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Introduction

Consider N independent copies (Xij )j∈Z, i = 1, . . . ,N of a stationary
sequence (Xi )i∈Z of real-valued r.v’s and consider the N × p matrix

XN,p = (Xij )1≤i≤N,1≤j≤p

Define now the symmetric matrix BN of order p by

BN =
1

N
XT
N,pXN,p :=

1

N

N

∑
i=1

CT
i Ci

where Ci = (Xi1, . . . ,Xip). BN is usually called the sample covariance
matrix (or Gram matrix) associated with the process (Xij ).

Question: What can we say about the spectrum of BN when
lim p

N → c ∈ (0, ∞)?

Let us look at the spectral measure of BN

µBN
:=

1

p

p

∑
i=1

δλi
where λi = λi (BN )
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Marc̆enko-Pastur (1967)

Assume that (Xi )i∈Z is a sequence of iid, mean zero and with variance 1
r.v.’s (so the entries of XN,p are iid). Assume that lim p

N → c ∈ (0, ∞).
Then, with probability 1, µBN

converge in law to a non random
probability measure µMP whose density is given by

f (x) =
1

2πcx

√
(b− x)(x − a)1[a,b](x) + 1]1,∞)(c)(1− c−1)1x=0

with a = (1−
√
c)2, b = (1 +

√
c)2.

Since 1967, there has been a great amount of work to relax the
assumption on the independence of the entries of XN,p, and in particular
the independence structure in the rows of XN,p.
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A first extension of the Marc̆enko-Pastur’s result

Yin (1986) and Silverstein (1995). They consider

ΣN =
1√
N
R1/2
p XT

N,p

where XN,p := (Xij )1≤i≤N,1≤j≤p, the Xij ’s are iid with variance 1, and
Rp is a Hermitian non negative definite random matrix of size p
independent of XN,p. Let BN = ΣNΣT

N .

Silverstein (1995): If limn→∞ p/N = c ∈ (0, ∞) and if with probability
one, µRp converges in law to a non random probability measure µH then,
almost surely, µBn

converges in law to a non random probability measure
characterized via its Stieltjes transform. More precisely, for any z ∈ C+

SµBN
(z) =

∫
1

x − z
dµBN

(x) =
1

p
Tr(BN − zIp)

−1 → S(z) almost surely

where

S(z) =
∫

dµH (x)

−z + (1− c)x − zcxS(z)
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A second extension of the Marc̆enko-Pastur’s result: Bai-Zhou (2008)
For 1 ≤ i ≤ N, let Ci = (Xi1, . . . ,Xip) and BN = 1

N ∑N
i=1 C

T
i Ci . Assume

that the Ci ’s are independent, and that

For all i , E(XikXi`) = γk,` and for any deterministic matrix p × p,
R = (rk`), with bounded spectral norm

E
∣∣CiRC

T
i − Tr(RΓp)

∣∣2 = o(N2) where Γp = (γk,`)

limN→∞ p/N = c ∈ (0, ∞)

The spectral norm of Γp is uniformly bounded and µΓp converges in law
to µH .

Then, almost surely, µBN
converges in law to a non random probability

measure whose Stieltjes transform S = S(z) satisfies the equation : for all
z ∈ C+

z = − 1

S
+ c

∫
t

1 + St
dµH (t) ,

where S(z) := −(1− c)/z + cS(z).
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Applications

The assumption

E
∣∣CiRC

T
i − Tr(RΓp)

∣∣2 = o(N2) where Γp = (γk,`)

for any p × p deterministic matrix, R = (rk,`), with bounded spectral
norm, is verified as soon as

N−1 maxk 6=` E
(
XikXi` − γk,`

)2 → 0 uniformly in i ≤ N

N−2 ∑
Λ

(
E(XikXi` − γk,`)(Xik ′Xi`′ − γk ′,`′)

)2
→ 0 uniformly in

i ≤ N

where Λ = {(k , `, k ′, `′) : 1 ≤ k , `, k ′, `′ ≤ p}\{(k , `, k ′, `′) : k = k ′ 6=
` = `′ or k = `′ 6= k ′ = `}.

In their paper, Bai and Zhou applied their result to get the limiting
spectral distributions of Spearman’s rank correlation matrices, of sample
correlation matrices from finite population and of sample covariance
matrices generated by causal AR(1) models.
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Application to sample covariance matrices generated by causal linear
processes

Yao (’12) and Pan et al. (’14): Let BN = 1
N ∑N

i=1 C
T
i Ci where the

Ci = (Xi1, . . . ,Xip)’s are independent copies of C = (X1, . . . ,Xp) with

Xk = ∑j≥0 aj εk−j where the εk ’s are iid, centered and in L2, and

∑k≥1 |ak | < ∞. Then, when limN→∞ p/N = c ∈ (0, ∞), with
probability one, µBN

converges in law to a non random probability
measure whose Stieltjes transform S = S(z) satisfies the equation

z = − 1

S
+

c

2π

∫ π

−π

1

S + (2πf (λ))−1
dλ ,

where f (·) is the spectral density of (Xk )k∈Z. The limiting spectral
distribution has compact support.

The assumption E
∣∣CiRC

T
i − Tr(RΓp)

∣∣ = o(N2) can be hard to verify
for non linear time series (ex of ARCH models) or requires rate of
convergence of mixing coefficients.

Does the spectral distribution of sample covariance matrices generated
by causal linear processes with innovations in L2 and ∑k≥1 a

2
k < ∞

admits a limit?
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Main result: M. & Peligrad (2014)

Consider N independent copies (Xij )j∈Z, i = 1, . . . ,N of a stationary

sequence (Xi )i∈Z of real-valued random variables centered and in L2

and that satisfies the following regularity conditions:

E(X0|G−∞) = 0 a.s.

and for every integer k

E(X0Xk |G−∞) = E(X0Xk ) a.s.

where G−∞ =
⋂

k∈Z Gk with Gk = σ(Xj , j ≤ k).

Assume p/N → c ∈ (0, ∞). Then, almost surely, µBN
converges in law

to a non random probability measure whose Stieltjes transform S = S(z)
satisfies the equation : for all z ∈ C+

z = − 1

S
+

c

2π

∫ π

−π

1

S + (2πf (λ))−1
dλ ,

where S := −(1− c)/z + cS and f (·) is the spectral density of
(Xk )k∈Z.
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On the regularity conditions

Recall the regularity conditions:

E(X0|G−∞) = 0 a.s. (1)

and for every nonnegative integer k

E(X0Xk |G−∞) = E(X0Xk ) a.s. (2)

(1) implies that the process (Xk )k∈Z is purely non deterministic.
Therefore, by a result of Szegö, the spectral density of (Xk )k∈Z exists
and if X0 is non degenerate, f cannot vanish on a set of positive
measure.

If the left tail sigma field G−∞ is trivial then (1) and (2) hold. This is
the case when (Xk ) is a function of an iid r.v.’s sequence, so in this
situation no condition is required except the process to be in L2.

It follows that if Xk = ∑j≥0 aj εk−j where the εk ’s are iid, centered and

in L2, and ∑k≥0 a
2
k < ∞, the result applies.
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Other situations where the left tail sigma field is trivial

Let Gn = σ(Xk , k ≥ n) and define

αn = α(G0,Gn) and ρn = ρ(G0,Gn) .

where for two two sigma algebras A and B,

α(A,B) = sup{|P(A∩ B)−P(A)P(B)| : A ∈ A, B ∈ B}

and

ρ(A,B) = sup{Cov(X ,Y )/‖X‖2‖Y ‖2 : X ∈ L2(A), Y ∈ L2(B)}.

If αn → 0 or limn→∞ ρn < 1, then the left tail sigma field G−∞ is trivial
(see Bradley (2005) and (2007)).

Triviality of G−∞ is not necessary for the regularity conditions to hold.
For instance, it is enough that

α2,n = sup
k≥0

α(G−n, σ(X0,Xk ))→ 0

and the variables to be centered and in L2, for the regularity conditions
to hold
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Sketch of proof

The result will follow if we can prove that: for any z ∈ C+,

SµBN
(z)− ESµBN

(z)→ 0 a.s.

ESµBN
(z)− ESµGN

(z)→ 0 where

GN =
1

N

N

∑
i=1

GT
i Gi =

1

N
GTN,pGN,p ,

with Gi = (Yi1, . . . ,Yip) where (Yik )k∈Z, i = 1, · · · ,N are N
independent copies of a centered real-valued Gaussian process (Yk )k∈Z

such that for all integers i , j

Cov(Yi ,Yj ) = Cov(Xi ,Xj )

We can take (Yik ) independent of (Xik ).

ESµGN
(z)→ S(z).
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Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEM) Joint work with M. Peligrad



Sketch of proof

The result will follow if we can prove that: for any z ∈ C+,

SµBN
(z)− ESµBN

(z)→ 0 a.s.

ESµBN
(z)− ESµGN

(z)→ 0 where

GN =
1

N

N

∑
i=1

GT
i Gi =

1

N
GTN,pGN,p ,

with Gi = (Yi1, . . . ,Yip) where (Yik )k∈Z, i = 1, · · · ,N are N
independent copies of a centered real-valued Gaussian process (Yk )k∈Z

such that for all integers i , j

Cov(Yi ,Yj ) = Cov(Xi ,Xj )

We can take (Yik ) independent of (Xik ).

ESµGN
(z)→ S(z).
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with Gi = (Yi1, . . . ,Yip) where (Yik )k∈Z, i = 1, · · · ,N are N
independent copies of a centered real-valued Gaussian process (Yk )k∈Z

such that for all integers i , j

Cov(Yi ,Yj ) = Cov(Xi ,Xj )

We can take (Yik ) independent of (Xik ).

ESµGN
(z)→ S(z).
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The fact that SµBN
(z)− ESµBN

(z)→ 0 a.s. comes directly from

concentration results for spectral measures (see for instance
Guntuboyina-Leeb (2009)).

To prove that ESµBN
(z)− ESµGN

(z)→ 0, notice that it is enough to

show that
ESµXn

(z)− ESµYn
(z)→ 0 (∗)

where n = N + p,

Xn =
1√
N

(
0p,p XT

N,p
XN,p 0N,N

)
and Yn =

1√
N

(
0p,p GTN,p
GN,p 0N,N

)
.

Indeed

SµBN
(z) = z−1/2 n

2p
SµXn

(z1/2) +
N − p

2pz

Note that Xn := N−1/2[x
(n)
ij ]ni ,j=1 and Yn := N−1/2[y

(n)
ij ]ni ,j=1 where

z
(n)
ij =

{ Zi−p,j1i≥p+111≤j≤p if 1 ≤ j ≤ i ≤ n

z
(n)
ji if 1 ≤ i < j ≤ n

.

The convergence (*) is handled via the Lindeberg method.
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Preparatory materials to use Lindeberg’s method

Set LXi = (x
(n)
i1 , . . . , x

(n)
ii ) and LYi = (y

(n)
i1 , . . . , y

(n)
ii ). Note that

SµXn
(z)− SµYn

(z) = s(LX1 , . . . , LXn )− s(LY1 , . . . , LYn )

where s := sz : Rn(n+1)/2 → C. This function admits partial derivatives
of all orders that are uniformly bounded (see Chatterjee (2006)).

Divide each row in big blocks of size m and small blocks of size q (the
entries in these small blocks are replaced by 0). Hence

Li →
(
Bi ,1, 0q,Bi ,2, 0q, . . . ,Bi ,ki , 0

)
, ki = [i/(m+ q)]

The asymptotics used will be n→ ∞ followed by m→ ∞ (q = o(m)).

Martingale approximation :

(Bi ,k , 0)→ B̃i ,k = (Bi ,k , 0)− E((Bi ,k , 0)|Fi ,k−1)

where Fi0 = {∅, Ω} and for ` ∈ {1, . . . , ki}, Fi` = σ(Bi ,j , j ≤ `).
Hence

Li → L̃i :=
(
B̃i ,1, B̃i ,2, . . . , B̃i ,ki

)
, ki = [i/(m+ q)]

Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEM) Joint work with M. Peligrad



Preparatory materials to use Lindeberg’s method

Set LXi = (x
(n)
i1 , . . . , x

(n)
ii ) and LYi = (y

(n)
i1 , . . . , y

(n)
ii ). Note that

SµXn
(z)− SµYn

(z) = s(LX1 , . . . , LXn )− s(LY1 , . . . , LYn )

where s := sz : Rn(n+1)/2 → C. This function admits partial derivatives
of all orders that are uniformly bounded (see Chatterjee (2006)).

Divide each row in big blocks of size m and small blocks of size q (the
entries in these small blocks are replaced by 0). Hence

Li →
(
Bi ,1, 0q,Bi ,2, 0q, . . . ,Bi ,ki , 0

)
, ki = [i/(m+ q)]

The asymptotics used will be n→ ∞ followed by m→ ∞ (q = o(m)).

Martingale approximation :

(Bi ,k , 0)→ B̃i ,k = (Bi ,k , 0)− E((Bi ,k , 0)|Fi ,k−1)

where Fi0 = {∅, Ω} and for ` ∈ {1, . . . , ki}, Fi` = σ(Bi ,j , j ≤ `).
Hence

Li → L̃i :=
(
B̃i ,1, B̃i ,2, . . . , B̃i ,ki

)
, ki = [i/(m+ q)]
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On the martingale approximations by blocks

How to control the expectations of the quantities

∆1 := s(LX1 , . . . , LXn )− s(L̃X1 , . . . , L̃Xn ) and ∆2 := s(LY1 , . . . , LYn )− s(L̃Y1 , . . . , L̃Yn )

Lemma (Götze et al. (2012)): Let A and B be two symmetric n× n
matrices with real entries. Then, for any z = x + iy ∈ C\R,

|SµA(z)− SµB(z)| ≤
1

y2
√
n
|Tr(A−B)2|1/2 .

Therefore, recalling that Gk = σ(Y`, ` ≤ k),∣∣E∆1

∣∣2 � ( q
m

+
q +m

n

)
E(X 2

0 ) + ‖E(X0|G−q)‖2
2

which converges to zero letting n→ ∞, followed by m→ ∞.

Since (Y`) is a Gaussian process with the same cov. structure as (X`).∣∣E∆2

∣∣2 � ( q
m

+
q +m

n

)
E(Y 2

0 ) + ‖E(Y0|σ(Y`, ` ≤ −q)‖2
2

�
( q
m

+
q +m

n

)
E(X 2

0 ) + ‖E(X0|G−q)‖2
2
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Florence Merlevède Université Paris-Est-Marne-La-Vallée (UPEM) Joint work with M. Peligrad



Lindeberg’s method by blocks (1)

Write

s(L̃X1 , . . . , L̃Xn )− s(L̃Y1 , . . . , L̃Yn )

=
n

∑
i=1

ki

∑
k=1

(
si ,k (B̃

X
i ,k )− si ,k (B̃

Y
i ,k )
)

where si ,k (B̃i ,k ) is the Stieltjes transform associated with the matrix

B̃X
1,k1

B̃X
1,k2

B̃X
2,k2

. . .

. . . .

. . . . .

B̃X
i ,1 B̃X

i ,2 ... B̃X
i ,k−1 B̃i ,k B̃Y

i ,k+1 ... B̃Y
i ,ki

... ... ... ... ... ... ... ... .

... ... ... ... ... ... ... ... .

B̃Y
n,1 B̃Y

n,2 ... B̃Y
n,k−1 B̃Y

n,k B̃Y
n,k+1 ... ... . B̃Y

n,kn


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Lindeberg’s method by blocks (2)

To control ∑n
i=1 ∑ki

k=1 E
(
si ,k (B̃

X
i ,k )− si ,k (B̃

Y
i ,k )
)
, we write

n

∑
i=1

ki

∑
k=1

E
(
si ,k (B̃

X
i ,k )− si ,k (B̃

Y
i ,k )
)

=
n

∑
i=1

ki

∑
k=1

(
E
(
si ,k (B̃

X
i ,k )− si ,k (0)

)
− E

(
si ,k (B̃

Y
i ,k )− si ,k (0)

))
and we use Taylor’s expansion at order three (so we need additionally to
truncate the entries in the blocks B̃X

i ,k). The terms of the first order are

equal to zero due to the Martingale properties of the B̃X
i ,k , the fact that

the B̃Y
i ,k ’s are independent and the independence between (Xij ) and

(Yij ).

The main difficulty is to control suitably the terms of second order.
Using only the fact that for any z ∈ C+

|∂u∂vs(·)| ≤
c

nN

does not lead to the desired result.
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The Gaussian part

Let us prove that ESµGN
(z)→ S(z).

Let (ξij )i ,j∈Z be an iid Gaussian standard random field and let

Γp :=


c0 c1 · · · cp−1

c1 c0 cp−2
...

...
...

...
cp−1 cp−2 · · · c0

 where ck = Cov(X0,Xk ) .

We have ESµGN
(z) = ESµHN

(z) where

HN =
1

N
Γ1/2
p ΞT

N,pΞN,pΓ1/2
p with ΞN,p = (ξij )1≤i≤N,1≤j≤p

By Silverstein (95) + a version of Szegö’s theorem for Toeplitz forms
(see Trotter (84)), we get the result when the spectral density is in L2.
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and when f is not in L2 ?

Let

Yk` = ∑
j∈Z

ajξk,`−j with ak =
1√
2π

∫ π

−π
e ikx

√
f (x)dx .

The process (Yk`)k,`∈Z as the right covariance structure.

Let b be a positive integer and let fb = f ∧ b. Hence fb is the spectral
density on [−π, π] of a L2-stationary process.

Define

Zb
k` = ∑

j∈Z

ãj,bξk,`−j with ãk,b =
1√
2π

∫ π

−π
e ikx

√
fb(x)dx .

(Zb
u )u∈Z2 is a centered real-valued stationary Gaussian random field. In

addition, for any fixed integer k, (Zb
k`)`∈Z admits fb as spectral density

on [−π, π]. Let Gb
N be the Gram matrix associated with (Zb

u )u∈Z2 .

Since fb is bounded, there exists a nonrandom p.m µb such that

lim
N→∞

d(FGb
N ,F b) = 0 a.s.

where d is the Lévy distance
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To control d(FGN ,FGb
N ), we use the following lemma

Lemma : Let A and B be two p ×N matrices with real entries. Then

d2(FAAT
,FBBT

) ≤
√

2

p
[Tr(AAT + BBT )Tr((A−B)(A−B)T )]1/2 .

The above lemma together with Cauchy-Schwarz’s inequality and
Parseval’s identity give

Ed2(FGN ,FGb
N )�

( ∫ π

−π
f (x)dx

)1/2( ∫ π

−π
f (x) 1f (x)>bdx

)1/2

So finally limb→∞ lim supN→∞ d(FGN ,F b) = 0 in probability. In
particular, F b is Cauchy.

Since the space of distribution functions endowed with d is complete
there exists a nonrandom d.f. F such that limb→∞ d(F b,F ) = 0.

By the continuity theorem, Sb → S and SµGN
→ S in probability.

To identify S , it suffices to take the limit of Sb.
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there exists a nonrandom d.f. F such that limb→∞ d(F b,F ) = 0.

By the continuity theorem, Sb → S and SµGN
→ S in probability.

To identify S , it suffices to take the limit of Sb.
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Some concluding remarks

Since the limiting spectral distribution of sample covariance matrices
generated by stationary and regular processes in L2 always exists, looking
only at the limit of the spectral distribution is not enough to distinguish
short range dependent processes to those exhibiting long memory.

Looking at results of second order (like CLT for linear statistics of the
eigenvalues) or at the asymptotic behavior of the largest eigenvalue
could (may be!) allow this distinction (the normalizing sequences in the
long memory setting would be probably different than in the short
memory one).
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