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Introduction ICV and RCV

Background: Integrated Covariance Matrix

o X; = (Xt“), . ,X,(p))T denotes a p-dimensional log price
process
e Model:
dX; = [l,tdt + thWt, te [O, 1]
where
1. w; is a p-dimensional drift process;
2. ©;is a p x p matrix-valued covolatility process;
3. W; is a p-dimensional standard Brownian motion.
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o X; = (Xt“), . ,X,(p))T denotes a p-dimensional log price
process
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dX; = [l,tdt + thWt, te [O, 1]
where
1. w; is a p-dimensional drift process;
2. ©;is a p x p matrix-valued covolatility process;
3. W; is a p-dimensional standard Brownian motion.
e Both p; and ©; can be stochastic, discontinuous, and
dependent on W;
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o X; = (Xt“), . ,X,(p))T denotes a p-dimensional log price
process
e Model:
dX; = [l,tdt + thWt, te [O, 1]
where
1. w; is a p-dimensional drift process;
2. ©;is a p x p matrix-valued covolatility process;
3. W; is a p-dimensional standard Brownian motion.
e Both p; and ©; can be stochastic, discontinuous, and
dependent on W;
e The integrated covariance matrix (ICV):

1
TIOV . / 00/ dt.
0
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Background: Integrated Covariance Matrix

o X; = (Xt“), . ,X,(p))T denotes a p-dimensional log price
process
e Model:
dX; = [l,tdt + thWt, te [O, 1]
where
1. w; is a p-dimensional drift process;

2. ©;is a p x p matrix-valued covolatility process;
3. W; is a p-dimensional standard Brownian motion.

e Both p; and ©; can be stochastic, discontinuous, and
dependent on W;
e The integrated covariance matrix (ICV):

1
TIOV . / 00/ dt.
0

e ICV is the key in risk management and portfolio optimization
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Estimate ICV: Realized Covariance (RCV) Matrix

e Suppose one observes (X;) at times
O=f<tf<...<tf=1
e The realized covariance matrix (RCV):

n
V=3 ax(ax)’
i=1
where AX; = thn — thn_1 .

e When dimension p is fixed and observation frequency n tends
to infinity,
||zRCV o z/CVH £> O,

where || - || can be any matrix norm.
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Estimate ICV: Realized Covariance (RCV) Matrix
e Suppose one observes (X;) at times
O=f<tf<...<tf=1
e The realized covariance matrix (RCV):

n
V=3 ax(ax)’
i=1
where AX; = thn — thn_1 .
e When dimension p is fixed and observation frequency n tends
to infinity,
||zRCV o z/CVH £> O,
where || - || can be any matrix norm.
e In practical applications, p is often comparable with n
e RCV is a poor estimator in such a high-dimensional setting.
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Limiting Behaviour of RCV Matrix
e Ifp; =0,6,=0,t"=i/n,
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Limiting Behaviour of RCV Matrix
o fu;=0,6,=6,1"=i/n,then TV =067, and

i/n d
AX; = / eaw, < vy,
(

1
i—1)/n vn

where Y; "% N(0,£/¢Y)
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Limiting Behaviour of RCV Matrix
o lfu;=0,6,=0,1"=i/n, thenT®V =007, and

i/n d
AX; = / 0dw; £ —Y;,
(i

1
i—1)/n vn
where Y; "% N(0,£/¢Y)
e Hence

yRoV _ ZAX (AX,)T 2 1 ZYY
i=1

a sample covariance matrix with population covariance £/¢V.
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Marcenko-Pastur Theorem

e ni.i.d. p-dim observations Yy, --- , Y, with mean 0 and
covariance matrix X

e Sample covariance matrix
1 n
_ . (YT
S=- ; Yi(Y))

« If (1) the empirical spectral distribution (ESD) of X, FZ,
converges to H, and (2) p/n — y € (0, ),
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Marcenko-Pastur Theorem

e ni.i.d. p-dim observations Yy, --- , Y, with mean 0 and
covariance matrix X

e Sample covariance matrix
1 n
_ . (YT
S=- ; Yi(Y))

« If (1) the empirical spectral distribution (ESD) of X, FZ,
converges to H, and (2) p/n — y € (0, ), then the ESD of S
converges to a nonrandom limit F, whose Stieltjes transform
mg(-) relates to H through

dH(r)
me(z) = /TGR (1 — y — yzmg(2))

, VzeC™.
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Introduction ICV and RCV

Implications

e If indeed dX; = ©dW;, then based on the M-P theorem,
« Knowing limit of ESD (LSD) of £V, one can “predict” the
ESD(LSD) of £¢Y
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Introduction ICV and RCV

Implications
e If indeed dX; = ©dW;, then based on the M-P theorem,
« Knowing limit of ESD (LSD) of £V, one can “predict” the

ESD(LSD) of £¢Y

e Starting from the observable ESD of A% one can “recover’
the ESD of £°Y ([Bai, Chen, and Yao(2010)],
[El Karoui(2008)], [Mestre(2008)], - - - ).
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Introduction ICV and RCV

Implications

e If indeed dX; = ©dW;, then based on the M-P theorem,
« Knowing limit of ESD (LSD) of £V, one can “predict” the
ESD(LSD) of £¢Y
e Starting from the observable ESD of A% one can “recover’
the ESD of £°Y ([Bai, Chen, and Yao(2010)],
[El Karoui(2008)], [Mestre(2008)], - - - ).

e However, in practice, u; # 0,0; # ©, and

i/n
AX; = / (“tdt + etth)
(i-1)/n

can be far fromi.i.d..
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Introduction ICV and RCV

Implications
e If indeed dX; = ©dW;, then based on the M-P theorem,
« Knowing limit of ESD (LSD) of £V, one can “predict” the

ESD(LSD) of £¢Y
e Starting from the observable ESD of A% one can “recover’

the ESD of £°Y ([Bai, Chen, and Yao(2010)],
[El Karoui(2008)], [Mestre(2008)], - - - ).

e However, in practice, u; # 0,0; # ©, and

i/n
AX; = / (“tdt + etth)
(i-1)/n

can be far from i.i.d..
e [Zheng and Li(2011)] show that the LSD of £*¢V depends on
time variability of (©;)
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Introduction ICV and RCV

lllustration: ESD of £¢" depends on time variability of
©;

An example of ESD of RCV with a time varying ~;:

Plot of y; (p.n) = (100, 1000)
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Yet Another Challenge

e In practice, another challenge is that the observations are
contaminated:
Yt,' = th +€;
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Yet Another Challenge

e In practice, another challenge is that the observations are

contaminated:
Yt,' — th + Ej

e Fundamental questions: in the high-dimensional setting, with
the noisy high-frequency observations (Y;),
e How well can we estimate the ICV?
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Yet Another Challenge

e In practice, another challenge is that the observations are

contaminated:
Yt,' — th + Ej

e Fundamental questions: in the high-dimensional setting, with
the noisy high-frequency observations (Y;),
e How well can we estimate the ICV?
¢ In particular, how well can we estimate the eigenvalues of ICV?
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Consequence of Microstructure Noise

e Suppose u; =0,0; =1, t,.”:%fori:O,L--- ,n, and

Yy =X¢ +ei, € M- (0,02|)
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Consequence of Microstructure Noise
e Suppose u; =0,0; =1, 1 = %fori:0,1,--- ,n, and

Yy =X¢ +ei, € M- (0,02|)

e Then AY; := AX; + Aegj, where

1 1
AX,‘ = X[,- - X[,'71 g %ZI O <>
Ae; = € —¢€j_1 g \/éUei - OP (1)

Zi ’!_\51 N(O7 I)u €; i.'li.\'d. (07 I)
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Consequence of Microstructure Noise
e Suppose u; =0,0; =1, 1 = %fori:0,1,--- ,n, and

Yy =X¢ +ei, € M- (0,02|)
e Then AY; := AX; + Aegj, where

1 1

AX; = Xi — Xy, < %Z" O <>
Ae; = € —¢€j_1 g \/éUei - OP (1)
Z . N(0, 1), € FRg- (0,1).

¢ Noise dominates signal!
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Pre-averaging Approach [Jacod et al.(2009)]

Yo Ye-1 Y Y1 - FYu-pe Y1 ¥
- L L L ® —

T

&
=

Define moving averages

Lk—1

_ 1 v

Yz:} Z Yl‘j:Xg—i-Ee £=1,2,---[n/K].
j=(-1)k
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Pre-averaging Approach [Jacod et al.(2009)]

Yo Ye-1 Y Y1 - FYu-pe Y1 ¥
- L L L ® —

T

&
=

Define moving averages

tk—1
— 1 -
Vo= > Yy=Xe+& =12, [n/K].
j=(t—1)k
 Main intuition: averaging reduces the variance of the noise in
Y, by a factor of 1/k.
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Pre-averaging Approach [Jacod et al.(2009)]

Yo Ye-1 Y Y1 - FYu-pe Y1 ¥
- L L L ® —

T

&
=

Define moving averages

Lk—1

o v =

Vo= D Yy=Xet& (=12 [n/k].
j=(-1)k

 Main intuition: averaging reduces the variance of the noise in
Y, by a factor of 1/k.

e RCV based on (Y,) may be more relevant.
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

PA-RCV

e Choose a ¢ € (0, c0) and let moving window length be

k = [0v/7].
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

PA-RCV

e Choose a ¢ € (0, c0) and let moving window length be
= [ov/.
e The observations (Y;) can be grouped into m = [n/(2k)] pairs
of non-overlapping windows.
¢ Define the PA-RCV matrix as

m
zPARCV — Z(AZZV)(AZZV)T
=1

m
Z A%X + Ag@& (A%X + Ag@E)
/=1

where
o =
BoV = Voo = Vory, Vo= > v,
=)k

for any process V = (V})t>o.
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

PA-RCV

e The matrix can be viewed as the sample covariance
matrix based on noisy observations Ay X + AyjE;

zPARC %
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

PA-RCV

o The matrix £ can be viewed as the sample covariance
matrix based on noisy observations Ay X + AyjE;

e [Dozier and Silverstein(2007)] consider such
information-plus-noise-type sample covariance matrices as

’
S, = E(An + oen) (A + oen) T,

where g, is independent of A, and consists of i.i.d. entries
with zero mean and unit variance.
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Sample covariance matrices based on

« [Dozier and Silverstein(2007)] show that if (i) F4"» — H where
Ap = ApAp/n, and (i) p/n — y > 0, then the ESD of S,
converges to a nonrandom p.d.f. F whose Stieltjes transform
m = m(z) satisfies

m:/ ; aH(t) , VzeC" .
- 2 2(1 —
T oZym (14 o2ym)z +o02(1 —y)

e This relationship shows how the LSD of S, depends on that of
Ap.
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Sample covariance matrices based on

« [Dozier and Silverstein(2007)] show that if (i) F4"» — H where
Ap = ApAp/n, and (i) p/n — y > 0, then the ESD of S,
converges to a nonrandom p.d.f. F whose Stieltjes transform
m = m(z) satisfies

m:/ ; aH(t) , VzeC" .
- 2 2(1 —
T oZym (14 o2ym)z +o02(1 —y)

e This relationship shows how the LSD of S, depends on that of
An-

e In practice, we are often more interested in making inference
about signals A, based on noisy observation A, + oe,.

e QOur first result establishes a relationship that describes how
the LSD of A, depends on that of S,.
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Inversion Theorem

Theorem (1)

[Xia and Zheng(2014)] Under the assumptions above and if F
admits a bounded density over a finite interval and possibly a point
mass at 0, then m 4(z) is determined by F in that it uniquely solves
the following equation

dF(7)
mu(z) = = -(2.1)
8 / 1= yo?ma(z) —2z(1 —yo2ma(2)) +o2(y — 1)
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Inversion Theorem

Theorem (1)

[Xia and Zheng(2014)] Under the assumptions above and if F
admits a bounded density over a finite interval and possibly a point
mass at 0, then m 4(z) is determined by F in that it uniquely solves
the following equation

_ dF(r) (2.1
ma(z) / T — z(1 — yo2ma(2)) + o2(y — 1) (2.1)

1 —yo?my(z)

e Fis observable, solving for m4(z) allowing us to make
inferences about the spectrum of the covariance structure of
the underlying signals.
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

The Class C

e Say that (X;) belongs to Class C if its covolatility process (©;)
has the form
O =\

where (v;) € D([0,1];R) and A is a p x p matrix.
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

LSD of PA-RCV for Class C

Theorem (2)
Suppose that
e (X;) belongs to Class C with a covolatility process ©; = i\
e ObserveY;, = X;/, +¢€; where (g;) are i.i.d. withE(e;) = 0 and
cov(ei) = oilp.

e ¥, =AA" withan LSD H.
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

LSD of PA-RCV for Class C

Theorem (2)
Suppose that
e (X;) belongs to Class C with a covolatility process ©; = i\
e ObserveY;, = X;/, +¢€; where (g;) are i.i.d. withE(e;) = 0 and
cov(ei) = oilp.
e ¥, =AA" withan LSD H.

Assume k = [0+/n] for some 0 € (0, c0) and m = [n/(2k)] satisfies that
imp—s00 p/m=y > 0. Then as p — oo,

e ESDs of £'°V and £™FCV converge to H and F, respectively, where
1
H(x) = H(x/¢), forallx>0 and (= Iim/ (7t)? dt.
0

e Moreover, if F admits a bounded density over a finite interval and possibly
a point mass at 0, then we have the following relationships

ma(z) =~ / ﬁ dH(r), (2.2)
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

LSD of PA-RCV for Class C, ctd

e where m(z) denotes the Stieltjes transform of the LSD of

m
> AaX(D2X),
i=1
and is the unique solution to equation
dF(7)
—z(1 — y0-202ma(2)) + 0-203(y — 1)
(2.3)

e and M(z), together with another function m(z), uniquely solve the following
equations in C*™ x C*

mA(z) = -
/ 1 — y0—202mu(2)

_ /W)
M(z) = 2 Jy 1+ ym(z)(1/3)(v;‘)2ds’ (2.4)
e = - WdH(T).
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Implications of the Convergence

o ¥RCVY and hence F is observable
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Implications of the Convergence

o ¥RCVY and hence F is observable

e Use (2.3) to estimate my4
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Implications of the Convergence

o ¥RCVY and hence F is observable

e Use (2.3) to estimate my4

o Further use (2.2) and (2.4) to estimate H, the LSD of £/°V
the object of interest

)

Xinghua Zheng HD ICV Est Based on HF Noisy Data



Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Implications of the Convergence

o ¥RCVY and hence F is observable

e Use (2.3) to estimate my4

o Further use (2.2) and (2.4) to estimate H, the LSD of £/¢V,
the object of interest

e One challenge: the process (v¢) in (2.4) is not observable
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Pre-averaging Realized Covariance (PA-RCV) and i PA-RCV  Inversion Theorem LSD of PA-RCV for Class C

Implications of the Convergence

o ¥RCVY and hence F is observable

Use (2.3) to estimate my4

Further use (2.2) and (2.4) to estimate H, the LSD of /¢,
the object of interest

One challenge: the process (~;) in (2.4) is not observable
— alternative estimator that circumvents this challenge
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Alternative Estimator: Pre-averaging Time-Variation
Adjusted RCV (PA-TVARCYV)

e Fixana € (1/2,1)and 0 € (0,0), let k = [0n*], m = [n/(2K)].
o Define PA-TVARCYV as

m

5 PATVARCY . _ tr(S ZAZ, (AgY)
|A2/Y‘2

)

=1

where S, is a standard pre-averaging estimator in
[Jacod et al.(2009)]

19 n—~4n+1 6 n
- AY;(AY)T — — N AT
Sp V\/E; I( I) Vzn; I(I)a

where ¢, = [vy/n] for some v € (0, 00),

tr1 [€n/2]—1
Z Yiepm— > Yo | AY =Yin=Yi1yn
j=0

=[tn/2]
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LSD of PA-TVARCYV for Class C

Theorem (3)
Suppose that
e (X;) belongs to Class C with a covolatility process ©; = vi\;
e Observe Y/, = X/, +¢&; where (g;) are i.i.d. withE(e;) = 0 and
cov(e;) = diag(d?, - - -, dg),‘
e p and m satisfy p/m — y € (0,00) as p — oc.

Then the LSD of £ TARCV s uniquely determined by that of ICV through
Stieltjes transforms via the standard M-P equation

— dH(r) +
me(2) = /TG]R Oy 1 zme@) —2) ZEC
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LSD of PA-TVARCYV for Class C

Theorem (3)
Suppose that
e (X;) belongs to Class C with a covolatility process ©; = vi\;
e Observe Y/, = X/, +¢&; where (g;) are i.i.d. withE(e;) = 0 and
cov(e;) = diag(d?, - - -, dg),‘
e p and m satisfy p/m — y € (0,00) as p — oc.

Then the LSD of £ TARCV s uniquely determined by that of ICV through
Stieltjes transforms via the standard M-P equation

— dH(r) +
me(2) = /TG]R Oy 1 zme@) —2) ZEC

e No (v:) involved
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LSD of PA-TVARCYV for Class C

Theorem (3)
Suppose that
e (X;) belongs to Class C with a covolatility process ©; = vi\;
e Observe Y/, = X/, +¢&; where (g;) are i.i.d. withE(e;) = 0 and
cov(ej) = diag(d?, -+, d5);
e p and m satisfy p/m — y € (0,00) as p — oc.

Then the LSD of £ TARCV s uniquely determined by that of ICV through
Stieltjes transforms via the standard M-P equation

_ dH(T) +
mF(Z"/TGR A yA rzmr@) —2) 2EC

e No (v:) involved
e More importantly, noise is also eliminated!
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Simulation Studies

e To compare the ESDs of PA-RCV, PA-TVARCV matrices and
reference matrix

1

— E(E/CV)1/22m2L(z/CV)1/2’

Sp
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Simulation Studies

e To compare the ESDs of PA-RCV, PA-TVARCV matrices and
reference matrix

1

— E(E/CV)1/22m2L(z/CV)1/2’

Sp

e According to Theorem 3, the ESDs of PA-TVARCV and the
reference matrix should be similar
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__Introduction _Pre-averaging Realized Covariance (PA-RCV) and IS
Simulation Studies

e To compare the ESDs of PA-RCV, PA-TVARCV matrices and
reference matrix

1

Sp:E

(z/CV)1/22er7T')(z/CV)1/2’

e According to Theorem 3, the ESDs of PA-TVARCV and the
reference matrix should be similar

e In contrast, according to Theorem 2, that of PA-RCV should
be distinguishably different from theirs
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__Introduction _Pre-averaging Realized Covariance (PA-RCV) and IS
Simulation Studies

e To compare the ESDs of PA-RCV, PA-TVARCV matrices and
reference matrix

1

Sp:E

(z/CV)1/22er7T')(z/CV)1/2’

e According to Theorem 3, the ESDs of PA-TVARCV and the
reference matrix should be similar

e In contrast, according to Theorem 2, that of PA-RCV should
be distinguishably different from theirs

o For different p’s, with
n=23400, k=250 (=~ 1.63y/n~ n%%®)  m=[n/(2k)],
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Summary

1. Under high-dimensional noisy setting, we propose PA-RCV
estimator and PA-TVARCYV estimator, both of which can be
used to recover the ESD of ICV matrix.

2. In order to use PA-RCV, one needs to estimate the stochastic
volatility process (7).

3. PA-TVARCYV has the advantage of eliminating the impacts of
both stochastic volatility and the noise!
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Summary

1. Under high-dimensional noisy setting, we propose PA-RCV
estimator and PA-TVARCYV estimator, both of which can be
used to recover the ESD of ICV matrix.

2. In order to use PA-RCYV, one needs to estimate the stochastic
volatility process (v;).

3. PA-TVARCYV has the advantage of eliminating the impacts of
both stochastic volatility and the noise!

7M - ‘//i;

Xinghua Zheng HD ICV Est Based on HF Noisy Data



[§ Bai, Z., Chen, J., and Yao, J. (2010), “On estimation of the
population spectral distribution from high-dimensional sample
covariance matrix,” Australian & New Zealand Journal of
Statistics, 52, 423—-437.

[§ Dozier, R. B. and Silverstein, J. W. (2007), “Analysis of the
limiting spectral distribution of large dimensional
information-plus-noise type matrices,” J. Multivariate Anal. ,
98, 678—694.

[§ El Karoui, N. (2008), “Spectrum estimation for large
dimensional covariance matrices using random matrix theory,”
Ann. Statist., 36, 2757-2790.

[§ Jacod, J., Li, Y., Mykland, P. A., Podolskij, M. and Vetter, M.
(2009), “Microstructure noise in the continuous case: the
pre-averaging approach,” Stochastic Process. Appl., 119,
2249-2276.

Xinghua Zheng HD ICV Est Based on HF Noisy Data



[ Maréenko, V. A. and Pastur, L. A. (1967), “Distribution of
eigenvalues in certain sets of random matrices,” Mat. Sb.
(N.S.), 72 (114), 507-536.

[@ Mestre, X. (2008), “Improved estimation of eigenvalues and
eigenvectors of covariance matrices using their sample
estimates,” IEEE Trans. Inform. Theory, 54, 5113-5129.

[§ Silverstein, J. W. (1995), “Strong convergence of the empirical
distribution of eigenvalues of large-dimensional random
matrices,” J. Multivariate Anal., 55, 331-339.

[§ Xia, N. and Zheng, X. (2014), “Integrated covariance matrix
estimation for high-dimensional diffusion processes in the
presence of microstructure noise,” working paper.

[§ Zheng, X. and Li, Y. (2011), “On the Estimation of Integrated
Covariance Matrices of High Dimensional Diffusion
Processes,” the Annals of Statistics, 39, 3121-3151.

Xinghua Zheng HD ICV Est Based on HF Noisy Data



	Introduction
	ICV and RCV

	Pre-averaging Realized Covariance (PA-RCV) and its LSD
	PA-RCV 
	Inversion Theorem
	LSD of PA-RCV for Class C

	Pre-averaging Time-Variation Adjusted RCV (PA-TVARCV) and its LSD
	PA-TVARCV
	LSD of PA-TVARCV for Class C

	Simulation Studies
	Summary

