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Background: Integrated Covariance Matrix
• Xt = (X (1)

t , . . . ,X (p)
t )T denotes a p-dimensional log price

process
• Model:

dXt = µµµtdt + ΘΘΘtdWt , t ∈ [0,1]

where
1. µµµt is a p-dimensional drift process;
2. ΘΘΘt is a p × p matrix-valued covolatility process;
3. Wt is a p-dimensional standard Brownian motion.

• Both µµµt and ΘΘΘt can be stochastic, discontinuous, and
dependent on Wt

• The integrated covariance matrix (ICV):

ΣΣΣICV :=

∫ 1

0
ΘΘΘtΘΘΘ

T
t dt .

• ICV is the key in risk management and portfolio optimization
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Estimate ICV: Realized Covariance (RCV) Matrix
• Suppose one observes (Xt ) at times

0 = tn
0 < tn

1 < . . . < tn
n = 1

• The realized covariance matrix (RCV):

ΣΣΣRCV :=
n∑

i=1

∆Xi(∆Xi)
T

where ∆Xi = Xtn
i
− Xtn

i−1
.

• When dimension p is fixed and observation frequency n tends
to infinity,

‖ΣΣΣRCV −ΣΣΣICV‖ p→ 0,

where ‖ · ‖ can be any matrix norm.
• In practical applications, p is often comparable with n
• RCV is a poor estimator in such a high-dimensional setting.
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Limiting Behaviour of RCV Matrix
• If µµµt ≡ 0,ΘΘΘt ≡ΘΘΘ, tn

i = i/n, then ΣΣΣICV = ΘΘΘΘΘΘT , and

∆Xi =

∫ i/n

(i−1)/n
ΘΘΘdWt

d
=

1√
n

Yi ,

where Yi
i.i.d .∼ N(0,ΣΣΣICV )

• Hence

ΣΣΣRCV =
n∑

i=1

∆Xi(∆Xi)
T d

=
1
n

n∑
i=1

YiYT
i ,

a sample covariance matrix with population covariance ΣΣΣICV .
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Marčenko-Pastur Theorem
• n i.i.d. p-dim observations Y1, · · · ,Yn, with mean 0 and

covariance matrix ΣΣΣ

• Sample covariance matrix

S =
1
n

n∑
i=1

Yi(Yi)
T

• If (1) the empirical spectral distribution (ESD) of ΣΣΣ, FΣΣΣ,
converges to H, and (2) p/n→ y ∈ (0,∞), then the ESD of S
converges to a nonrandom limit F , whose Stieltjes transform
mF (·) relates to H through

mF (z) =

∫
τ∈R

dH(τ)

τ(1− y − yzmF (z))
, ∀z ∈ C+.
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Implications
• If indeed dXt = ΘdWt , then based on the M-P theorem,

• Knowing limit of ESD (LSD) of ΣΣΣICV , one can “predict” the
ESD(LSD) of ΣΣΣRCV

• Starting from the observable ESD of ΣΣΣRCV , one can “recover”
the ESD of ΣΣΣICV ([Bai, Chen, and Yao(2010)],
[El Karoui(2008)], [Mestre(2008)], · · · ).

• However, in practice, µµµt 6= 0,ΘΘΘt 6= Θ, and

∆Xi =

∫ i/n

(i−1)/n
(µµµtdt + ΘΘΘtdWt )

can be far from i.i.d..
• [Zheng and Li(2011)] show that the LSD of ΣΣΣRCV depends on

time variability of (ΘΘΘt )
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Illustration: ESD of ΣΣΣRCV depends on time variability of
ΘΘΘt

An example of ESD of RCV with a time varying γt :
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Yet Another Challenge
• In practice, another challenge is that the observations are

contaminated:
Yti = Xti + εεεi

• Fundamental questions: in the high-dimensional setting, with
the noisy high-frequency observations (Yti ),
• How well can we estimate the ICV?
• In particular, how well can we estimate the eigenvalues of ICV?
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Consequence of Microstructure Noise
• Suppose µµµt ≡ 0,ΘΘΘt ≡ I, tn

i =
i
n

for i = 0,1, · · · ,n, and

Yti = Xti + εεεi , εεεi
i.i.d .∼ (0, σ2I)

• Then ∆Yi := ∆Xi + ∆εεεi , where

∆Xi = Xti − Xti−1

d
=

1√
n

Zi = Op

(
1√
n

)
∆εεεi = εεεi − εεεi−1

d
=
√

2σei = Op (1)

Zi
i.i.d .∼ N(0, I), ei

i.i.d .∼ (0, I).

• Noise dominates signal!
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Pre-averaging Approach [Jacod et al.(2009)]

Define moving averages

Y` =
1
k

`k−1∑
j=(`−1)k

Ytj = X` + εεε` ` = 1,2, · · · , [n/k ].

• Main intuition: averaging reduces the variance of the noise in
Y` by a factor of 1/k .

• RCV based on (Y`) may be more relevant.
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PA-RCV
• Choose a θ ∈ (0,∞) and let moving window length be

k = [θ
√

n].
• The observations (Yt ) can be grouped into m = [n/(2k)] pairs

of non-overlapping windows.
• Define the PA-RCV matrix as

ΣΣΣPARCV :=
m∑
`=1

(∆2`Ȳ)(∆2`Ȳ)T

=
m∑
`=1

(∆2`X̄ + ∆2`ε̄εε)(∆2`X̄ + ∆2`ε̄εε)T ,

where

∆2`V̄ = V̄2` − V̄2`−1, V̄` =
1
k

`k−1∑
j=(`−1)k

Vj ,

for any process V = (Vt )t≥0.
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PA-RCV
• The matrix ΣΣΣPARCV can be viewed as the sample covariance

matrix based on noisy observations ∆2i X̄ + ∆2iε̄εε;
• [Dozier and Silverstein(2007)] consider such

information-plus-noise-type sample covariance matrices as

Sn =
1
n

(An + σεεεn)(An + σεεεn)T ,

where εεεn is independent of An and consists of i.i.d. entries
with zero mean and unit variance.
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Sample covariance matrices based on
• [Dozier and Silverstein(2007)] show that if (i) FAn → H where
An = AnAn/n, and (ii) p/n→ y > 0, then the ESD of Sn
converges to a nonrandom p.d.f. F whose Stieltjes transform
m = m(z) satisfies

m =

∫
dH(t)

t
1 + σ2ym

− (1 + σ2ym)z + σ2(1− y)
, ∀z ∈ C+.

• This relationship shows how the LSD of Sn depends on that of
An.

• In practice, we are often more interested in making inference
about signals An based on noisy observation An + σεεεn.

• Our first result establishes a relationship that describes how
the LSD of An depends on that of Sn.
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Inversion Theorem

Theorem (1)
[Xia and Zheng(2014)] Under the assumptions above and if F
admits a bounded density over a finite interval and possibly a point
mass at 0, then mA(z) is determined by F in that it uniquely solves
the following equation

mA(z) =

∫
dF (τ)

τ

1− yσ2mA(z)
− z(1− yσ2mA(z)) + σ2(y − 1)

. (2.1)

• F is observable, solving for mA(z) allowing us to make
inferences about the spectrum of the covariance structure of
the underlying signals.
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The Class C
• Say that (Xt ) belongs to Class C if its covolatility process (ΘΘΘt )

has the form
ΘΘΘt = γtΛΛΛ

where (γt ) ∈ D([0,1];R) and ΛΛΛ is a p × p matrix.
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LSD of PA-RCV for Class C
Theorem (2)
Suppose that

• (Xt ) belongs to Class C with a covolatility process ΘΘΘt = γtΛΛΛ

• Observe Yi/n = Xi/n + εεεi where (εεεi ) are i.i.d. with E(εεεi ) = 0 and
cov(εεεi ) = σ2

e Ip.

• Σ̆ΣΣp = ΛΛΛΛΛΛT with an LSD H̆.

Assume k = [θ
√

n] for some θ ∈ (0,∞) and m = [n/(2k)] satisfies that
limp→∞ p/m = y > 0. Then as p →∞,

• ESDs of ΣΣΣICV and ΣΣΣPARCV converge to H and F, respectively, where

H(x) = H̆(x/ζ), for all x ≥ 0 and ζ = lim
∫ 1

0
(γt )

2 dt .

• Moreover, if F admits a bounded density over a finite interval and possibly
a point mass at 0, then we have the following relationships

mA(z) = −1
z

∫
ζ

τM(z) + ζ
dH(τ), (2.2)
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LSD of PA-RCV for Class C, ctd
• where mA(z) denotes the Stieltjes transform of the LSD of

m∑
i=1

∆2i X̄(∆2i X̄)T ,

and is the unique solution to equation

mA(z) =

∫
dF (τ)

τ

1− yθ−2σ2
emA(z)

− z(1− yθ−2σ2
emA(z)) + θ−2σ2

e(y − 1)

(2.3)

• and M(z), together with another function m̃(z), uniquely solve the following
equations in C+ × C+

M(z) = −1
z

∫ 1

0

(1/3)(γ∗s )2

1 + ym̃(z)(1/3)(γ∗s )2
ds,

m̃(z) = −1
z

∫
τ

τM(z) + ζ
dH(τ).

(2.4)
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Implications of the Convergence
• ΣΣΣPARCV and hence F is observable
• Use (2.3) to estimate mA
• Further use (2.2) and (2.4) to estimate H, the LSD of ΣΣΣICV ,

the object of interest
• One challenge: the process (γt ) in (2.4) is not observable
• → alternative estimator that circumvents this challenge
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Alternative Estimator: Pre-averaging Time-Variation
Adjusted RCV (PA-TVARCV)
• Fix an α ∈ (1/2,1) and θ ∈ (0,∞), let k = [θnα],m = [n/(2k)].
• Define PA-TVARCV as

ΣΣΣPATVARCV :=
tr(Sp)

m

m∑
i=1

∆2i Ȳ(∆2i Ȳ)T

|∆2i Ȳ|2
,

where Sp is a standard pre-averaging estimator in
[Jacod et al.(2009)]

Sp :=
12
ν
√

n

n−`n+1∑
i=0

∆Ȳi(∆Ȳi)
T − 6

ν2n

n∑
i=1

∆iY(∆iY)T ,

where `n = [ν
√

n] for some ν ∈ (0,∞),

∆Ȳi =
1
`n

 `n−1∑
j=[`n/2]

Y(i+j)/n −
[`n/2]−1∑

j=0

Y(i+j)/n

 , ∆iY = Yi/n−Y(i−1)/n.
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LSD of PA-TVARCV for Class C
Theorem (3)
Suppose that

• (Xt ) belongs to Class C with a covolatility process ΘΘΘt = γtΛΛΛ;

• Observe Yi/n = Xi/n + εεεi where (εεεi ) are i.i.d. with E(εεεi ) = 0 and
cov(εεεi ) = diag(d2

1 , · · · , d2
p );

• p and m satisfy p/m→ y ∈ (0,∞) as p →∞.

Then the LSD of ΣΣΣPATVARCV is uniquely determined by that of ICV through
Stieltjes transforms via the standard M-P equation

mF (z) =

∫
τ∈R

dH(τ)

τ(1− y(1 + zmF (z))− z)
, ∀z ∈ C+.

• No (γt ) involved

• More importantly, noise is also eliminated!
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Simulation Studies
• To compare the ESDs of PA-RCV, PA-TVARCV matrices and

reference matrix

Sp :=
1
m

(ΣΣΣICV )1/2ZmZT
m(ΣΣΣICV )1/2,

• According to Theorem 3, the ESDs of PA-TVARCV and the
reference matrix should be similar

• In contrast, according to Theorem 2, that of PA-RCV should
be distinguishably different from theirs

• For different p’s, with
n = 23400, k = 250

(
≈ 1.63

√
n ≈ n0.55) , m = [n/(2k)],
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Simulation Studies, ctd

ESDs of PA-RCV and PA-TVARCV, with a continuous (γt )
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Summary
1. Under high-dimensional noisy setting, we propose PA-RCV

estimator and PA-TVARCV estimator, both of which can be
used to recover the ESD of ICV matrix.

2. In order to use PA-RCV, one needs to estimate the stochastic
volatility process (γt ).

3. PA-TVARCV has the advantage of eliminating the impacts of
both stochastic volatility and the noise!
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