if M is a sphere, we get
a Brownian bridge.

“Large N limit” : master field (Singer 1995, Lévy 2011)
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Unitary Brownian motion

One can define a Brownian motion on the unit circle
U := {z ∈ C/|z | = 1}, as follows : U1(t) = e iB(t), where B is a standard
Brownian motion on R.

Otherwise stated, U1 is a solution of the following very simple SDE :
dU1(t) = idB(t)U1(t)− 1

2U1(t)dt.

For N ≥ 1, this can be generalized as follows :

dUN(t) = dKN(t)UN(t)− 1

2
UN(t)dt,

with KN a Brownian motion on u(N) eqquipped with
(X ,Y )u(N) = NTr(X ∗Y ).
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Probability distribution of UN(t)

We recall that U1(t) = e iB(t), where B is a standard Brownian motion
on R.

Q1,t(e
iθ) =

√
2π

t

∑
k∈Z

e−
(θ+2kπ)2

2t

=
∑
ξ∈Z

e−
t
2 ξ

2

e iξθ

Poisson summation formula : if f̌ (x) =
∫
R e iux f (u)du,∑

k∈Z
f̌ (x + 2kπ) =

∑
ξ∈Z

f (ξ)e iξx .

In dimension N,

QN,t(U) =
∑
α∈ZN

↓

e−
c2(α)t

2N sα(IN)sα(U), with ∆sα = −c2(α)sα
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Unitary Brownian bridge

It is obtained by conditionning the Brownian motion to go back to the
identity matrix at time T :

E[F (WN,T (t1), . . . ,WN,T (tn))] =

∫
U(N)n

F (U1,U2, . . . ,Un)QN,t1
(U1)QN,t2−t1

(U−1
1 U2) . . .

. . .QN,tn−tn−1
(U−1

n−1Un)QN,T−tn (U−1
n )

dU1 . . . dUn

ZN,T

.

For any t ∈ (0,T ), the density Q∗N,t,T : U(N)→ R of the distribution of
WN,T (t) is given by

Q∗N,t,T (U) =
QN,t(U)QN,T−t(U

−1)

ZN,T
,

with

ZN,T :=

∫
U(N)

QN,t(U)QN,T−t(U
−1)dU = QN,T (IN) =

∑
λ∈ZN

↓

e−
c2(α)

2N T sα(IN)2.
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Convergence of the u.B.m in large dimension
(Biane, 97)

If µ̂N := 1
N

∑N
i=1 δλi,N (t), then

∫
U xndµ̂N(x) = 1

N

∑N
i=1 λi,N(t)n = 1

N
Tr(UN(t)n).

We are seeking for

cn(t) := lim
N→∞

E
[

1

N
Tr((UN(t))n)

]

= lim
N→∞

1

N

∑
α∈ZN

↓

e−
c2(α)t

2N sα(IN)

∫
U(N)

sα(U)Tr(Un)dmN(U)

.

pn(x1, . . . , xN) :=
N∑
i=1

xni =
n−1∑
r=0

(−1)r s(n−r ,1,1,...,1,0,...,0)(x1, . . . , xN).

Ex : p2 :=
∑

x2
i =

∑
i≤j xixj −

∑
i<j xixj = s(2) − s(1,1)

and

∫
U(N)

sα(U)sβ(U)dmN(U) = δα,β1`(α)≤N .
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For α(n, r ,N) := (n − r , 1, 1, . . . , 1, 0, . . . , 0) (with r < n ≤ N),

one can
explicitely compute

c2(α(n, r ,N)) = Nn + n2 − (2r + 1)n

and

sα(n,r ,N)(IN) =
(N + n − r − 1)!

(N − r − 1)!r !n(n − r − 1)!

to obtain

Proposition (Biane, 97)

cn(t) = e−
nt
2

n−1∑
k=0

(−1)k
tk

k!
nk−1

(
n

k + 1

)
= e−

nt
2

1

n
Ln−1(nt).

For any t > 0, we denote by νt the probability measure on U such that,
for all n ≥ 0,

∫
z−ndνt(z) =

∫
zndνt(z) = cn(t).
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Unitary Brownian bridge : shape of the
dominant representation

ZN,T =
∑
α∈ZN

↓

e−
c2(α)

2N T sα(IN)2.

From harmonic analysis, we get that

ZN,T = CN,T

∑
`

e−N
2IT (µ̂`),

with

IT (µ) := −
∫∫

ln |x − y |dµ(x)dµ(y) +

∫
T

2
x2dµ(x)

and

µ̂` :=
1

N

N∑
i=1

δαi +N−i

N

.
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Proposition
For all T > 0,

lim
N→∞

1

N2
lnZN,T =

T

24
+

3

2
− inf

dµ
dλ≤1

IT (µ),

with

IT (µ) = −
∫∫

ln |x − y |dµ(x)dµ(y) +

∫
T

2
x2dµ(x).

Tools : large deviations results.
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Third order phase transition

Proposition (...)

For any T > 0, there exists a unique minimizer of the functional IT over
the set L, that we denote by µ∗T .

I If T ≤ π2, the density of µ∗T with respect to Lebesgue measure is
given by

dµ∗T (x)

dx
=

T

2π

√
4

T
− x21[

− 2√
T
, 2√

T

](x),

I If T > π2, the density of µ∗T is described in terms of elliptic
functions.

Consequence : The function F is of class C2 on R∗+ and of class C∞ on

R∗+ \ {π2}. At π2, F (3) has a discontinuity of first kind.
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Potential theory under constraint

-1 1

1

2

3

Uµ + Q ≥ C
Uµ + Q = C on the support

- Β -Α Α Β

1

Uµ + Q ≥ C outside the support
Uµ + Q = C on the “free” part
Uµ + Q ≤ C where it saturates
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Some final remarks

I Fascinating model for which everything can be computed
explicitely

I In a recent work of Liechty and Wang, µ∗T appears as the
equilibrium measure associated to orthogonal poynomials for a
discrete gaussian measure (also linked with Unitary brownian
bridge)

I for some parameters (t,T ), the asymptotic spectral measure of
uBb is known and related to the family µ∗T in a way which is still
to be understood in details (work in progress with T. Lévy).
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