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Introduction

@ Consider N independent copies (X,-j)jez, i=1,..., N of a stationary
sequence (X;);cz of real-valued r.v's and consider the N x p matrix

Xnp = (Xij)i<i<n1<i<p
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Introduction

@ Consider N independent copies (X,-j)jez, i=1,..., N of a stationary
sequence (X;);cz of real-valued r.v's and consider the N x p matrix

Xnp = (Xj)i<i<ni<j<p
@ Define now the symmetric matrix By of order p by

1 1
By = =N XN ,p = N

m C-T C;

\\[\12

where C; = (Xj1,..., Xip). By is usually called the sample covariance
matrix (or Gram matrix) associated with the process (Xj;).

@ Question: What can we say about the spectrum of By when
lim & — c € (0,00)?
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Introduction

@ Consider N independent copies (X,-j)jez, i=1,..., N of a stationary
sequence (X;);cz of real-valued r.v's and consider the N x p matrix

An,p = (Xij)1<icni<j<p
@ Define now the symmetric matrix By of order p by

1

1
By = XN pXnp i= N C-TC,-

N

\\[\12

where C; = (X1, ..., Xip). By is usually called the sample covariance
matrix (or Gram matrix) associated with the process (Xj;).

@ Question: What can we say about the spectrum of By when
lim & — c € (0,00)?

@ Let us look at the spectral measure of By

1P
g, = . ZéAl, where A; = A;(By)
i=1
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Marcenko-Pastur (1967)
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Marcenko-Pastur (1967)

@ Assume that (X;)jcz is a sequence of iid, mean zero and with variance 1
r.v.'s (so the entries of Xy ,, are iid). Assume that lim & — ¢ € (0, ).
Then, with probability 1, ug, converge in law to a non random
probability measure upp whose density is given by

Flx) = 2nlcx (b= x)(x — )1 (5,5(x) + 111,00y (€) (1 — € 1)1,

with a = (1 —/c)?, b= (1+ /<)%
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Marcenko-Pastur (1967)

@ Assume that (X;)jcz is a sequence of iid, mean zero and with variance 1
r.v.'s (so the entries of Xy ,, are iid). Assume that lim & — ¢ € (0, ).
Then, with probability 1, ug, converge in law to a non random
probability measure upp whose density is given by

Flx) = 2nlcx (b= x)(x — )1 (5,5(x) + 111,00y (€) (1 — € 1)1,

with a = (1 —/c)?, b= (1+ /<)%

@ Since 1967, there has been a great amount of work to relax the
assumption on the independence of the entries of Xy ,, and in particular
the independence structure in the rows of Xy .
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A first extension of the Marcenko-Pastur’s result
@ Yin (1986) and Silverstein (1995). They consider
1/2 pT
Xy = \/>Rp Xy p
where Xy , 1= (Xjj)1<i<n,1<j<p, the Xj's are iid with variance 1, and

Rp is a Hermitian non negative definite random matrix of size p
independent of Xy ,. Let By = ZNZZ\;.
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A first extension of the Marcenko-Pastur’s result

@ Yin (1986) and Silverstein (1995). They consider

1/2 T
Xy = Rp Xy p
where Xy , 1= (Xjj)1<i<n,1<j<p, the Xj's are iid with variance 1, and
Rp is a Hermitian non negative definite random matrix of size p
independent of Xy ,. Let By = ZNZZ\;.

@ Silverstein (1995): If limp—0 p/N = ¢ € (0,00) and if with probability
one, jir, converges in law to a non random probability measure p4 then,
almost surely, yg, converges in law to a non random probability measure
characterized via its Stieltjes transform. More precisely, for any z € C*

SHBN

1 1 )
(z) = / . _zdyBN(x) = ;Tr(BN—zIp) — 5(z) almost surely

where
B dpn(x)
S(z) = / —z+(1— c’;x—ZCXS(Z)
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A second extension of the MarcCenko-Pastur’s result: Bai-Zhou (2008)
For 1<i<N,let G=(Xpq,..., Xjp) and By = & TN, €T C;. Assume
that the C;'s are independent, and that

@ Forall i, E(XyXj) = Yk,¢ and for any deterministic matrix p X p,
R = (riy), with bounded spectral norm

E|GRCT —Tr(RT,)|* = o(N?) where Ty = (74¢)

@ limy_yeo p/N =c € (0,00)

@ The spectral norm of I', is uniformly bounded and pr, converges in law
to py.

Then, almost surely, ug,, converges in law to a non random probability
measure whose Stieltjes transform S = S(z) satisfies the equation : for all

zeCt ) .
z= _§+C/ 11 s,

where 5(z) := —(1 —¢)/z+ cS(z).
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Applications

@ The assumption
E|GRCT —Tr(RT,)|* = o(N?) where Ty = (744)

for any p x p deterministic matrix, R = (rx, ), with bounded spectral
norm, is verified as soon as
o N1 maxk#]E(X,-kX,-g - ’)/k’g)2 — 0 uniformly in i < N
2
o N2 Y (B(XiXic = 1io) X Xior = 1))~ — O uniformly in
A
i<N
where A = {(k, 0, k', 0') : 1L < k, £, K' 0/ < pI\{(k, L, K, ') : k=K #
=" or k=10 #kK =1}
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Applications
@ The assumption
E|GRCT —Tr(RT,)|* = o(N?) where Ty = (744)
for any p x p deterministic matrix, R = (rx, ), with bounded spectral
norm, is verified as soon as
o N1 maxk#]E(X,-kX,-g - ’)/k’g)z — 0 uniformly in i < N
2
o N2 Y (B(XiXic = 1io) X Xior = 1))~ — O uniformly in
A
i<N

where A = {(k, 0, k', 0') : 1L < k, £, K' 0/ < pI\{(k, L, K, ') : k=K #
=" or k=10 #kK =1}

@ In their paper, Bai and Zhou applied their result to get the limiting
spectral distributions of Spearman’s rank correlation matrices, of sample
correlation matrices from finite population and of sample covariance
matrices generated by causal AR(1) models.
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Application to sample covariance matrices generated by causal linear
processes

@ Yao ('12) and Pan et al. ('14): Let By = %Z,"\Iﬂ C. C; where the
Ci = (Xi1,..., Xjp)'s are independent copies of C = (Xq,...,Xp) with
Xk = Yj>0 aj€k—j Where the g;'s are iid, centered and in L2, and
Yk>1]ak| < co. Then, when limy 0 p/N = ¢ € (0, c0), with
probability one, up, converges in law to a non random probability
measure whose Stieltjes transform S = S(z) satisfies the equation

1 1
=—= —d)t,
r=—gty xS+ (2nf(A) T
where f(-) is the spectral density of (Xy)kez. The limiting spectral
distribution has compact support.
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Application to sample covariance matrices generated by causal linear
processes

@ Yao ('12) and Pan et al. ('14): Let By = %Z,"\Iﬂ C. C; where the
Ci = (Xi1,..., Xjp)'s are independent copies of C = (Xq,...,Xp) with
Xk = Yj>0 aj€k—j Where the g;'s are iid, centered and in L2, and
Yk>1]ak| < co. Then, when limy 0 p/N = ¢ € (0, c0), with
probability one, up, converges in law to a non random probability
measure whose Stieltjes transform S = S(z) satisfies the equation

1 1
=—— —d)t,
r=—gty xS+ (2nf(A) T
where f(-) is the spectral density of (Xy)kez. The limiting spectral
distribution has compact support.

@ The assumption ]E|C,-RC,-T —Tr(RTp)| = o(N?) can be hard to verify
for non linear time series (ex of ARCH models) or requires rate of
convergence of mixing coefficients.
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Application to sample covariance matrices generated by causal linear
processes

@ Yao ('12) and Pan et al. ('14): Let By = %Z,N:l C. C; where the
Ci = (Xi1,..., Xjp)'s are independent copies of C = (Xq,...,Xp) with
Xk = Yj>0 aj€k—j Where the g;'s are iid, centered and in L2, and
Yk>1]ak| < co. Then, when limy 0 p/N = ¢ € (0, c0), with
probability one, up, converges in law to a non random probability
measure whose Stieltjes transform S = S(z) satisfies the equation

1 1
=—= —d)t,
r=—gty xS+ (2nf(A) T
where f(-) is the spectral density of (Xy)kez. The limiting spectral
distribution has compact support.

@ The assumption ]E|C,-RC,-T —Tr(RTp)| = o(N?) can be hard to verify
for non linear time series (ex of ARCH models) or requires rate of
convergence of mixing coefficients.

@ Does the spectral distribution of sample covariance matrices generated
by causal linear processes with innovations in IL2 and Y1 a% <
admits a limit?
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Main result: M. & Peligrad (2014)

@ Consider N independent copies (Xj)jez, i =1,..., N of a stationary
sequence (X;);ez of real-valued random variables centered and in L2
and that satisfies the following regularity conditions:

E(Xg|G-w) =0as.
and for every integer k
E(XpXk|G-) = E(XoXk) as.
where G = Nkez Gk With G = 0(X;,j < k).
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Main result: M. & Peligrad (2014)

@ Consider N independent copies (Xj)jez, i =1,..., N of a stationary
sequence (X;);ez of real-valued random variables centered and in L2
and that satisfies the following regularity conditions:

E(Xg|G-w) =0as.
and for every integer k
E(XpXk|G-) = E(XoXk) as.
where G = Nkez Gk With G = 0(X;,j < k).

@ Assume p/N — ¢ € (0,00). Then, almost surely, 1B, converges in law
to a non random probability measure whose Stieltjes transform S = S(z)
satisfies the equation : for all z € CT

z=—

l+i/n ;d)\
S 2n) xS+ af(A) 1

where S := —(1—c¢)/z+ ¢S and f(-) is the spectral density of
(Xi)kez-
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On the regularity conditions

Recall the regularity conditions:
E(Xp|G-s) =0 ass. (1)
and for every nonnegative integer k

E(XoXk|G-o0) = E(XoXy) as. (2)

@ (1) implies that the process (Xi)xez is purely non deterministic.
Therefore, by a result of Szegd, the spectral density of (Xi)kez exists
and if Xp is non degenerate, f cannot vanish on a set of positive
measure.
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On the regularity conditions

Recall the regularity conditions:
E(Xp|G-s) =0 ass. (1)
and for every nonnegative integer k

E(XoXk|G-o0) = E(XoXy) as. (2)

@ (1) implies that the process (Xi)xez is purely non deterministic.
Therefore, by a result of Szegd, the spectral density of (Xi)kez exists
and if Xp is non degenerate, f cannot vanish on a set of positive
measure.

@ If the left tail sigma field G_ is trivial then (1) and (2) hold. This is
the case when (Xj) is a function of an iid r.v.'s sequence, so in this
situation no condition is required except the process to be in IL2.
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On the regularity conditions

Recall the regularity conditions:
E(Xp|G-s) =0 ass. (1)
and for every nonnegative integer k

E(XoXk|G-o0) = E(XoXy) as. (2)

@ (1) implies that the process (Xi)xez is purely non deterministic.
Therefore, by a result of Szegd, the spectral density of (Xi)kez exists
and if Xp is non degenerate, f cannot vanish on a set of positive
measure.

@ If the left tail sigma field G_ is trivial then (1) and (2) hold. This is
the case when (Xj) is a function of an iid r.v.'s sequence, so in this
situation no condition is required except the process to be in IL2.

@ It follows that if X =} ;>0 ajéx—; where the ¢,'s are iid, centered and
in L2, and Yk>0 a% < o0, the result applies.
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Other situations where the left tail sigma field is trivial

@ Let G" = (X, k > n) and define
ap = a(Go,9") and pn = p(G0,G").
where for two two sigma algebras A and B,
a(A, B) =sup{|P(ANB) —P(A)P(B)|: A€ A, Be B}
and

p(A B) = sup{Cov(X, Y)/[[ X2l Y[2: X € L*(A), Y € L*(B)}.
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Other situations where the left tail sigma field is trivial

@ Let G" = (X, k > n) and define
ap = a(Go,9") and pn = p(G0,G").
where for two two sigma algebras A and B,
a(A, B) =sup{|P(ANB) —P(A)P(B)|: A€ A, Be B}
and
p(A, B) = sup{Cov(X, Y)/ X[l Y2 : X € L?(A4), Y € L*(B)}.

o If ayp = 0 or limp—eo pn < 1, then the left tail sigma field G_ is trivial
(see Bradley (2005) and (2007)).
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Other situations where the left tail sigma field is trivial

@ Let G" = 0(Xk, k > n) and define
ap = a(Go,9") and pn = p(G0,G").
where for two two sigma algebras A and B,
a(A, B) =sup{|P(ANB) —P(A)P(B)|: A€ A, Be B}
and
p(A, B) = sup{Cov(X, Y)/ X[l Y2 : X € L?(A4), Y € L*(B)}.

o If ayp = 0 or limp—eo pn < 1, then the left tail sigma field G_ is trivial
(see Bradley (2005) and (2007)).

@ Triviality of G_« is not necessary for the regularity conditions to hold.
For instance, it is enough that

app =supa(G_p, o(Xo, Xg)) =0
k>0

and the variables to be centered and in IL2, for the regularity conditions
to hold
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Sketch of proof

The result will follow if we can prove that: for any z € CT,
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Sketch of proof

The result will follow if we can prove that: for any z € CT,

©® Sug, (2) —ESug, (2) » O ass.
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Sketch of proof

The result will follow if we can prove that: for any z € CT,
©® Sug, (2) —ESug, (2) » O ass.

® ESyp, (2) — ESyg, (2) — 0 where

1
Gy =y 2 G G =GN ,Onp

with G; = (Yj1,..., Yjp) where (Yi)kez, i=1,---, N are N
independent copies of a centered real-valued Gaussian process (Yi)kez
such that for all integers i, j

Cov(Y;, Yj) = Cov(X;, X))

We can take (Yj) independent of (X ).
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Sketch of proof

The result will follow if we can prove that: for any z € CT,
©® Sug, (2) —ESug, (2) » O ass.

® ESyp, (2) — ESyg, (2) — 0 where

1
Gy =y 2 G G =GN ,Onp

with G; = (Yj1,..., Yjp) where (Yi)kez, i=1,---, N are N
independent copies of a centered real-valued Gaussian process (Yi)kez
such that for all integers i, j
Cov(Y;, Yj) = Cov(X;, X))
We can take (Yj) independent of (X ).
® ESy, (2) = S(2).
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@ The fact that S5 (z) — ESug,, (z) — 0 a.s. comes directly from

concentration results for spectral measures (see for instance
Guntuboyina-Leeb (2009)).
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o The fact that S (z) — ESug,, (z) — 0 a.s. comes directly from
concentration results for spectral measures (see for instance
Guntuboyina-Leeb (2009)).

@ To prove that ESyp (z) — ESuc, (z) — 0, notice that it is enough to
show that
ESux, (z) —ESuy (2) =0 (%)
where n = N + p,

T T
anl(op'p XN'P>andYn:1<0p'p gN'P).
VN \ Xnp Onn VN \ Gnp Onn

Indeed
N—-p
2pz

—1/2 N 1/2
SHBN(Z):Z / ESF‘XH(Z 2y 4

Note that X, 1= N"/2[x" ]2} and Y, := N-1/2[y{"]r. | where
L) _ { Zipjlizprilicj<p F1<j<i
b z" if1<i<j

<n
; .
i sn
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o The fact that S (z) — ESug,, (z) — 0 a.s. comes directly from
concentration results for spectral measures (see for instance
Guntuboyina-Leeb (2009)).

@ To prove that ESyp (z) — ESuc, (z) — 0, notice that it is enough to
show that

ESpx, (z) — ESy, (z) >0 (%)
where n = N + p,

T T
anl( Op.p XN'P>and \Yn:1< Op.p gN'P )

VN \ Xnp Onn VN \ Gnp Onn
Indeed N
_ _—1/2.n 1/2 —p
Sug,, (z) =z gsyx,,(z )+ “opz
Note that X, := N’1/2[xi§-")]lf”j:1 and Y, := N’l/z[yig-")}ﬁjzl where

(n) _ { Zi—pjlizpriligj<p ifl<j<i<n
Zj = z" fl<i<j<n’
@ The convergence (*) is handled via the Lindeberg method.

orence Merlevede Université Paris-Est-Marne-



Preparatory materials to use Lindeberg's method

@ Set LX = (Xi(ln), ...,Xi(l-n)) and LY = (yi(1n>,..., I-(I-n)). Note that

Sux, (2) = Spy, (2) =s(L5 . L) —s(L, ... L))

where s := s, : R"("t1)/2 _ C. This function admits partial derivatives
of all orders that are uniformly bounded (see Chatterjee (2006)).
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Preparatory materials to use Lindeberg's method

o

Set LIX = (Xi(ln), X-(n)) and L,-Y = (yi(1n>,..., (n)). Note that

» Xjj i
Sux, (2) = Spy, (2) = s(Lf, . L) —s(LY,.... L)
where s := s, : R"("t1)/2 _ C. This function admits partial derivatives
of all orders that are uniformly bounded (see Chatterjee (2006)).

Divide each row in big blocks of size m and small blocks of size g (the
entries in these small blocks are replaced by 0). Hence

Li = (Bj1.04.Bj2.0q,..., Bik;, 0) . ki =[i/(m+ q)]

The asymptotics used will be n — oo followed by m — oo (g = o(m)).
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Preparatory materials to use Lindeberg's method

@ Set LX = (Xi(ln), e X-(n)) and LY = (yi(ln),. (n)). Note that

» Xjj s Yii
Sux, (2) = Spy, (2) = s(Lf, . L) —s(LY,.... L)
where s := s, : R"("t1)/2 _ C. This function admits partial derivatives
of all orders that are uniformly bounded (see Chatterjee (2006)).

@ Divide each row in big blocks of size m and small blocks of size g (the
entries in these small blocks are replaced by 0). Hence

Li = (Bj1.04.Bj2.0q,..., Bik;, 0) . ki =[i/(m+ q)]
The asymptotics used will be n — oo followed by m — oo (g = o(m)).
@ Martingale approximation :
(Bik,0) = Bk = (Bjx,0) — E((Bj k. 0)| Fix-1)

where Fig = {@,Q} and for £ € {1,..., ki}, Fiyy=0(Bij.j <0).
Hence

Li— L= (Bi1Bia,..., Bik). ki=1[i/(m+q)]
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On the martingale approximations by blocks

How to control the expectations of the quantities
Ari=s(LE, .. L) —s(IF, ..., LX) and Ap = s(LY, ..., LY)—s(LY,.... L))
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On the martingale approximations by blocks

How to control the expectations of the quantities
Ari=s(LE, .. L) —s(IF, ..., LX) and Ap = s(LY, ..., LY)—s(LY,.... L))

@ Lemma (Gotze et al. (2012)): Let A and B be two symmetric n X n
matrices with real entries. Then, for any z=x+1iy € C\R,

|Sua(2) = Spg (2)] < | Tr(A — B)?|H/2.

y\f
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On the martingale approximations by blocks

How to control the expectations of the quantities
Ari=s(LE, .. L) —s(IF, ..., LX) and Ap = s(LY, ..., LY)—s(LY,.... L))

@ Lemma (Gotze et al. (2012)): Let A and B be two symmetric n X n
matrices with real entries. Then, for any z = x +iy € C\R,

Sua(z < Tr(A — B)?|1/2.
|Sua(2) — Sug(2)] y\fl( )|
@ Therefore, recalling that G, = o(Yy, £ < k),
2 g+ m
[EA| <<( +7)E(X02)+||E(Xolgfq)|\%

which converges to zero letting n — oo, followed by m — oo.
@ Since (Y}) is a Gaussian process with the same cov. structure as (Xj).

2 qg-+m
[EAs|” < ( +—) (Y$) + |E(Yolo (Ve € < —q)|3

< +"+—”’>E<x§>+ue<xo\gfq>||%
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Lindeberg's method by blocks (1)

Write

L.y
n ki
- Z Z (sik( _Si,k(éi\,/k))

s(L, ..., 5 —s(L

where s,-,k(g,-,k) is the Stieltjes transform associated with the matrix

BX BX BX ) BY BY
Bi,l Bi,2 Bi,k—l Bi Bi,k+1 Bi,ki

~Y ~Y ~y ~y ~y . y
Bn,l Bn,2 Bn,kfl Bn,k Bn,k+l . B

n,kp
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Lindeberg's method by blocks (2)

@ To control 37 4 Ell?:l E(s,-’k(é-xk) — si,k(gi\,/k))' we write

ki

Zn:ZE(SIk :Xk) S’k(élyk))

i=1k=1
n ki _ ~
Xy (E(sik(BS) = 5i(0) — E(sik(BY) — 5ix(0)))

and we use Taylor's expansion at order three (so we need additionally to
truncate the entries in the blocks B,.Xk). The terms of the first order are

equal to zero due to the Martingale properties of the E,Xk the fact that
the §,-Yk’s are independent and the independence between (Xj;) and

(Yi)-

orence Merlevede Université Paris-Est-Marne-



Lindeberg's method by blocks (2)

@ To control 37 4 Ell?:l E(s,-’k(é-xk) — si,k(gi\,/k))' we write
ki

Zn:ZE(SIk :Xk) S’k(élyk))

i=1k=1
n ki _ ~
Xy (E(sik(BS) = 5i(0) — E(sik(BY) — 5ix(0)))

and we use Taylor's expansion at order three (so we need additionally to
truncate the entries in the blocks Bi),<k)' The terms of the first order are
equal to zero due to the Martingale properties of the E,Xk the fact that
the §,-’v/k’s are independent and the independence between (Xj;) and
(V)

@ The main difficulty is to control suitably the terms of second order.
Using only the fact that for any z € C*

|[Qudys(-)] <

nN
does not lead to the desired result.
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The Gaussian part

Let us prove that ESVGN(Z) — S(2).

@ Let (Gjj)ijez be an iid Gaussian standard random field and let

CO Cl - .. Cp—l
Cc1 0 Cp—2
T, := ) . where ¢, = Cov(Xp, Xk) .
Cp—l Cp_2 ... CO

We have ESy¢ (z) = ESyy, (2) where

1
Hy= T

= —r1l/257
N

/2

1 T — 1 - —
p “EnpEnplp T with Enp = (Sij)1<i<ni<j<p

@ By Silverstein (95) + a version of Szegd's theorem for Toeplitz forms
(see Trotter (84)), we get the result when the spectral density is in IL2.
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and when f is not in 1.2 ?

@ Let

1
Yie =) ajCuo—j with a, = E/;ﬂ ™\ [f(x)dx.

jez
The process (Yi/)k ez as the right covariance structure.
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and when f is not in 1.2 ?

@ Let

T,
Yie =) ajCuo—j with a, = \/271/—71 ™\ [f(x)dx.

jez
The process (Yi/)k ez as the right covariance structure.

@ Let b be a positive integer and let f, = f A b. Hence f, is the spectral
density on [—7t, 7] of a IL2-stationary process.
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and when f is not in 1.2 ?
@ Let

T,
Yie =) ajCuo—j with a, = \/271/—71 ™\ [f(x)dx.

jez
The process (Yi/)k ez as the right covariance structure.

@ Let b be a positive integer and let f, = f A b. Hence f, is the spectral
density on [—7t, 7] of a IL2-stationary process.

@ Define

1
76— N 5,7 with 3 :—/ e [f (x)dx .
ot jEZZ i, bC k0~ kb o) b(x)
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@ Let
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Yie = Z ajCu,o—j with a, = \/%/_ﬂelkxy/f(x)dx.

jez
The process (Yi/)k ez as the right covariance structure.

@ Let b be a positive integer and let f, = f A b. Hence f, is the spectral
density on [—7t, 7] of a IL2-stationary process.

@ Define

Zp =Y & pChp—j with 3 p = (x)dx .

v L

@ (ZP),cz2 is a centered real-valued stationary Gaussian random field.
addition, for any fixed integer k, (Zké)pez admits f, as spectral denS|ty
on [—7, 7t]. Let G& be the Gram matrix associated with (Z2),cz2.
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and when f is not in 1.2 ?

@ Let

T,
Yie = Y a8k —j with a = \/;71/—71 e\ (x)dx .

JjeZ
The process (Yi/)k ez as the right covariance structure.
@ Let b be a positive integer and let f, = f A b. Hence f, is the spectral
density on [—7t, 7] of a IL2-stationary process.
@ Define

ZI?Z = Z éj,b(:k,é—j with dg p =

jez ' \ﬁ /

@ (ZP),cz2 is a centered real-valued stationary Gaussian random field.
addition, for any fixed integer k, (Zké)pez admits f, as spectral denS|ty
on [—7, 7t]. Let G& be the Gram matrix associated with (Z2),cz2.

(x)dx.

@ Since fp, is bounded, there exists a nonrandom p.m i, such that
lim d(FSk, Fb) =0 as.
N— o0
where d is the Lévy distance
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@ To control d(FG’V, FGN), we use the following lemma
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@ To control d(FG’V, FGN), we use the following lemma

@ Lemma : Let A and B be two p x N matrices with real entries. Then

V2

P(FMT FOPT) < V2 (1x(AAT 1 BBT)Tr((A - B)(A - B) )2
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@ To control d(FG’V, FGN), we use the following lemma

@ Lemma : Let A and B be two p x N matrices with real entries. Then

V2

d2(FAAT, FBBT) < YETe(AAT + BBT)Tr((A — B)(A —B))]/2.

@ The above lemma together with Cauchy-Schwarz's inequality and
Parseval’s identity give

Ed?(FSv, FOR) < (/ﬂ f(x)dx)l/z(/n f(x)1f<x>>bd><)1/2

-7t —TT
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@ To control d(FG’V, FGN), we use the following lemma

@ Lemma : Let A and B be two p x N matrices with real entries. Then

V2

P(FMT FOPT) < V2 (1x(AAT 1 BBT)Tr((A - B)(A - B) )2

@ The above lemma together with Cauchy-Schwarz's inequality and
Parseval’s identity give

Ed?(FSv, FOR) < (/ﬂ f(x)dx)l/z(/n f(x)1f<x>>bd><)1/2

-7t —TT

@ So finally limp_,e limsupp_,eo d(FEN, F) = 0 in probability. In
particular, Fbis Cauchy.
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@ Lemma : Let A and B be two p x N matrices with real entries. Then

V2

P(FMT FOPT) < V2 (1x(AAT 1 BBT)Tr((A - B)(A - B) )2

@ The above lemma together with Cauchy-Schwarz's inequality and
Parseval’s identity give

Ed?(FSv, FOR) < (/ﬂ f(x)dx)l/z(/n f(x)1f<x>>bd><)1/2

-7t —TT

@ So finally limp_,e limsupp_,eo d(FEN, F) = 0 in probability. In
particular, Fbis Cauchy.

@ Since the space of distribution functions endowed with d is complete
there exists a nonrandom d.f. F such that limp_,, d(F?, F) = 0.
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@ To control d(FG’V, FGN), we use the following lemma

@ Lemma : Let A and B be two p x N matrices with real entries. Then

V2

P(FMT FOPT) < V2 (1x(AAT 1 BBT)Tr((A - B)(A - B) )2

@ The above lemma together with Cauchy-Schwarz's inequality and
Parseval’s identity give

Ed?(FSv, FOR) < (/ﬂ f(x)dx)l/z(/n f(x)1f<x>>bd><)1/2

—7T —7T
@ So finally limp_,e limsupp_,eo d(FEN, F) = 0 in probability. In
particular, Fbis Cauchy.

@ Since the space of distribution functions endowed with d is complete
there exists a nonrandom d.f. F such that limp_,, d(F?, F) = 0.

@ By the continuity theorem, S? — S and Sﬂc,\, — S in probability.
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@ To control d(FG’V, FGN), we use the following lemma

@ Lemma : Let A and B be two p x N matrices with real entries. Then

V2

P(FMT FOPT) < V2 (1x(AAT 1 BBT)Tr((A - B)(A - B) )2

@ The above lemma together with Cauchy-Schwarz's inequality and
Parseval’s identity give

Ed?(FSv, FOR) < (/ﬂ f(x)dx)l/z(/n f(x)1f<x>>bd><)1/2

—7T —7T
@ So finally limp_,e limsupp_,eo d(FEN, F) = 0 in probability. In
particular, Fbis Cauchy.

@ Since the space of distribution functions endowed with d is complete
there exists a nonrandom d.f. F such that limp_,, d(F?, F) = 0.

@ By the continuity theorem, S? — S and Sﬂc,\, — S in probability.

@ To identify S, it suffices to take the limit of Sb.

orence Merlevede Université Paris-Est-Marne-



Some concluding remarks

@ Since the limiting spectral distribution of sample covariance matrices
generated by stationary and regular processes in IL2 always exists, looking
only at the limit of the spectral distribution is not enough to distinguish
short range dependent processes to those exhibiting long memory.
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Some concluding remarks

@ Since the limiting spectral distribution of sample covariance matrices
generated by stationary and regular processes in IL2 always exists, looking
only at the limit of the spectral distribution is not enough to distinguish
short range dependent processes to those exhibiting long memory.

@ Looking at results of second order (like CLT for linear statistics of the
eigenvalues) or at the asymptotic behavior of the largest eigenvalue
could (may be!) allow this distinction (the normalizing sequences in the
long memory setting would be probably different than in the short
memory one).
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