Atoms in the limiting spectrum of sparse graphs

Justin Salez (lpma)

EMPIRICAL SPECTRAL DISTRIBUTION OF A GRAPH

A graph $G=(V, E)$ can be represented by its adjacency matrix :

$$
A_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

EMPIRICAL SPECTRAL DISTRIBUTION OF A GRAPH

A graph $G=(V, E)$ can be represented by its adjacency matrix :

$$
A_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{|V|}$ capture essential information about G.

EMPIRICAL SPECTRAL DISTRIBUTION OF A GRAPH

A graph $G=(V, E)$ can be represented by its adjacency matrix :

$$
A_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{|V|}$ capture essential information about G.

$$
\mu_{G}:=\frac{1}{|V|} \sum_{k=1}^{|V|} \delta_{\lambda_{k}}
$$

EMPIRICAL SPECTRAL DISTRIBUTION OF A GRAPH

A graph $G=(V, E)$ can be represented by its adjacency matrix :

$$
A_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{|V|}$ capture essential information about G.

$$
\mu_{G}:=\frac{1}{|V|} \sum_{k=1}^{|V|} \delta_{\lambda_{k}}
$$

Question: How does μ_{G} typically look when G is large ?

SPECTRUM OF A RANDOM GRAPH ON 10000 NODES

SPECTRUM OF A RANDOM GRAPH ON 10000 NODES

THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_{n}

THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_{n}

Theorem (Wigner, 50's): if $n p_{n}\left(1-p_{n}\right) \rightarrow \infty$,

THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_{n}

Theorem (Wigner, 50's): if $n p_{n}\left(1-p_{n}\right) \rightarrow \infty$,

$$
\mu_{G_{n}}\left(\sqrt{n p_{n}\left(1-p_{n}\right)} d \lambda\right) \underset{n \rightarrow \infty}{\longrightarrow} \frac{\sqrt{4-\lambda^{2}}}{2 \pi} \mathbf{1}_{(|\lambda| \leq 2)} d \lambda
$$

THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_{n} Theorem (Wigner, 50's): if $n p_{n}\left(1-p_{n}\right) \rightarrow \infty$,

$$
\mu_{G_{n}}\left(\sqrt{n p_{n}\left(1-p_{n}\right)} d \lambda\right) \underset{n \rightarrow \infty}{\longrightarrow} \frac{\sqrt{4-\lambda^{2}}}{2 \pi} \mathbf{1}_{(|\lambda| \leq 2)} d \lambda .
$$

- Uniformly chosen random d_{n}-regular graph on n nodes.

THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_{n} Theorem (Wigner, 50's): if $n p_{n}\left(1-p_{n}\right) \rightarrow \infty$,

$$
\mu_{G_{n}}\left(\sqrt{n p_{n}\left(1-p_{n}\right)} d \lambda\right) \underset{n \rightarrow \infty}{\longrightarrow} \frac{\sqrt{4-\lambda^{2}}}{2 \pi} \mathbf{1}_{(|\lambda| \leq 2)} d \lambda .
$$

- Uniformly chosen random d_{n}-regular graph on n nodes. Theorem (Tran-Vu-Wang, 2010): if $d_{n}\left(1-d_{n} / n\right) \rightarrow \infty$,

$$
\mu_{G_{n}}\left(\sqrt{d_{n}\left(1-d_{n} / n\right)} d \lambda\right) \underset{n \rightarrow \infty}{ } \frac{\sqrt{4-\lambda^{2}}}{2 \pi} \mathbf{1}_{(|\lambda| \leq 2)} d \lambda .
$$

THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_{n} Theorem (Wigner, 50's): if $n p_{n}\left(1-p_{n}\right) \rightarrow \infty$,

$$
\mu_{G_{n}}\left(\sqrt{n p_{n}\left(1-p_{n}\right)} d \lambda\right) \underset{n \rightarrow \infty}{\longrightarrow} \frac{\sqrt{4-\lambda^{2}}}{2 \pi} \mathbf{1}_{(|\lambda| \leq 2)} d \lambda .
$$

- Uniformly chosen random d_{n}-regular graph on n nodes. Theorem (Tran-Vu-Wang, 2010): if $d_{n}\left(1-d_{n} / n\right) \rightarrow \infty$,

$$
\mu_{G_{n}}\left(\sqrt{d_{n}\left(1-d_{n} / n\right)} d \lambda\right) \underset{n \rightarrow \infty}{ } \frac{\sqrt{4-\lambda^{2}}}{2 \pi} \mathbf{1}_{(|\lambda| \leq 2)} d \lambda .
$$

- In both cases, graphs are required to be dense: $|E| \gg|V|$

THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_{n} Theorem (Wigner, 50's): if $n p_{n}\left(1-p_{n}\right) \rightarrow \infty$,

$$
\mu_{G_{n}}\left(\sqrt{n p_{n}\left(1-p_{n}\right)} d \lambda\right) \underset{n \rightarrow \infty}{\longrightarrow} \frac{\sqrt{4-\lambda^{2}}}{2 \pi} \mathbf{1}_{(|\lambda| \leq 2)} d \lambda .
$$

- Uniformly chosen random d_{n}-regular graph on n nodes. Theorem (Tran-Vu-Wang, 2010): if $d_{n}\left(1-d_{n} / n\right) \rightarrow \infty$,

$$
\mu_{G_{n}}\left(\sqrt{d_{n}\left(1-d_{n} / n\right)} d \lambda\right) \underset{n \rightarrow \infty}{\longrightarrow} \frac{\sqrt{4-\lambda^{2}}}{2 \pi} \mathbf{1}_{(|\lambda| \leq 2)} d \lambda .
$$

- In both cases, graphs are required to be dense: $|E| \gg|V|$
- What about sparse graphs: $|E| \asymp|V|$?

graph with average degree 3 on 1000 Nodes

graph with average degree 3 on 1000 Nodes

graph with average degree 3 on 10000 Nodes

RANDOM 3-REGULAR GRAPH ON 10000 NODES

RANDOM 3-REGULAR GRAPH ON 10000 NODES

SPECTRA OF SPARSE GRAPHS

SPECTRA OF SPARSE GRAPHS

Along many sequences $\left\{G_{n}\right\}_{n \geq 1}$ of sparse graphs, the spectrum $\mu_{G_{n}}$ approaches a deterministic, model-dependent limit μ :

SPECTRA OF SPARSE GRAPHS

Along many sequences $\left\{G_{n}\right\}_{n \geq 1}$ of sparse graphs, the spectrum $\mu_{G_{n}}$ approaches a deterministic, model-dependent limit μ :

$$
\mu_{G_{n}} \xrightarrow[n \rightarrow \infty]{ } \mu
$$

SPECTRA OF SPARSE GRAPHS

Along many sequences $\left\{G_{n}\right\}_{n \geq 1}$ of sparse graphs, the spectrum $\mu_{G_{n}}$ approaches a deterministic, model-dependent limit μ :

$$
\mu_{G_{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \mu .
$$

- Random d-regular graph on n nodes (McKay, 1981)

SPECTRA OF SPARSE GRAPHS

Along many sequences $\left\{G_{n}\right\}_{n \geq 1}$ of sparse graphs, the spectrum $\mu_{G_{n}}$ approaches a deterministic, model-dependent limit μ :

$$
\mu_{G_{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \mu .
$$

- Random d-regular graph on n nodes (McKay, 1981)
- Erdős-Rényi $p_{n} \sim \frac{c}{n}$ (Khorunzhy-Shcherbina-Vengerovsky '04)

SPECTRA OF SPARSE GRAPHS

Along many sequences $\left\{G_{n}\right\}_{n \geq 1}$ of sparse graphs, the spectrum $\mu_{G_{n}}$ approaches a deterministic, model-dependent limit μ :

$$
\mu_{G_{n}} \xrightarrow[n \rightarrow \infty]{ } \mu
$$

- Random d-regular graph on n nodes (McKay, 1981)
- Erdős-Rényi $p_{n} \sim \frac{c}{n}$ (Khorunzhy-Shcherbina-Vengerovsky '04)
- Uniform random tree on n vertices (Bhamidi-Evans-Sen '09)

SPECTRA OF SPARSE GRAPHS

Along many sequences $\left\{G_{n}\right\}_{n \geq 1}$ of sparse graphs, the spectrum $\mu_{G_{n}}$ approaches a deterministic, model-dependent limit μ :

$$
\mu_{G_{n}} \xrightarrow[n \rightarrow \infty]{ } \mu
$$

- Random d-regular graph on n nodes (McKay, 1981)
- Erdős-Rényi $p_{n} \sim \frac{c}{n}$ (Khorunzhy-Shcherbina-Vengerovsky '04)
- Uniform random tree on n vertices (Bhamidi-Evans-Sen '09)

Actually, this phenomenon is just one of the many consequences of the fact that the underlying local geometry converges.

LOCAL WEAK CONVERGENCE (BENJAMINI-SCHRAMM)

LOCAL WEAK CONVERGENCE (BENJAMINI-SCHRAMM)

$$
G_{n} \xrightarrow[n \rightarrow \infty]{\text { loc. }} \mathcal{L}
$$

LOCAL WEAK CONVERGENCE (BENJAMINI-SCHRAMM)

$$
G_{n} \xrightarrow[n \rightarrow \infty]{\text { loc. }} \mathcal{L}
$$

LOCAL WEAK CONVERGENCE (BENJAMINI-SCHRAMM)

$$
G_{n} \xrightarrow[n \rightarrow \infty]{\text { loc. }} \mathcal{L}
$$

\mathcal{L} : probability distribution over locally finite rooted graphs (G, o).

LOCAL WEAK CONVERGENCE (BENJAMINI-SCHRAMM)

$$
G_{n} \xrightarrow[n \rightarrow \infty]{\text { loc. }} \mathcal{L}
$$

\mathcal{L} : probability distribution over locally finite rooted graphs (G, o).

$$
\forall R \in \mathbb{N}, \frac{1}{\left|V_{n}\right|} \sum_{o \in V_{n}} \mathbf{1}_{\left\{\mathrm{B}_{\mathrm{R}}\left(\mathrm{G}_{\mathrm{n}}, \mathrm{o}\right) \equiv \bullet\right\}} \underset{n \rightarrow \infty}{ } \mathcal{L}\left(\mathrm{~B}_{\mathrm{R}}(\mathrm{G}, \mathrm{o}) \equiv \bullet\right)
$$

LOCAL WEAK CONVERGENCE (BENJAMINI-SCHRAMM)

$$
G_{n} \xrightarrow[n \rightarrow \infty]{\text { loc. }} \mathcal{L}
$$

\mathcal{L} : probability distribution over locally finite rooted graphs (G, o).

$$
\forall R \in \mathbb{N}, \frac{1}{\left|V_{n}\right|} \sum_{o \in V_{n}} \mathbf{1}_{\left\{\mathrm{B}_{\mathrm{R}}\left(\mathrm{G}_{\mathrm{n}}, \mathrm{o}\right) \equiv \bullet\right\}} \underset{n \rightarrow \infty}{ } \mathcal{L}\left(\mathrm{~B}_{\mathrm{R}}(\mathrm{G}, \mathrm{o}) \equiv \bullet\right)
$$

$\triangleright \mathcal{L}$ describes the local geometry of G_{n} around a random node.

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d}

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes
$\mathcal{L}=$ dirac at the d-regular infinite rooted tree

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes
$\mathcal{L}=$ dirac at the d-regular infinite rooted tree
- $G_{n}=$ Erdős-Rényi graph with $p_{n}=\frac{c}{n}$ on n nodes

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes $\mathcal{L}=$ dirac at the d-regular infinite rooted tree
- $G_{n}=$ Erdős-Rényi graph with $p_{n}=\frac{c}{n}$ on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree Poisson(c)

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes $\mathcal{L}=$ dirac at the d-regular infinite rooted tree
- $G_{n}=$ Erdős-Rényi graph with $p_{n}=\frac{c}{n}$ on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree Poisson(c)
- $G_{n}=$ random graph with degree distribution ν on n nodes

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes $\mathcal{L}=$ dirac at the d-regular infinite rooted tree
- $G_{n}=$ Erdős-Rényi graph with $p_{n}=\frac{c}{n}$ on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree Poisson(c)
- $G_{n}=$ random graph with degree distribution ν on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree distribution ν

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes $\mathcal{L}=$ dirac at the d-regular infinite rooted tree
- $G_{n}=$ Erdős-Rényi graph with $p_{n}=\frac{c}{n}$ on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree Poisson(c)
- $G_{n}=$ random graph with degree distribution ν on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree distribution ν
- $G_{n}=$ uniform random tree on n nodes

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes $\mathcal{L}=$ dirac at the d-regular infinite rooted tree
- $G_{n}=$ Erdős-Rényi graph with $p_{n}=\frac{c}{n}$ on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree Poisson(c)
- $G_{n}=$ random graph with degree distribution ν on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree distribution ν
- $G_{n}=$ uniform random tree on n nodes
$\mathcal{L}=$ Infinite Skeleton Tree (Grimmett, 1980)

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes $\mathcal{L}=$ dirac at the d-regular infinite rooted tree
- $G_{n}=$ Erdős-Rényi graph with $p_{n}=\frac{c}{n}$ on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree Poisson(c)
- $G_{n}=$ random graph with degree distribution ν on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree distribution ν
- $G_{n}=$ uniform random tree on n nodes
$\mathcal{L}=$ Infinite Skeleton Tree (Grimmett, 1980)
- $G_{n}=$ preferential attachment graph on n nodes

SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_{n}=$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^{d} $\mathcal{L}=\operatorname{dirac}$ at $\left(\mathbb{Z}^{d}, 0\right)$
- $G_{n}=$ random d-regular graph on n nodes $\mathcal{L}=$ dirac at the d-regular infinite rooted tree
- $G_{n}=$ Erdős-Rényi graph with $p_{n}=\frac{c}{n}$ on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree Poisson(c)
- $G_{n}=$ random graph with degree distribution ν on n nodes $\mathcal{L}=$ law of a Galton-Watson tree with degree distribution ν
- $G_{n}=$ uniform random tree on n nodes
$\mathcal{L}=$ Infinite Skeleton Tree (Grimmett, 1980)
- $G_{n}=$ preferential attachment graph on n nodes
$\mathcal{L}=$ Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)

SPECTRAL CONVERGENCE REVISITED

SPECTRAL CONVERGENCE REVISITED

Can we give a sense to $\mu_{G}=\frac{1}{|V|} \sum_{i} \delta_{\lambda_{i}}$ when G is replaced by \mathcal{L} ?

SPECTRAL CONVERGENCE REVISITED

Can we give a sense to $\mu_{G}=\frac{1}{|V|} \sum_{i} \delta_{\lambda_{i}}$ when G is replaced by \mathcal{L} ?
If $G=(V, E)$ is a finite graph, we have for $z \in \mathbb{C} \backslash \mathbb{R}$

$$
\int_{\mathbb{R}} \frac{1}{\lambda-z} \mu_{G}(d \lambda)=\frac{1}{|V|} \sum_{o \in V}\left(A_{G}-z\right)_{o 0}^{-1}
$$

SPECTRAL CONVERGENCE REVISITED

Can we give a sense to $\mu_{G}=\frac{1}{|V|} \sum_{i} \delta_{\lambda_{i}}$ when G is replaced by \mathcal{L} ?
If $G=(V, E)$ is a finite graph, we have for $z \in \mathbb{C} \backslash \mathbb{R}$

$$
\int_{\mathbb{R}} \frac{1}{\lambda-z} \mu_{G}(d \lambda)=\frac{1}{|V|} \sum_{o \in V}\left(A_{G}-z\right)_{o o}^{-1}
$$

If \mathcal{L} is the law of a random rooted graph (G, o), define $\mu_{\mathcal{L}}$ by

$$
\int_{\mathbb{R}} \frac{1}{\lambda-z} \mu_{\mathcal{L}}(d \lambda)=\mathbb{E}\left[\left\langle e_{o} \mid\left(A_{G}-z\right)^{-1} e_{o}\right\rangle\right]
$$

SPECTRAL CONVERGENCE REVISITED

Can we give a sense to $\mu_{G}=\frac{1}{|V|} \sum_{i} \delta_{\lambda_{i}}$ when G is replaced by \mathcal{L} ?
If $G=(V, E)$ is a finite graph, we have for $z \in \mathbb{C} \backslash \mathbb{R}$

$$
\int_{\mathbb{R}} \frac{1}{\lambda-z} \mu_{G}(d \lambda)=\frac{1}{|V|} \sum_{o \in V}\left(A_{G}-z\right)_{o o}^{-1}
$$

If \mathcal{L} is the law of a random rooted graph (G, o), define $\mu_{\mathcal{L}}$ by

$$
\int_{\mathbb{R}} \frac{1}{\lambda-z} \mu_{\mathcal{L}}(d \lambda)=\mathbb{E}\left[\left\langle e_{o} \mid\left(A_{G}-z\right)^{-1} e_{o}\right\rangle\right]
$$

Fact:

$$
G_{n} \xrightarrow[n \rightarrow \infty]{\text { loc. }} \mathcal{L} \quad \Longrightarrow \quad \mu_{G_{n}} \xrightarrow[n \rightarrow \infty]{ } \mu_{\mathcal{L}}
$$

RECURSION IN THE CASE OF TREES

RECURSION IN THE CASE OF TREES

RECURSION IN THE CASE OF TREES

- Explicit resolution for infinite regular trees

RECURSION IN THE CASE OF TREES

$$
\left(A_{T}-z\right)_{o o}^{-1}=\frac{-1}{z+\sum_{i=1}^{d}\left(A_{T_{i}}-z\right)_{i i}^{-1}}
$$

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees

RECURSION IN THE CASE OF TREES

$$
\left(A_{T}-z\right)_{o o}^{-1}=\frac{-1}{z+\sum_{i=1}^{d}\left(A_{T_{i}}-z\right)_{i i}^{-1}}
$$

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees
- In principle, this equation contains everything about $\mu_{\mathcal{L}}$

RECURSION IN THE CASE OF TREES

$$
\left(A_{T}-z\right)_{o \circ}^{-1}=\frac{-1}{z+\sum_{i=1}^{d}\left(A_{T_{i}}-z\right)_{i i}^{-1}}
$$

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees
- In principle, this equation contains everything about $\mu_{\mathcal{L}}$
- Example: computation of $\mu_{\mathcal{L}}(\{0\})$ (Bordenave-Lelarge-S. '11)

SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let's keep things simple: $\mathcal{L}=$ GW-tree with degree Poisson(c).

SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let's keep things simple: $\mathcal{L}=$ GW-tree with degree Poisson(c).

$$
\mu_{\mathcal{L}}=\mu_{p p}+\mu_{s c}+\mu_{a c}
$$

SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let's keep things simple: $\mathcal{L}=G W$-tree with degree Poisson(c).

$$
\mu_{\mathcal{L}}=\mu_{p p}+\mu_{\mathrm{sc}}+\mu_{\mathrm{ac}}
$$

Open problem: determine the support of each type of spectrum.

SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let's keep things simple: $\mathcal{L}=G W$-tree with degree Poisson(c).

$$
\mu_{\mathcal{L}}=\mu_{p p}+\mu_{\mathrm{sc}}+\mu_{\mathrm{ac}}
$$

Open problem: determine the support of each type of spectrum.
Theorem (Bordenave-Sen-Virag'13): $\mu_{p p}(\mathbb{R})<1$ as soon as $c>1$

SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let's keep things simple: $\mathcal{L}=$ GW-tree with degree Poisson(c).

$$
\mu_{\mathcal{L}}=\mu_{p p}+\mu_{s c}+\mu_{a c}
$$

Open problem: determine the support of each type of spectrum.
Theorem (Bordenave-Sen-Virag'13): $\mu_{p p}(\mathbb{R})<1$ as soon as $c>1$
We will focus on the pure-point part, i.e. the atoms of $\mu_{\mathcal{L}}$. This specific question was raised by Ben Arous (open problem 14, AMS workshop on random matrices, 2010).

SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let's keep things simple: $\mathcal{L}=$ GW-tree with degree Poisson(c).

$$
\mu_{\mathcal{L}}=\mu_{p p}+\mu_{s c}+\mu_{a c}
$$

Open problem: determine the support of each type of spectrum.
Theorem (Bordenave-Sen-Virag'13): $\mu_{p p}(\mathbb{R})<1$ as soon as $c>1$
We will focus on the pure-point part, i.e. the atoms of $\mu_{\mathcal{L}}$. This specific question was raised by Ben Arous (open problem 14, AMS workshop on random matrices, 2010).

Remark: every finite tree has positive probability under \mathcal{L}.

SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let's keep things simple: $\mathcal{L}=$ GW-tree with degree Poisson(c).

$$
\mu_{\mathcal{L}}=\mu_{p p}+\mu_{s c}+\mu_{\mathrm{ac}}
$$

Open problem: determine the support of each type of spectrum.
Theorem (Bordenave-Sen-Virag'13): $\mu_{p p}(\mathbb{R})<1$ as soon as $c>1$
We will focus on the pure-point part, i.e. the atoms of $\mu_{\mathcal{L}}$. This specific question was raised by Ben Arous (open problem 14, AMS workshop on random matrices, 2010).

Remark: every finite tree has positive probability under \mathcal{L}.
\triangleright all tree eigenvalues are atoms of $\mu_{\mathcal{L}}\left(\right.$ e.g. $\left.0,1, \sqrt{3}, 2 \cos \frac{2 \pi}{5}, \ldots\right)$

SPECTRUM OF INTEGER MATRICES

SPECTRUM OF INTEGER MATRICES

$\mathcal{A}=\{$ symmetric integer matrices with spectral norm $\leq \Delta\}$.

SPECTRUM OF INTEGER MATRICES

$\mathcal{A}=\{$ symmetric integer matrices with spectral norm $\leq \Delta\}$.
Theorem (Lück'02, Veselić'05, Abért-Thom-Virág'11). Fix $\lambda \in \mathbb{R}$.

$$
\sup _{A \in \mathcal{A}}\left|\mu_{A}(] \lambda-\varepsilon, \lambda+\varepsilon[)-\mu_{A}(\{\lambda\})\right| \underset{\varepsilon \rightarrow 0}{ } 0 .
$$

SPECTRUM OF INTEGER MATRICES

$\mathcal{A}=\{$ symmetric integer matrices with spectral norm $\leq \Delta\}$.
Theorem (Lück'02, Veselić'05, Abért-Thom-Virág'11). Fix $\lambda \in \mathbb{R}$.

$$
\sup _{A \in \mathcal{A}}\left|\mu_{A}(] \lambda-\varepsilon, \lambda+\varepsilon[)-\mu_{A}(\{\lambda\})\right| \underset{\varepsilon \rightarrow 0}{ } 0 .
$$

Corollary. If $G_{n} \xrightarrow[n \rightarrow \infty]{\text { loc. }} \mathcal{L}$, then not only $\mu_{G_{n}} \xrightarrow[n \rightarrow \infty]{ } \mu_{\mathcal{L}}$ but also

SPECTRUM OF INTEGER MATRICES

$\mathcal{A}=\{$ symmetric integer matrices with spectral norm $\leq \Delta\}$.
Theorem (Lück'02, Veselić'05, Abért-Thom-Virág'11). Fix $\lambda \in \mathbb{R}$.

$$
\sup _{A \in \mathcal{A}}\left|\mu_{A}(] \lambda-\varepsilon, \lambda+\varepsilon[)-\mu_{A}(\{\lambda\})\right| \underset{\varepsilon \rightarrow 0}{ } 0 .
$$

Corollary. If $G_{n} \xrightarrow[n \rightarrow \infty]{\text { loc. }} \mathcal{L}$, then not only $\mu_{G_{n}} \xrightarrow[n \rightarrow \infty]{ } \mu_{\mathcal{L}}$ but also

$$
\forall \lambda \in \mathbb{R}, \quad \mu_{G_{n}}(\{\lambda\}) \xrightarrow[n \rightarrow \infty]{ } \mu_{\mathcal{L}}(\{\lambda\}) .
$$

SPECTRUM OF INTEGER MATRICES

$\mathcal{A}=\{$ symmetric integer matrices with spectral norm $\leq \Delta\}$.
Theorem (Lück'02, Veselić'05, Abért-Thom-Virág'11). Fix $\lambda \in \mathbb{R}$.

$$
\sup _{A \in \mathcal{A}}\left|\mu_{A}(] \lambda-\varepsilon, \lambda+\varepsilon[)-\mu_{A}(\{\lambda\})\right| \xrightarrow[\varepsilon \rightarrow 0]{ } 0
$$

Corollary. If $G_{n} \xrightarrow[n \rightarrow \infty]{\text { loc. }} \mathcal{L}$, then not only $\mu_{G_{n}} \xrightarrow[n \rightarrow \infty]{ } \mu_{\mathcal{L}}$ but also

$$
\forall \lambda \in \mathbb{R}, \quad \mu_{G_{n}}(\{\lambda\}) \xrightarrow[n \rightarrow \infty]{\longrightarrow} \mu_{\mathcal{L}}(\{\lambda\}) .
$$

In particular, $\mu_{\mathcal{L}}(\{\lambda\})=0$ unless λ is a totally real algebraic integer ($=$ root of some real-rooted monic integer polynomial).

SUMMING UP

SUMMING UP

We are left with the following (crude) inner and outer-bounds:
$\{$ tree eigenvalues $\} \subseteq \operatorname{Atoms}\left(\mu_{\mathcal{L}}\right) \subseteq$ \{totally real alg. integers $\}$

SUMMING UP

We are left with the following (crude) inner and outer-bounds:
$\{$ tree eigenvalues $\} \subseteq \operatorname{Atoms}\left(\mu_{\mathcal{L}}\right) \subseteq$ \{totally real alg. integers $\}$
Theorem (S. 2013): the inner and outer-bounds coincide.

SUMMING UP

We are left with the following (crude) inner and outer-bounds:
$\{$ tree eigenvalues $\} \subseteq \operatorname{Atoms}\left(\mu_{\mathcal{L}}\right) \subseteq$ \{totally real alg. integers $\}$
Theorem (S. 2013): the inner and outer-bounds coincide.
Remark: the weaker assertion that every totally real algebraic integer is an eigenvalue of some symmetric integer matrix is known as Hofmann's conjecture (1975). It was proved by Estes (1992).

SUMMING UP

We are left with the following (crude) inner and outer-bounds:
$\{$ tree eigenvalues $\} \subseteq \operatorname{Atoms}\left(\mu_{\mathcal{L}}\right) \subseteq$ \{totally real alg. integers $\}$
Theorem (S. 2013): the inner and outer-bounds coincide.
Remark: the weaker assertion that every totally real algebraic integer is an eigenvalue of some symmetric integer matrix is known as Hofmann's conjecture (1975). It was proved by Estes (1992).

Corollary: many graph limits have the set of totally real algebraic integers as atomic support. This includes all Galton-Watson trees with $\operatorname{supp}(\nu)=\mathbb{N}$, as well as the Infinite Skeleton Tree.

PROOF IDEA: RECURSIVE FORMULATION

PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

$$
\mathfrak{f}_{T}(x):=1-\frac{\Phi_{T}(x)}{x \Phi_{T \backslash o}(x)} \quad \text { with } \quad \Phi_{T}(x)=\operatorname{det}\left(x-A_{T}\right)
$$

PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

$$
\mathfrak{f}_{T}(x):=1-\frac{\Phi_{T}(x)}{x \Phi_{T \backslash o}(x)} \quad \text { with } \quad \Phi_{T}(x)=\operatorname{det}\left(x-A_{T}\right) \text {. }
$$

PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function
$\mathfrak{f}_{T}(x):=1-\frac{\Phi_{T}(x)}{x \Phi_{T \backslash o}(x)} \quad$ with $\quad \Phi_{T}(x)=\operatorname{det}\left(x-A_{T}\right)$.

$$
\mathfrak{f}_{T}(x)=\frac{1}{x^{2}} \sum_{i=1}^{d} \frac{1}{1-\mathfrak{f}_{T_{i}}(x)}
$$

PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

$$
\mathfrak{f}_{T}(x):=1-\frac{\Phi_{T}(x)}{x \Phi_{T \backslash o}(x)} \quad \text { with } \quad \Phi_{T}(x)=\operatorname{det}\left(x-A_{T}\right) \text {. }
$$

$\triangleright \lambda \neq 0$ is a tree eigenvalue

PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

$$
\mathfrak{f}_{T}(x):=1-\frac{\Phi_{T}(x)}{x \Phi_{T \backslash o}(x)} \quad \text { with } \quad \Phi_{T}(x)=\operatorname{det}\left(x-A_{T}\right) \text {. }
$$

$\triangleright \lambda \neq 0$ is a tree eigenvalue $\Longleftrightarrow 1$ can be generated from 0 by repeated applications of $\left(x_{1}, \ldots, x_{d}\right) \mapsto \frac{1}{\lambda^{2}} \sum_{i} \frac{1}{1-x_{i}}(d \in \mathbb{N})$.

A SURPRISING STATEMENT

A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.

A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.
Consider the smallest set $\mathfrak{F} \subseteq \mathbb{R}$ satisfying

A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.
Consider the smallest set $\mathfrak{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathfrak{F}$

A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.
Consider the smallest set $\mathfrak{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathfrak{F}$
2. $x, y \in \mathfrak{F} \Longrightarrow x+y \in \mathfrak{F}$

A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.
Consider the smallest set $\mathfrak{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathfrak{F}$
2. $x, y \in \mathfrak{F} \Longrightarrow x+y \in \mathfrak{F}$
3. $x \in \mathfrak{F} \backslash\{1\} \Longrightarrow \frac{1}{\lambda^{2}(1-x)} \in \mathfrak{F}$

A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.
Consider the smallest set $\mathfrak{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathfrak{F}$
2. $x, y \in \mathfrak{F} \Longrightarrow x+y \in \mathfrak{F}$
3. $x \in \mathfrak{F} \backslash\{1\} \Longrightarrow \frac{1}{\lambda^{2}(1-x)} \in \mathfrak{F}$

Theorem (S. 2013): \mathfrak{F} is the field generated by λ^{2}.

$$
\mathfrak{F}=\left\{\frac{p\left(\lambda^{2}\right)}{q\left(\lambda^{2}\right)}: p, q \in \mathbb{Z}[X], q\left(\lambda^{2}\right) \neq 0\right\} .
$$

A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.
Consider the smallest set $\mathfrak{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathfrak{F}$
2. $x, y \in \mathfrak{F} \Longrightarrow x+y \in \mathfrak{F}$
3. $x \in \mathfrak{F} \backslash\{1\} \Longrightarrow \frac{1}{\lambda^{2}(1-x)} \in \mathfrak{F}$

Theorem (S. 2013): \mathfrak{F} is the field generated by λ^{2}.

$$
\mathfrak{F}=\left\{\frac{p\left(\lambda^{2}\right)}{q\left(\lambda^{2}\right)}: p, q \in \mathbb{Z}[X], q\left(\lambda^{2}\right) \neq 0\right\} .
$$

Corollary: λ is a tree eigenvalue!

Thank you for your attention!

