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Model

We consider n × N random matrices of the form

A = A(Y1, . . . ,YN) =
[
Y1 · · · · · · · · ·YN

]
=
[

...
...

...
...

...

]
with columns Y1, . . . ,YN where Y ,Y1, . . . ,YN are i.i.d. random vectors in Rn.

We assume that Y is isotropic with the normalization of R.M.T.

E[Y ] = 0 and E[YY>] =
In
n
.

We define

M =
n

N

N∑
i=1

YiY
>
i =

n

N
AA>

and denote 0 ≤ · · · ≤ λi (M) ≤ · · · ≤ λ1(M)

the eigenvalues of M which are the square of the singular values
(

si
(√

N
n A
))

i≥1

where the operator A is considered from the Euclidean spaces RN to Rn,

A : `N2 −→ `n2.



Model

E[Y ] = 0 and E[YY>] =
In
n

M =
n

N

N∑
i=1

YiY
>
i =

n

N
AA>

with eigenvalues 0 ≤ · · · ≤ λi (M) ≤ · · · ≤ λ1(M).

In Random Matrix Theory one is mostly interested in asymptotic properties
(local or global) of the spectrum as n→∞ and n ∼ dN.

In high dimensional geometry and in asymptotic geometric analysis (contrary to
what is written) one is interested in quantitative estimates, in terms of n and
N and properties of Y and of the ambient space, of quantities f (A) that may
depend (or not) on the spectrum of M. “Quantitative” means that we ask for
estimates of

P(f (A) ∈ I )

for fixed large n and N and some interval I .



Quantitative (non-asymptotic) problems

Problems in high dimensional geometry
I Geometry of polytopes

I Neighborliness and R.I.P.

Problems in asymptotic geometric analysis

Let E be an N-dimensional normed space and BE be its unit ball.

I Estimates of geometric parameters of the unit ball ker A ∩ BE (N ≥ n) of
the random subspace defined by ker A: Euclidean radius and inradius, mean
width...

I Approximation theory (Kolmogorov diameter)
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Problems in high dimensional geometry
I Random polytopes

Let
K (A) = K (Y1, . . . ,YN)

be the convex hull (or symmetric convex hull) of the columns Yi , 1 ≤ i ≤ N.

Thus K (A) is a random polytope.

I (0, 1)-random polypotes :Y is a random vertex of the hypercube.

I Y is a random point uniformly distributed in a convex body K .
I How the geometry of the convex body is reflected in K(Y1, . . . ,YN) (vice

versa), concerning the structure of faces, geometric parameters, volume...
I How many points N, picked at random do you need to approximate

geometric parameters of the body, such as center of mass, mean width
. . . Problems of algorithmic complexity in geometry.

I Approximation of the inertia matrix (covariance matrix of Y ). Measure of
the degre of accuracy in terms of n and N (developed below).



Approximating the inertia matrix or the covariance matrix

In a paper on the algorithmic complexity of computing volume in high
dimensions, Kannan, Lovász and Simonovits asked for the following question
(1996):

Question (KLS)

Let K be a convex body in Rn. Given ε > 0, how many independent points Yi

uniformly distributed on K are needed for the empirical covariance matrix to
approximate the covariance matrix up to ε with overwhelming probability?



Kannan, Lovász, Simonovits question reformulated

Question
Let Y ∈ Rn be a random vector. Given ε, what should be the size N of a
sample (Yi )i≤N in order that the empirical covariance matrix ΣN approximates
the covariance matrix Σ of Y up to ε with overwhelming probability? That is

‖ΣN − Σ‖ =

∥∥∥∥∥ 1

N

N∑
1

YiY
>
i − Σ

∥∥∥∥∥ ≤ ε‖Σ‖ with high probability.

We may assume that Y is isotropic and the question becomes

Question
Assume that Y ∈ Rn is isotropic, then we would like that with overwhelming
probability

‖M − I‖ =
∥∥∥ n

N

N∑
1

YiY
>
i − I

∥∥∥ = max(|1− λn|, |λ1 − 1|) ≤ ε.



Kannan, Lovász, Simonovits question reformulated

Equivalently, the question is about a quantitative estimate on the edges of the
support of the spectrum:

(1− ε) ≤ λn ≤ λ1 ≤ (1 + ε).

In the regime n ∼ dN, d ∈ (0, 1), the asymptotics are known when the entries
are i.i.d. (Bai-Yin, under fourth moment condition)

limλn(M) = (1−
√

d)2 = λ− a.s. and limλ1(M) = (1 +
√

d)2 = λ+ a.s.

Conjecture:

Let Y be an isotropic random vector uniformly distributed in a convex body of
dimension n. Let ε > 0. Then a sample of size

N = C (ε)n

is sufficient to approximate M up to ε (w.h.p.), that is ‖M − I‖ ≤ ε w.h.p.



Result in the convex or log-concave setting
I KLS (96): N ∼ c(ε)n2

I Breakthrough, Bourgain (96) : N ∼ c(ε)n log3 n
I Rudelson (99): N ∼ c(ε)n log2 n
I ...

Theorem [ALPT (2009-2010)] :

Let N ≥ n ≥ 1. Let (Yi )i≤N be independent isotropic log-concave (*) random
vectors in Rn, then with high probability

‖M − I‖ =

∥∥∥∥∥ n

N

N∑
1

YiY
>
i − I

∥∥∥∥∥ ≤ c

√
n

N
.

Thus, let ε ∈ (0, 1). A log-concave isotropic random vector satisfies the
conjecture with C (ε) = O

(
1
ε2

)
(which is optimal):

a sample of size N = Cn/ε2 is sufficient
to approximate the covariance matrix up to ε w.h.p.

ALPT=R. Adamczak, A. Litvak, A. Pajor, N. Tomczak-Jaegermann

(*) log-concave random vector= on its support, its distribution has a density whose log is a concave

function (Gaussian vector, uniform distribution on a convex body)



Question
Which type of vector Y satisfies the conjecture ?

That is, which random vector Y ∈ Rn has the property that for N proportional
to n, the empirical covariance matrix of a sample of size N approximates the
covariance matrix of Y up to ε with overwhelming probability?

For instance Y log-concave, Y Bernoulli, subgaussian...
More generally, it was proved in ALPT that if for some C , c > 0,

I Y is isotropic

I |Y | ≤ c with high probability

I ∀t > 1 ∀θ ∈ Sn−1 P(|〈Y , θ〉| > t(E|〈Y , θ〉|2)1/2) ≤ C exp(−ct)

Then Y satisfies the conjecture.

| . | denotes the Euclidean norm



Let p ≥ 1, define the weak p-th moment as

σp(Y ) = sup
|θ|≤1

(E|〈Y , θ〉|p)1/p
.

Conjecture (Srivastava and Vershynin, 2011)

Assuming
Y isotropic, |Y | ≤ c (E|Y |2)1/2 and σp(Y ) ≤ σ.σ2(Y ) with p > 2

then a sample of size N = Cn is sufficient to approximate the covariance matrix
up to ε w.h.p., where C = C (ε, p, c , σ).

In the case p = 2, N ∼ n log n is needed when Y is uniformly distributed on the
set of n vectors of Euclidean norm 1. Indeed, the size N ∼ n log n is needed for
the sample {Y1, ...,YN} to contain all these vectors, which is required for a
nontrivial covariance approximation.



N. Srivastava and R. Vershynin (2011)

Assuming

I Y is isotropic

I |Y | ≤ c
(
E|Y |2

)1/2

I for some p > 2,
(
E|QY |p

)1/p ≤ C
(
E|QY |2

)1/2
, for all orthogonal

projection Q,

then a sample of size N ≈ n/εα is sufficient to approximate Σ, where
α > 2 depends p.

S. Mendelson - G. Paouris (2012)

Let p > 8. Assuming

Y isotropic, |Y | ≤ c
(
E|Y |2

)1/2
and σp(Y ) ≤ σ.σ2(Y )

then a sample of size N = Cn is sufficient to approximate the covariance matrix
up to ε w.h.p., where C = C (ε, p, c , σ) = C (p, c , σ)/ε2.

The accuracy (dependence in ε) is optimal.



S. Mendelson - G. Paouris (2012)

Let p > 8. Assuming

Y isotropic, |Y | ≤ c
(
E|Y |2

)1/2
and σp(Y ) ≤ σ.σ2(Y )

then a sample of size N = Cn is sufficient to approximate the covariance matrix
up to ε w.h.p., where C = C (ε, p, c , σ) = C (p, c , σ)/ε2.

Using the same method Guédon-Litvak-Pajor-Tomczak-Jaegermann (2013)
completed the result for 8 ≥ p > 4, with C = C (ε, p, c , σ) = C (p, c , σ)/εα and
α > 2 (probably not optimal?).

Remains the case 4 ≥ p > 2 and optimality (dependence in ε).

Important remark: In all these results the hypothesis are satisfied when the
entries are independent with bounded p-moment (p > 4), but the dependence
in ε is probably not optimal.



Quantitative Tracy-Widom
The methods of the above results show that for some c > 1

‖M‖ ≤ 1 + c

√
n

N

but do not give what is expected for the asymptotic (c ∼ 1 ?). By an other
approach Pillai and Yin got a “quantitative” Tracy-Widom estimate:

N. S. Pillai, J. Yin (2012)

Assuming that

I one-dimensional marginals have sub-exponential tail behavior

I concentration of quadratic forms 〈Y ,BY 〉, for every n × n matrix B
I off-diagonal part of quadratic forms satisfies a sub-exponential tail behavior
I 〈Y ,BY 〉 highly concentrates around their expectation

then w.h.p.
λ− − N−2/3ϕ ≤ λn ≤ λ1 ≤ λ+ + N−2/3ϕ

where ϕ = (log N)c log log N

Remark: The hypothesis are satisfied when the entries are i.i.d., centered with
variance 1 and have sub-exponential tail behavior. What else? Log-concave?



The lower edge
The difference of moment hypothesis between the lower and upper edges to
bound the eigenvalues appeared first in a paper of Srivastava and Vershynin.

N. Srivastava and R. Vershynin (2011)

Assuming that

Y isotropic, |Y | ≤ c
(
E|Y |2

)1/2
and σp(Y ) ≤ σ.σ2(Y ) for some p > 2

Then, for Nd ≥ n, we have

Eλ2
n ≥ 1− Cd1/α

where α > 2 depends on p and C depends on c and σ.

This was then improved by V. Koltchinskii and S. Mendelson (2013) where the
optimal behavior of λn (up to a multiplicative constant) was obtained for p > 4.
Assuming that

Y isotropic, |Y | ≤ c
(
E|Y |2

)1/2
and σp(Y ) ≤ σ.σ2(Y ) for some p > 4

then for Nd ≥ n, w.h.p. one has

λn ≥ 1− C
√

d .

A lower bound is also obtained when 2 < p ≤ 4.



The lower edge :Tikhomirov

Finally very recently K. Tikhomirov proved that no moment assumption is
needed.

K. Tikhomirov (2014)

Let β, d ∈ (0, 1). Assume that A = (aij) has i.i.d. entries satisfying

sup
λ

P{|a11 − λ| ≤ 1} ≤ 1− β

then for Nd ≥ max(N0, n),

sn(A) > c
√

N

with probability larger than 1− exp(−C
√

N), where c ,C ,N0 depend on β and d .

Remark: The hypothesis is satisfies for a zero median random variable
satisfying E|a11|p ≥ m, E|a11|q ≤ M for some 0 < p < q and m,N > 0.



The lower edge: asymptotics

Very recently K. Tikhomirov proved that moment 2 is sufficient to get a Bai-Yin
lower edge asymptotic.

K. Tikhomirov (2014)

Assume that A = (aij) has i.i.d. entries with zero mean and variance 1/n. Then
with probability 1,

λn −→ (1−
√

d)2 = λ−.

where d = n/N ∈ (0, 1).



Problems of high dimensional geometry
I Neighborliness and R.I.P.

Let 1 ≤ s ≤ n ≤ N. For every J ⊂ {1, . . . ,N} with cardinality s, denote by

A(Yj ; j ∈ J) = AJ = (Yj)j∈J

the n × s matrix with columns (Yj)j∈J .

In compressed sensing, one is interested in the so-called Restricted Isometry
Property (R.I.P.). We ask that for every J ⊂ {1, . . . ,N} with cardinality s, AJ

acts almost isometrically, that is, A acts almost like an isometry on s-sparse
vectors. This is quantified as follows.

Let θ ∈ (0, 1). The matrix satisfies RIPs(θ) if for ever J ⊂ {1, . . . ,N} with
cardinality s, the spectrum of MJ = (AJ)>AJ lies in the interval [1− θ, 1 + θ].
(Candés-Tao). Equivalently, w.h.p.

∀J ⊂ {1, . . . ,N} |J| = s 1− θ ≤ λs(MJ) ≤ λ1(MJ) ≤ 1 + θ

If this is true for a small θ then every s-sparse vector of RN can be reconstructed
exactly from the data Ax by a fast algorithm (Candés-Romberg-Tao, Donoho).



Problems of high dimensional geometry
I Neighborliness and R.I.P.

RIPs(θ), 1 ≤ s ≤ n ≤ N:

∀J ⊂ {1, . . . ,N} |J| = s 1− θ ≤ λs(M
J) ≤ λ1(MJ) ≤ 1 + θ

Of course we want the a priori hypothesis of sparsity to be the less restrictive possible,
that is, s the largest possible, say almost proportional to n (w.h.p.). Thus the problem
becomes to find s the largest possible s.t. w.h.p. we have a good uniform control of
the edges of the spectrum of the restricted matrices MJ with |J| = s.

Indeed, s is proportional to n up to log1/2(N/n) for Gaussian random matrices
(CRT,Do) or for Bernoulli matrices (MPT, BDDeW). The case of ”structured
matrices” when the entries of the columns are not independent is an other problem
(see the books FR).

An other approach developed by D. Donoho and his collaborators is the study of the
structure of faces of the random polytope K(A).

CRT(2006)= Candés-Romberg-Tao, Do(2006)= Donoho,

MPT(2007)=Mendelson-P.-Tomczak-Jaegermann, BDDeW(2008)=Baraniuk-Davenport-DeVore-Wakin,

FR(2014)= Foucart-Rauhut
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