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1. Introduction

Massive and complex data and high dimensionality characterize
contemporary statistical problems in many frontiers of sciences and
engineering. Various statistical methods and algorithms have been
proposed to find a small group of covariate variables that are
associated with given responses such as biological and clinical
outcomes. They have been very successfully applied to genomics,
genetics, neurosciences, economics and finance.



I Background

Consider the problem of estimating a p-vector of parameters β from
the linear model

Y = Xβ∗ + ε,

where

Y = (Y1, . . . ,Yn)T is an n-vector of responses;

X = (X1, . . . ,Xn)T is an n× p random design matrix with i.i.d.
rows;

β∗ = (β∗1 , . . . , β
∗
p )T is a p-vector of parameters;

ε = (ε1, . . . , εn)T is an n-vector of i.i.d. random errors.

When p > n or p� n, assume that the true model S0 = {j : β∗j 6= 0}
is sparse, i.e. the number of non-zero coefficients s = |S0| is small.
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Under various sparsity assumptions and regularity conditions, the
most popular variable selection tools such as

LASSO (Tibshirani, 1996)

SCAD (Fan and Li, 2001)

adaptive LASSO (Zou, 2006)

Dantzig selector (Candes and Tao, 2007), etc.

possess various good properties regarding model selection
consistency.

Theoretically, under suitable regularity conditions, all aforementioned
model selection tools can achieve model consistency, i.e. they can
exactly pick out the true sparse model with probability tending to one.
However, in practice, these conditions are impossible to check and
hard to meet. Hence, it is very difficult to extract the exact subset of
significant variables among a huge set of covariates. One of the
reasons is the spurious correlation, as illustrated by Fan, Guo and Hao
(2012).



Behind machine learning, data-mining, and high-dimensional
statistics techniques, there are many model assumptions and even
heuristics arguments. For sample, LASSO and SCAD are based on
the assumption of exogeneity:

E(εXj) = 0 for all j = 1, . . . , p. (0.1)

Fan and Liao (2014) provides evidences that such an ideal assumption
might not be valid, yet such an ideal assumption is a necessary
condition for model selection consistency. Despite of its fundamental
importance to high-dimensional statistics, there are no available tools
for validating (0.1). Regarding (0.1) as a null hypothesis, it is
instructive to consider the following test statistic:

T̂n,p = max
1≤j≤p

∣∣ĉorrn(Xj, ε)
∣∣.

To conduct statistical inference, we need to derive the limiting
distributions of the maximum spurious correlation.
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2. Distributions of maximum spurious correlations

I Spurious correlation, conditions and notation

Let ε, ε1, . . . , εn be i.i.d. random variables with

E(ε) = 0, E(ε2) = σ2 <∞.

Let X,X1, ...,Xn be i.i.d. p-dimensional random vectors with

E(Xi) = 0, Σ = E(XXT) = (σjk)1≤j,k≤p.

Assume that the two samples {εi}n
i=1 and {Xi}n

i=1 are independent.
The maximum spurious correlation is defined as

R̂n(s, p) = max
α∈Sp−1: |α|0=s

ĉorrn
(
ε,αTX

)
,

where ĉorrn(·, ·) denotes the Pearson sample correlation coefficient
and Sp−1 := {α ∈ Rp : |α|2 = 1} is the unit sphere of Rp.



Let D = diag(Σ) = diag(σ11, . . . , σpp). We can rewrite R̂n(s, p) as

max
S⊆[p]
|S|=s

max
α∈Rs\{0}

∑n
i=1(εi − ε̄n)

〈
α,Xi,S − X̄n,S

〉√∑n
i=1(εi − ε̄n)2 ·

∑n
i=1

〈
α,Xi,S − X̄n,S

〉2

= max
S⊆[p]
|S|=s

max
α∈Rs\{0}

∑n
i=1(ε∗i − ε̄∗n)

〈
D1/2

SS α,D
−1/2
SS (Xi,S − X̄n,S)

〉
√∑n

i=1(ε∗i − ε̄∗n)2 ·
∑n

i=1

〈
D1/2

SS α,D
−1/2
SS (Xi,S − X̄n,S)

〉2

= max
S⊆[p]
|S|=s

max
α∈Ss−1

∑n
i=1(ε∗i − ε̄∗n)

〈
α,X∗i,S − X̄∗n,S

〉
√∑n

i=1(ε∗i − ε̄∗n)2 ·
∑n

i=1

〈
α,X∗i,S − X̄∗n,S

〉2
,

where ε̄n = n−1∑n
i=1 εi, X̄n = n−1∑n

i=1 Xi, and ε̄∗n = n−1∑n
i=1 ε

∗
i ,

X̄∗n = n−1∑n
i=1 X∗i with ε∗i = σ−1εi and X∗i = D−1/2Xi.

Assume σ2 = 1 and Σ is such that D = diag(Σ) = Ip.
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For a random variable X, the sub-Gaussian norm ‖X‖ψ2 and
sub-exponential norm ‖X‖ψ1 of X are defined as

‖X‖ψ2 = sup
q≥1

q−1/2(E|X|q)1/q and ‖X‖ψ1 = sup
q≥1

q−1(E|X|q)1/q
,

respectively. A random variable X that satisfies ‖X‖ψ2 <∞ (resp.,
‖X‖ψ1 <∞) is called a sub-Gaussian (resp., sub-exponential) random
variable (Vershynin, 2012).

The following moment conditions for ε and X are imposed.

Condition (1)

There exists a random vector U such that E(U) = 0, E(UUT) = Ip,

X = (X1, . . . ,Xp)T = Σ1/2U, K1 := sup
α∈Sp−1

‖ 〈α,U〉 ‖ψ2 .

The random variable ε has zero mean and unit variance and is
sub-Gaussian with K0 := ‖ε‖ψ2 <∞.
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For 1 ≤ s ≤ p, the s-sparse minimal and maximal eigenvalues of the
covariance matrix Σ are defined as

φmin(s) = min
u∈Rp:1≤|u|0≤s

(
|u|Σ/|u|2

)2
,

φmax(s) = max
u∈Rp:1≤|u|0≤s

(
|u|Σ/|u|2

)2
,

respectively, where |u|Σ = (uTΣu)1/2 and |u|2 = (uTu)1/2 is the
`2-norm of u. We impose the following restricted eigenvalues
assumption on the covariance matrix Σ.

Condition (2)
For 1 ≤ s ≤ p, the s-sparse condition number of Σ is finite; that is,

γs = γs(Σ) =

√
φmax(s)
φmin(s)

∈ [1,∞).



I Asymptotic distribution of the maximum spurious correlation

Rewrite R̂n(s, p) as

R̂n(s, p) = sup
f∈F

n−1∑n
i=1(εi − ε̄n)f (Xi − X̄n)√

n−1
∑n

i=1(εi − ε̄n)2 ·
√

n−1
∑n

i=1 f 2(Xi − X̄n)
,

where ε̄n = n−1∑n
i=1 εi, X̄n = n−1∑n

i=1 Xi and

F = F(s, p) =
{

x 7→ fα(x) = 〈α, x〉 : α ∈ Sp−1, |α|0 = s
}

is a class of linear functions Rp 7→ R.

We regard α ∈ F as the linear map x 7→ 〈α, x〉 induced by α ∈ Sp−1

with |α|0 = s.



Let Z = (Z1, . . . ,Zp)T be a p-dimensional Gaussian random vector

with mean zero and covariance matrix Σ, i.e. Z d
= N(0,Σ), and

denote by Z2
(1) ≤ Z2

(2) ≤ · · · ≤ Z2
(p) the order statistics of

{Z2
1 , . . . ,Z

2
p}.

The following theorem shows that, under certain moment conditions,
the distribution of the maximum absolute multiple correlation R̂n(s, p)
can be approximated by that of the supremum of a centered Gaussian
process G∗ indexed by the function class F .



Theorem (1)
Assume that Conditions (1), (2) hold, n, p ≥ 2 and 1 ≤ s ≤ p. Then
there exists a constant C > 0 depending only on K0,K1 such that

sup
t≥0

∣∣P{√n R̂n(s, p) ≤ t
}
− P

{
R∗(s, p) ≤ t

}∣∣ ≤ Cn−1/8{s bn(s, p)}7/8,

where bn(s, p) := log γsp
s ∨ log n and

R∗(s, p) := sup
α∈F

αT
ΣZ = sup

α∈F

αTZ√
αTΣα

.

In particular, if Σ = Ip and s log(pn) = o(n1/7), then as n→∞,

sup
t≥0

∣∣P{n R̂n(s, p)2 − sap ≤ t
}

− P
{

Z2
(p) + · · ·+ Z2

(p−s+1) − sap ≤ t
}∣∣→ 0,

where ap = 2 log p− log(log p).



Remark (1)
The independence assumption of ε and X can be relaxed as

E(εX) = 0, E
(
ε2|X

)
= σ2 and E

(
ε4|X

)
≤ C, a.s.

where C > 0 is an absolute constant. In addition, the above result
indicates that the increment n{R̂n(s, p)2 − R̂n(s− 1, p)2} is
approximately the same as Z2

(p−s+1).

When s = 1, it is straightforward to verify that, for any t ∈ R,

P
{

Z2
(p) − 2 log p + log(log p) ≤ t

}
→ exp

(
− 1√

π
e−t/2

)
as p→∞.
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Proposition (1)
Assume that s ≥ 2 is a fixed integer. For any t ∈ R, we have as
p→∞,

P
{

Z2
(p) + · · ·+ Z2

(p−s+1) − sap ≤ t
}

→ π(1−s)/2

(s− 1)! Γ(s− 1)

∫ t/s

−∞

{∫ (t−sv)/2

0
us−2 e−u du

}
e−(s−1)v/2 g(v) dv

where ap = 2 log p− log(log p),

G(t) = exp
(
− 1√

π
e−t/2

)
and g(t) = G′(t) =

e−t/2

2
√
π

G(t).

In particular, when s = 2,

P
{

Z2
(p) + Z2

(p−1) − 2ap ≤ t
}
→ G(t/2) +

e−t/2

2
√
π

∫ t/2

−∞
eu/2G(u) du.



I Multiplier bootstrap approximation

Since the covariance matrix Σ of X is unspecified, the distribution of
R∗(s, p) is unknown and thus can not be used for statistical inference.
In the following, we consider to use a Monte Carlo method to
simulate a process that mimics{

αTZ√
αTΣα

: α ∈ F
}
,

now known as the multiplier (wild) bootstrap method that is similar to
that used in Hansen (1996), Barrett and Donald (2003) and
Chernozhukov, Chetverikov and Kato (2013), among others.



Let Σn be the sample covariance matrix:

Σn = n−1
n∑

i=1

(Xi − X̄n)(Xi − X̄n)T .

Let ξ1, . . . , ξn be i.i.d. N(0, 1) random variables that are independent
of {εi}n

i=1 and {Xi}n
i=1, and write

Zn = n−1/2
n∑

i=1

ξi(Xi − X̄n).

Conditional on {Xi}n
i=1, Zn is a p-variate Gaussian random vector

with mean zero and covariance matrix Σn. Let Ĝ be the Gaussian
process induced by Zn, i.e.

Ĝα =
αTZn√
αTΣnα

, α ∈ F .



Theorem (2)

Under Conditions (1) and (2), if the triplet (s, p, n) satisfies 1 ≤ s ≤ p
and s log(γspn) = o(n1/5), then as n→∞,

sup
t≥0

∣∣∣P{R∗(s, p) ≤ t
}
− P

{
R∗MB(s, p) ≤ t

∣∣X1, . . . ,Xn
}∣∣∣ P−→ 0,

where R∗MB(s, p) := supα∈F Ĝα.

R∗MB(s, p) is data-driven and its quantiles can be computed via Monte
Carlo simulations with arbitrary precision.
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For the simulation, consider the case where the noise ε follows the
uniform distribution standardized so that E(ε) = 0 and E(ε2) = 1.
Independent of ε, the p-vector X of covariates has i.i.d. N(0, 1)
components.

We report in the following figure the distributions of the maximum
spurious correlations and their multiplier bootstrap approximations
conditional on a given data set {X1, . . . ,Xn} based on 1600
simulations when p ∈ {2000, 5000}, s ∈ {1, 2, 5, 10} and n = 400.

The figure shows that the multiplier bootstrap method provides a
fairly good approximation to the (unknown) distribution of the
maximum spurious correlation.
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3. Extension to sparse linear models

Suppose that the observed response Y and p-dimensional covariate X
follows the sparse linear model:

Y = XTβ∗ + ε,

where the regression coefficient β∗ is sparse. The sparsity is typically
explored by the LASSO or the SCAD.

Now it is well-known that, under suitable conditions, the SCAD,
among other folded concave penalized least square estimators, also
enjoys the unbiasedness and the (strong) oracle properties (Fan and
Li, 2001; Fan and Lv, 2011).



For a given random sample {(Xi,Yi)}n
i=1, recall that

X = (X1, . . . ,Xn)T is the n× p design matrix;

Y = (Y1, . . . ,Yn)T is the n-dimensional response vector;

ε = (ε1, . . . , εn)T is the n-dimensional noise vector.

W.L.O.G., assume that β∗ = (βT
1 ,β

T
2 )T with each component of

β1 ∈ Rs non-zero and β2 = 0, such that

S0 := supp(β∗) = {1, . . . , s}

is the true underlying sparse model of the indices with s = |β∗|0.

Write X = (X1,X2), where X1 ∈ Rn×s consists of the columns of X
indexed by S0.
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Note that Y = Xβ + ε = X1β1 + ε and the oracle estimator β̂oracle

has an explicit form of

β̂oracle
1 = (XT

1X1)−1XT
1Y = β1 + (XT

1X1)−1XT
1ε, β̂oracle

2 = 0.

Denote by ε̂oracle = (ε̂ oracle
1 , . . . , ε̂ oracle

n )T the residuals after the oracle
fit:

ε̂ oracle
i = Yi − XT

i β̂
oracle, i = 1, . . . , n.

Construct the maximum spurious correlation as before except that
{εi} is now replaced by {ε̂ oracle

i }, i.e.

R̂oracle
n (1, p) = max

1≤j≤p

|
∑n

i=1(ε̂ oracle
i − n−1eT

n ε̂
oracle)(Xij − X̄j)|√∑n

i=1(ε̂ oracle
i − n−1eT

n ε̂
oracle)2 ·

√∑n
i=1(Xij − X̄j)2

.

where en = (1, . . . , 1)T ∈ Rn and X̄j = n−1∑n
i=1 Xij.



Note that Y = Xβ + ε = X1β1 + ε and the oracle estimator β̂oracle

has an explicit form of

β̂oracle
1 = (XT

1X1)−1XT
1Y = β1 + (XT

1X1)−1XT
1ε, β̂oracle

2 = 0.

Denote by ε̂oracle = (ε̂ oracle
1 , . . . , ε̂ oracle

n )T the residuals after the oracle
fit:

ε̂ oracle
i = Yi − XT

i β̂
oracle, i = 1, . . . , n.

Construct the maximum spurious correlation as before except that
{εi} is now replaced by {ε̂ oracle

i }, i.e.

R̂oracle
n (1, p) = max

1≤j≤p

|
∑n

i=1(ε̂ oracle
i − n−1eT

n ε̂
oracle)(Xij − X̄j)|√∑n

i=1(ε̂ oracle
i − n−1eT

n ε̂
oracle)2 ·

√∑n
i=1(Xij − X̄j)2

.
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I Assumptions:

Condition (3)

Y = Xβ∗ + ε with supp (β∗) = {1, . . . , s} and ε = (ε1, . . . , εn)T

being i.i.d. centered sub-Gaussian satisfying that K0 = ‖εi‖ψ2 <∞.
The rows of X = (X1, . . . ,Xn)T are i.i.d. realizations from a
sub-Gaussian distribution as in Condition (1).

Condition (4)

Σ = E(XiXT
i ) is such that diag (Σ) = Ip and can be expressed in a

block-wise form as follows:

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
with Σ11 ∈ Rs×s, Σ22 ∈ Rd×d, Σ21 = ΣT

12,

where d = p− s. Let Σ̃ = (σ̃jk)1≤j,k≤d = Σ22 −Σ21Σ
−1
11 Σ12 be the

Schur complement of Σ11 in Σ satisfying σ̃min = min1≤j≤d σ̃jj > 0.



I Asymptotic distribution of R̂oracle
n (1, p):

Theorem (3)

Assume that Conditions (3) and (4) hold, and that the triplet (s, p, n)
satisfies s log p = o(

√
n) and log p = o(n1/7). Then, as n→∞,

sup
t≥0

∣∣P{√n R̂oracle
n (1, p) ≤ t

}
− P

(
|Z̃|∞ ≤ t

)∣∣→ 0,

where Z̃ is a d-dimensional centered Gaussian random vector with
covariance matrix Σ̃.



For λ > 0 and t ≥ 0, let pλ(t) be the SCAD penalty function whose
derivative is given by

p′λ(t) = λ

{
I(t ≤ λ) +

(aλ− t)+
(a− 1)λ

I(t > λ)

}
for some a > 2.

SCAD exploits the sparsity by pλ-regularization, which solves

min
β=(β1,...,βp)T∈Rp

(2n)−1
n∑

i=1

(Yi − XT
i β)2 +

p∑
j=1

pλ(|βj|).

This is a non-convex optimization problem which has multiple local
minimizers. The local linear approximation (LLA) algorithm can be
applied to produce a certain local minimum for any fixed initial
solution (Zou and Li, 2008; Fan, Xue and Zou; 2014).
Fan, Xue and Zou (2014) proved that the LLA algorithm can deliver
the oracle estimator in the folded concave penalized problem with
overwhelming probability if it is initialized by some appropriate
initial estimator (e.g. LASSO).
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Let β̂lla be the estimator computed via the one-step LLA algorithm
initiated by the LASSO estimator

β̂lasso = arg min
β

(2n)−1
n∑

i=1

(Yi − XT
i β)2 + λlasso|β|1.

Accordingly, denote by R̂lla
n (1, p) the maximum spurious correlation

with ε̂ oracle
i replaced by ε̂ lla

i = Yi − XT
i β̂

lla.

I Restricted eigenvalue condition (Bickel, Ritov and Tsybakov, 2009):

Definition (1)
For some integer s0 such that 1 ≤ s0 ≤ p and a positive number c0,
we say that a p× p matrix A satisfies RE (s0, c0) condition if

κ(s0, c0,A) := min
S⊆[p]:|S|≤s0

min
δ 6=0:|δSc |1≤c0|δS|1

δTAδ
|δS|22

> 0.
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Condition (5)

Σ satisfies the RE (s, 3 + ε) condition for some ε > 0, s = |supp(β∗)|.

Theorem (4)
Assume that Conditions (3), (4) and (5) hold, and that

minj∈S0 |βj| > (a + 1)λ;

s log p = o(
√

n), log p = o(n1/7);

λ ≥ 8
√

sλlasso
κ(s,3,Σ) , λlasso ≥ CK0 n−1/2√log p for C > 0 large enough.

Then, as n→∞,

sup
t≥0

∣∣P{√n R̂lla
n (1, p) ≤ t

}
− P

(
|Z̃|∞ ≤ t

)∣∣→ 0,

where Z̃ is a d-dimensional centered Gaussian random vector with
covariance matrix Σ̃.



4. Main ideas of the proof

I Step 1.
Observe that

R̂n(s, p) = sup
α∈F

n−1∑n
i=1 〈α, εiXi〉 − ε̄nα

TX̄n√
n−1

∑n
i=1(εi − ε̄n)2 ·

√
αTΣnα

and consider the standardized counterpart R̂n(s, p):

Rn(s, p) = sup
α∈F

n−1
n∑

i=1

〈α, εiXi〉√
αTΣα

= sup
α∈F

n−1
n∑

i=1

〈αΣ, yi〉,

where yi = εiXi are i.i.d. random vectors with mean zero and
covariance matrix Σ.
First we show that

L̂n =
√

n R̂n(s, p) and Ln =
√

n Rn(s, p)

are close.



I Step 2. (Gaussian approximation of Ln)

Step 2.1 (Discretization). The induced metric on the space of all
linear functions x 7→ fα(x) = 〈α, x〉 is ρ(fα, fβ) = |α− β|2.
Let N(F , ρ, ε) be the ε-covering number of (F , d). It is known
that N(Sp−1, ρ, ε) ≤ (1 + 2

ε )
p.

By the decomposition{
α ∈ Sp−1 : |α|0 = s

}
=

⋃
S⊆[p]:|S|=s

{
α ∈ Sp−1 : supp(α) = S

}
and the binomial coefficient bound

(p
s

)
≤ ( ep

s )s, we have

N(F , ρ, ε) ≤
(

p
s

)
(1 + 2/ε)s ≤

{
(2 + ε)ep

sε

}s

.



I Step 2. (Gaussian approximation of Ln)

Step 2.1 (Discretization). The induced metric on the space of all
linear functions x 7→ fα(x) = 〈α, x〉 is ρ(fα, fβ) = |α− β|2.
Let N(F , ρ, ε) be the ε-covering number of (F , d). It is known
that N(Sp−1, ρ, ε) ≤ (1 + 2

ε )
p.

By the decomposition{
α ∈ Sp−1 : |α|0 = s

}
=

⋃
S⊆[p]:|S|=s

{
α ∈ Sp−1 : supp(α) = S

}
and the binomial coefficient bound

(p
s

)
≤ ( ep

s )s, we have

N(F , ρ, ε) ≤
(

p
s

)
(1 + 2/ε)s ≤

{
(2 + ε)ep

sε

}s

.



Step 2.1 (Continued). For ε ∈ (0, 1) and S ⊆ [p] fixed, letNS,ε be
an ε-net of the unit ball in (RS, ρ) with |NS,ε| ≤ (1 + 2

ε )
s. Then

Nε :=
⋃

S⊆[p]

NS,ε = {x 7→ 〈α, x〉 : α ∈ NS,ε, S ⊆ [p]}

forms an ε-net of (F , ρ), satisfying d = |Nε| ≤
(p

s

)
(1 + 2

ε )
s.

For every α ∈ F with supp(α) = S, there exists α′ ∈ NS,ε

satisfying (i) supp(α′) =supp(α); (ii) |α−α′|2 ≤ ε; and (iii)

|αΣ −α′Σ|Σ ≤

√
φmax(s)
φmin(s)

|α−α′|2.

For any ε ∈ (0, γ−1
s ),

max
α∈Nε

〈αΣ,Wn〉 ≤ Ln ≤ (1− γsε)
−1 · max

α∈Nε

〈αΣ,Wn〉,

where Wn = n−1∑n
i=1 yi.
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Step 2.2 (Coupling inequality). Write Fε = {αj : j = 1, . . . , d}
and define the d-dimensional Gaussian random vector
G = (G1, . . . ,Gd)T , where

Gj =
〈
αj,Σ,Z

〉
= 〈αj/|αj|Σ,Z〉 , j = 1, . . . , d.

Based on a recent result of Chernozhukov, Chetverikov and Kato
(2014), we show that there exists a random variable
T∗ε

d
= max1≤j≤d Gj such that, for every δ > 0 and ε ∈ (0, 1),

P
(∣∣∣ max

α∈Nε

〈αΣ,Wn〉 − T∗ε
∣∣∣ ≥ 16δ

)
. v1/2

4 K2
1

c3/2
n,ε (s, p)

δ2
√

n
+ v3K3

1
c2

n,ε(s, p)

δ3
√

n
+ v4K4

1
c5

n,ε(s, p)

δ4n

+ (K0K1)2 c4
n,ε(s, p)

δ2n
+ (K0K1)3 c6

n,ε(s, p)

δ3n3/2 +
log n

n
,

where cn,ε(s, p) := s log ep
sε ∨ log n and vq = (E|ε|q)1/q.
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Step 2.3 (Gaussian supremum). There exits a random variable
T∗ d

= supα∈F 〈αΣ,Z〉 such that

P
{∣∣T∗ − T∗ε

∣∣ > C γs ε c1/2
n (s, p)

}
≤ n−1.

I Step 3. (Concentration and anti-concentration)

Lemma

Let R∗(s, p) = supα∈F
〈α,Z 〉√
αTΣα

, where Z d
= N(0,Σ). Under

Condition (2), there exists an absolute constant C > 0 such that, for
every p ≥ 2, 1 ≤ s ≤ p and t > 0,

P
{

R∗(s, p) ≥ C
√

s log
γsp
s

+ t
}
≤ e−t2/2

and

sup
x≥0

P
{
|R∗(s, p)− x| ≤ t

}
≤ C t

√
s log

γsp
s
.
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THANK YOU !!!


