
Eigen(singular)-vector distribution of anisotropic
random matrices

Jun Yin

UW-Madison

HKU, Jan-2015

Joint work with A. Knowles

1



Anisotropic matrix:

case 1:

Y := TX

where T is deterministic matrix and X is i.i.d random matrix such
that EXij = 0.

case 2:

Y := X +A

where A is deterministic symmetric matrix and X is a Wigner
random matrix.
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Asymptotically close

We say that {un}∞n=1 is asymptotic close to {vn}∞n=1, n→∞ if

1. un ∈ Rdn, vn ∈ Rdn, dn →∞

2. for any sequence of fixed dimensional subspace{
Sn ⊂ Rdn : dim(Sn) = k

}∞
n=1

we have

lim
n
f

(
un
∣∣∣
Sn

)
− f

(
vn
∣∣∣
Sn

)
= 0

for any continuous bounded function f : Rk → R.
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Isotropic matrix:

Wigner matrix: Let Wn be a n×n Wigner matrix and uk,n be the
normalized k-th eigenvector of Wn. For sequence kn ∈ [[1, n]]

√
nukn,n → vn ∼ N(0, In)

Edge case: kn = o(n), [Knowles, Y, 2010] Green’s function com-
parison method.

Bulk case: [Yau, Bourgade, 2014] Moment flow method.

Note: the "limit" is independent of the entry-distribution of Wn.
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Isotropic "limit"

For Wigner matrix, any eigenvector is asymptotically close to

vn ∼ N(0, In)

which is orthogonal transform invariant, i.e,

vn ∼ Ovn

It is easy to understand this result in the Gaussian case, since

WG ∼ O∗WGO
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I.i.d matrix Xm×n :

Recall: non-zero singular values of X are non-zero eigenvalues
of XX∗ and X∗X.

Non-zero-left-singular vectors of X are eigenvectors of XX∗ whose
eigenvalues are not zero.

Non-zero-right-singular vectors of X are eigenvectors of X∗X
whose eigenvalues are not zero.

Let uk,n be the k-th non-zero-left-singular vector of Xm×n, logm ∼
logn. For sequence kn

√
mukn,n → vn ∼ N(0, Im)

Let uk,n be the k-th non-zero-right-singular vector of Xm×n,
logm ∼ logn.

√
nukn,n → vn ∼ N(0, In)
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Singular vector of anisotropic matrix:

Let Ym×n = TX, where T is m × m̂ deterministic matrix and X

is i.i.d. (m̂× n) random matrix such that EXij = 0. We assume
logm ∼ logn.

Let uk,n be the k-th right singular vector of Ym×n.
√
nukn,n → vn ∼ N(0, In)

Let uk,n be the k-th left singular vector of Ym×n.

√
mukn,n → vn ∼ N

0,
m/n

γkn,n

∣∣∣∣∣ T

1 +m(γkn,n)|T |2

∣∣∣∣∣
2


where λkn,n is the singular value w.r.t. ukn,n and γkn,n is its
classical location. And

m(x) ∈ C : m(x)−1 = −x+
1

n
Tr

|T |2

1 +m(x)|T |2
, Imm(x) > 0

[Knowles, Y, 2014]
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√
mukn,n → vn ∼ N

0,
m/n

γkn,n

∣∣∣∣∣ T

1 +m(γkn,n)|T |2

∣∣∣∣∣
2


m(x) ∈ C : m(x)−1 = −x+
1

n
Tr

|T |2

1 +m(x)|T |2
, Imm(x) > 0

Note: the "limit" only depends on TT ∗.

Note: Since T = UDV , one only need to study the singular vector
of Y ′ = DVX.

√
mu′kn,n → vn ∼ N

0,
m/n

γkn,n

∣∣∣∣∣ D

1 +m(γkn,n)|D|2

∣∣∣∣∣
2


where the covariance matrix is diagonal, as people believed.
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Let Yn×n = X + A, where A is n × n deterministic symmetric
matrix and X is a Wigner matrix such that EXij = 0, EX2

ij = 1/n.

Let uk,n be the k-th eigen-vector of Ym×n.

√
nukn,n → vn ∼ N

(
0,

m(γkn,n)−1

m(γkn,n) +A− γkn,n

)
where

m(x) ∈ C : m(x) =
1

n
Tr(−m(x) +A− x)−1, Imm(x) > 0

[Knowles, Y, 2014]
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Universality:

For Y = TX, the asymptotic behavior of singular-vectors are
independent of

1. The distribution of entries of X,

2. The right singular vector of T , i.e., only depends on TT ∗.

(Actually it depends on left singular vector in a very trivial way)

To understand this universality phenomenon, we developed a new
comparison method: self-consistent comparison method.
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Old: Lindeberg comparison method

For comparing two m × n random matrices Xij and X̃ij, one
constructs mn + 1 new matrices Y [k]. First, define an order for
entries:

For example: We say (i, j) is the φ(i, j)-th entry, with φ(i, j) =
i× n+ j.

Random matrices Y [k] are defined as: the "first" k entries of Y [k]

have the same distribution as entries of X, the others have the
same distribution as those of X̃.

Advantage: The difference between Y [k] and Y [k+1] is just one
entry.

F (X)− F (X̃) =
∑
k

(
F (Y [k])− F (Y [k+1])

)
Perturbation theory
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Disadvantage:

1. The local law (or some prior bound) of Y [k] are needed for
this method, i.e., one need to use other methods to derive the
local law for Y [k] first.

2. The distance between Y [k] and Y [k+1] can not be arbitrary
small.

We need a continuous self consistent version of comparison
method.
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Self consistent comparison method

Suppose there are two collections X0 = (X0
i )i∈I and X1 =

(X1
i )i∈I of random variables indexed by some finite set I. We

need to estimate

EF (X1)− EF (X0)

For example: we can derive large derivation bound by choosing

F (X) := (|I|−1/2∑
i∈I

Xi)
2p

We construct a continuous family (Xθ)θ∈[0,1] such that

Xθ
i ∼ χ

θ
iX

1
i + (1− χθi )X

0
i

where χθi are i.i.d r.v. such that P(χθi = 1) = θ and P(χθi = 0) =
1− θ. Xθ

i has probability θ to have the same distribution as X1
i ,

otherwise it has distribution of X0
i .

ρ
Xθ
i

= θρX1
i

+ (1− θ)ρX0
i

13



With

Xθ
i ∼ χ

θ
iX

1
i + (1− χθi )X

0
i

we have

EF (X1)− EF (X0) =
∫
∂

∂θ
EF (Xθ)dθ

=
∫ ∑
i∈I

(
EF (Xθ,i,1)− EF (Xθ,i,0)

)
dθ

where

Xθ,i,1 is defined as Xθ except Xθ,i,1
i ∼ X1

i

Xθ,i,0 is defined as Xθ except Xθ,i,0
i ∼ X0

i

With Taylor’s expansion, we can replace EF (Xθ,i,1), EF (Xθ,i,0)

back to EF (Xθ).
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We have an identity of the form

∂

∂θ
EF (Xθ) =

∑
n>1

Kn
∑
i∈I

E
(

∂

∂Xθ
i

)n
F (Xθ) , (1)

where the constant Kn depends only on the first n moments of
X0 and X1, Kn = 0 if the first n moments of X1 and X0 match.

Note: it is self-consistent in the sense that the right-hand side
depends on the quantities to be estimated.

It is level-1: only Xθ appears on both sides.
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Simple Example:

Let’s prove CLT by choosing F (X) := f
(
|I|−1/2∑

i∈IXi
)
.

Suppose EX1
i = EX0

i = 0 and E|X1
i |

2 = E|X0
i |

2 = 1.

∂

∂θ
EF (Xθ) =

∑
16n6C

Kn
∑
i∈I

E
(

∂

∂Xθ
i

)n
F (Xθ) + error , (2)

=
∑

36n6C

Kn
∑
i∈I

E
(

∂

∂Xθ
i

)n
F (Xθ) + error

Since
(

∂
∂Xθ

i

)n
F (Xθ) = O(|I|)−n/2, so we obtain that

∂

∂θ
EF (Xθ) = o(1)

which implies that

EF (X1) = EF (X0) + o(1)
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Recall
∂

∂θ
EF (Xθ) =

∑
n>1

Kn
∑
i∈I

E
(

∂

∂Xθ
i

)n
F (Xθ) , (3)

1. E
(

∂
∂Xθ

i

)n
F (Xθ) typically decays rapidly with increasing n – as

is already apparent in the simple case F (X) :=
(
|I|−1/2∑

i∈IXi
)p

for p ∈ 2N

2. We introduce a family of functions (Fα(X))α∈A that

∂

∂θ
EFα(Xθ) 6 C sup

β∈A
EFβ(Xθ) + (small error terms) , (4)

It is level-2: only (Fα(X))α∈A appears on both sides.

All previous proofs with Lindeberg comparison method can be
replaced with this new comparison method.
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Application on random matrix: local anisotropic law

For anisotropic law: We choose

Fv(X) := (v, (G(X)−Π)v)2p

and A = {v, ei,1 6 i 6M}.

∂

∂θ
EFα(Xθ) 6 C sup

β∈A
EFβ(Xθ) + (small error terms) , (5)

Since we can bound

EFv(XGaussian)

with the method mentioned in Knowles’s talk, we can use self-
consistent comparison method to bound EFv(X) for general X.
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Comparison between Y 0 = T0X and Y 1 = T1X.

Let T0, T1 be m × m′ deterministic matrices and X be m′ × n
i.i.d. matrix.

Y 0 =
∑
ij

(T0 · eij)Xij, Y 1 =
∑
ij

(T1 · eij)Xij

Here eij is m′ × n matrix with all zero entries except that (i, j)

entry equals to 1.

Y θ =
∑
ij

(
χθij(T

1 · eij)Xij + (1− χθij)(T0 · eij)Xij
)

where χθij are i.i.d r.v. such that P(χθij = 1) = θ and P(χθij = 0) =

1− θ.
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Self consistent equation for Y 0 = T0X and Y 1 = T1X.

∂

∂θ
EF (Y θ) (6)

=
∑

n,m>1

Kn,m
∑
ij

E
((
PT

0

ij

)n(
PT

1

ij

)m
−
(
PT

0

ij

)m(
PT

1

ij

)n)
F (Y θ) ,

(7)
where Kn,m only depends on the first n + m moment of X’s
entries.

PAij =
(
AT · ∇Y

)
ij
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Application on random matrix: singular vector

Using moment flow, we can derive the distribution of singular
vector of

TX +
√
tXG = (T,

√
tI)(X,XG)T , t > min(m,n)−1+ε

Suppose T > 0, with the new comparison method, we know the
distribution of singular vector of

T̂X = (T̂ ,0)(X,XG)T , |T̂ |2 = |T |2 + tI

Note: ‖(T,
√
tI)− (T̂ ,0)‖ is very small.

The general T̂ case can be derived similarly with some linear
algebra argument.
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Moment flow method

First used by Bourgade and Yau for Wigner matrix.

The basic idea is with extended Dyson Brownian motion, one
can derive a dynamic equation about

f
a1a2···am
k1k2···km := Ca1a2···amE

〈
uk1

(t),v
〉2a1

〈
uk2

(t),v
〉2a2 · · ·

〈
ukm(t),v

〉2am

where uk(t) is the k-the eigenvector of W +
√
tWG.

With maximum principle:

Fa(t) := max∑
i ai=a

max
k1k2···km

f
a1a2···am
k1k2···km , a ∈ N

∂tFa(t) 6 −N1/3 (Fa(t)− 1)

Then Fa(t) 6 1 + o(1) for t � N−1/3. Similarly with minimum
principle, one obtains that

f
a1a2···am
k1k2···km = 1 + o(1), t� N−1/3
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For anisotropic matrices,

f
a1a2···am
k1k2···km 6→ 1, f

a1a2···am
k1k2···km → g

a1a2···am
k1k2···km (deterministic)

Fa(t) :=
∑∑
i ai=a

∑
k1k2···km

(
f
a1a2···am
k1k2···km − g

a1a2···am
k1k2···km

)2p
, p ∈ N

Goal:

∂tFa(t) 6 −N1/3Fa(t)

Unfortunately ga1a2···am
k1k2···km in Ft can not be deterministic, since there

is a singular term in ∂tFa(t),

g
a1a2···am
k1k2···km − g

a1a2···am
k1k2···k′m

λkm − λk′m
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So we define

g
a1a2···am
k1k2···km := g

a1a2···am
k1k2···km

(
λk1

, λk2
, · · · , λkm

)
which solve the issue of the following singular term

g
a1a2···am
k1k2···km − g

a1a2···am
k1k2···k′m

λkm − λk′m
Then differential equation becomes stochastic differential equa-
tion.

∂tFa(t) 6 −N1/3Fa(t) + error term +O(1)dB

Advantage: The limit of fa1a2···am
k1k2···km (t) is allowed to depend on

k1k2 · · · km and a1a2 · · · am.

Further applications will appear in future work.

24



Thank you

25


