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EMPIRICAL SPECTRAL DISTRIBUTION OF A GRAPH

A graph G = (V, E) can be represented by its adjacency matrix :

1 if{ij}eE
|

otherwise.

Eigenvalues \; > ... > Ay capture essential information about G.

V]
1
G = ‘7| ;5)\k

Question: How does 1 typically look when G is large 7
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» Erdds-Rényi model: n nodes, edges present with proba p,

Theorem (Wigner, 50's): if np,(1 — pp) — oo,

e, (Vron(T )

4— N

n—o0 27T

L(nj<2)dA.

» Uniformly chosen random d,—regular graph on n nodes.

Theorem (Tran-Vu-Wang, 2010): if d,(1 — d,/n) — oo,

14— N2

i
1e, (\/ dn(1 — dn/ﬂ)é”) prondin s Y(PVESS LR

n—o0

» In both cases, graphs are required to be dense: |[E| >> |V/|
» What about sparse graphs: |E| =< |V|?
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SPECTRA OF SPARSE GRAPHS

Along many sequences { G, },>1 of sparse graphs, the spectrum
1, approaches a deterministic, model-dependent limit u:

G, —— [
n—o0

» Random d—regular graph on n nodes (McKay, 1981)
» Erdés-Rényi p, ~ = (Khorunzhy-Shcherbina-Vengerovsky '04)

» Uniform random tree on n vertices (Bhamidi-Evans-Sen '09)

Actually, this phenomenon is just one of the many consequences of
the fact that the underlying local geometry converges.
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LOCAL WEAK CONVERGENCE (BENJAMINI-SCHRAMM )

loc.
G, =5 L
n—o0

|V|

L: probability distribution over locally finite rooted graphs (G, 0)
VR € N,
oeV,

D sy (Cao)=e} —— L(Br(G,0) =e).
>> L describes the local geometry of G, around a random node

=] 5
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» G, = box of size n X ... x nin the lattice Z¢
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L = law of a Galton-Watson tree with degree distribution v
» G, = uniform random tree on n nodes
L = Infinite Skeleton Tree (Grimmett, 1980)
» G, = preferential attachment graph on n nodes
L = Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)
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SPECTRAL CONVERGENCE REVISITED
Can we give a sense to (g
If G =

| > .0y, when G is replaced by £ ?
(V,E) is a finite graph, we have for z ¢ C\ R

1
pe(dX)
(R

(Ag — 2)
v
If £ is the law of a random rooted graph (G, 0), define i by
- B
o) = E[(el(Ac - 2)e)]
R —Z

Fact: Gy, 2 1 — UG, —— jir

n—o00 n—oo
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Cz+ Y0 (Ar - 2)t

» Explicit resolution for infinite regular trees
» Recursive distributional equation for Galton-Watson trees
» In principle, this equation contains everything about 1,

» Example: computation of ;1-({0}) (Bordenave-Lelarge-S. '11)
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Let's keep things simple: £ = GW-tree with degree Poisson(c).
pe = Hpp + Hsc + fac

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag'13): 1i,,(R) < 1 as soon as ¢ > 1

We will focus on the pure-point part, i.e. the atoms of y,. This

specific question was raised by Ben Arous (open problem 14, AMS

workshop on random matrices, 2010).

Remark: every finite tree has positive probability under L.

: 2
> all tree eigenvalues are atoms of i (e.g. 0,1,1/3,2cos 27, ...)
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A = {symmetric integer matrices with spectral norm < A} .

AcA

Theorem (Liick'02, Veseli¢'05, Abért-Thom-Virdg'll). Fix A € R
sup |pa (JA =&, A+ ) — pa({A})

— 0.
e—0
loc.

Corollary. If G, —— L, then not only p1g, —— i but also
n—o0 n—o0
VA € R,

H6,(IN)) —— ne({A)).

In particular, 12({\}) = 0 unless X is a totally real algebraic

integer (= root of some real-rooted monic integer polynomial).




Q>



SUMMING UP

We are left with the following (crude) inner and outer-bounds:

{tree eigenvalues} C Atoms(us) C {totally real alg. integers}



SUMMING UP

We are left with the following (crude) inner and outer-bounds:
{tree eigenvalues} C Atoms(us) C {totally real alg. integers}

Theorem (S. 2013): the inner and outer-bounds coincide.



SUMMING UP

We are left with the following (crude) inner and outer-bounds:
{tree eigenvalues} C Atoms(uz) C {totally real alg. integers}
Theorem (S. 2013): the inner and outer-bounds coincide.

Remark: the weaker assertion that every totally real algebraic
integer is an eigenvalue of some symmetric integer matrix is known
as Hofmann's conjecture (1975). It was proved by Estes (1992).



SUMMING UP

We are left with the following (crude) inner and outer-bounds:
{tree eigenvalues} C Atoms(uz) C {totally real alg. integers}
Theorem (S. 2013): the inner and outer-bounds coincide.

Remark: the weaker assertion that every totally real algebraic
integer is an eigenvalue of some symmetric integer matrix is known
as Hofmann's conjecture (1975). It was proved by Estes (1992).

Corollary: many graph limits have the set of totally real algebraic
integers as atomic support. This includes all Galton-Watson trees
with supp(r) = N, as well as the Infinite Skeleton Tree.
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PROOF IDEA: RECURSIVE FORMULATION

fr(x):=1

®r(x)

To a rooted tree T with root o, associate a rational function
— with
X¢T\O(X)

®7(x) = det(x — A7)

> A # 0 is a tree eigenvalue <= 1 can be generated from 0 by
repeated applications of (xi,

Xd) = 3z 2 5 (d €N).
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A SURPRISING STATEMENT

Fix a totally real algebraic integer \ # 0.

Consider the smallest set § C R satisfying
1.0ey

2. X,y€EF = x+ycgF

Theorem (S. 2013): J is the field generated by 2.
/\2

3 {p( 2)

qa(A?)

Corollary: )\ is a tree eigenvalue !

- p.q € ZX],q() # o} |







Thank you for your attention !

05
3 2 1 0 1 2 3




