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1. Non-linear log gases in complex geometry

There is a “non-linear’ generalization of the Coulomb gas on
X = C to C"™ where the role of the linear Coulomb interaction
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is played by a non-linear version of E(z1,.,,,2yN). NOO O
(i.e. E(z1,.,,,2N) IS not the sum of 2-point functions).

e Recall that the large N—limit of the Coulomb gas in C is
described in terms of the Laplace operator

e Indeed, the two point function g(z,w) :=log |z—w]| is a Green
function for A —_—

e



For the “non-linear log gas” in C™ the role of the Laplace operator
will be played by the complex Monge-Ampére operator M A
/\
02¢

MA(¢) := det(00¢), 00¢ = (8262)

e This is a fully non-linear PDO

e A hint: it satisfies, with g(z) := log |2|2,

—

MA(Q) = cnog




More precisely, in the case we will be interested in the higher
dimensional analoge of the “mean field”’ scaling of the Coulomb

energy:
E(N)(Z]_,.,,,ZN) = _N 1 Z IOg|ZZ_ZJ|2
- T 1<6i,j<N

e T he case of C has been studied by Caglioti-Lions-Marchioro-
Pulvirenti ('92), Kiessling ('93) (T > 0 fixed) and Ben Arous-
Zeitouni ('98) (T — o0),....
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This higher dimensional setting appears naturally in /\ SRR S \/

e Probabilistic approaces to finding optimal interpolation nodes
in X :=C"

e Probabilistic constructions of Kahler-Einstein metrics on a
complex algebraic variety X




Let X := C" and set

—_— S w
e V. := {polynomials p;(z) on C™ with total degree < k}

i
e This is a vector space of dimension N, ~ k™ /{’Q
k i

_— d

.

Let Dk(zl,zg,...sz) be the corresponding Vandermonde deter-

minants: —
Di(z1.25,...2 T= det
Q(l’ 2-on) = Iy,

for p;, a base of monomials in V.. Set

1
E(Nk)(zl, ...,sz) = 7 log | D (21, 22, ---ZNk)|2

on XNk, which is thus a “repulsive’ interaction of “log type’.
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Given a function ¢g(z) on X := C"™ of superlogarithmic growth
(the “confining potential”’) we set

— NE
@, oz = EWR (21, 2y + Y d0(z)
i—1

Now, given a positive number g (the “inverse temperature’) con-
sider the corres ' ' sures on XNk -

where dV is the Euclidean volume form on X



In the general formalism of statistical mechanics the Gibbs mea-
sure

gives the equilibrium description of particles interacting by E(N)(:cl, ey T\
at a fixed temperature T :=1/p.

e More generally, it will be important to allow the inverse tem-
perature to depend on N and set

Cp= g oy el

e Then = is the ‘zero temperature regime”




>

e One then expects that the main contribution to ugN) comes
from the minimizers of EXV)(zq,...,zx) for N large.



In the present setting we thus have

Bk

Pk

(Ng) . ‘Dk(zl,ZQ,...sz)| k dv@Nk,

2 L= |
& Z N kloo]

B = k”—>moo B € [0, o0]

e For B, = k ( = [ = oo) this is a determinantal point
process (wrt the N—dimensional vector space V})

e Forn=1and 8, ~k (= [ = o0) this is the standard log
gas in C at effectively zero temperature T'= 1/c0



To understand the casen = 1 (i.e. X = C) note that Dy(z1, 22, ...2n, )
has the following properties

e Dy(21,22,...2n,) is @ polynomial of degree < k in each variable
e vanishes of z; = z; for some pair (i,5) (“repulsion”)

Hence, when X = C _can factorize in each variable to get

%Z}\%) = m
1<i i<k

Accordingly, since Ny = k4 1, we indeed have

1
E(N)(Z]_,.,,,ZN) = — Z
N=1y<j<n

2

log |Z,L — Zj
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Relations to interpolation/sampling theory \/

The maximizers of ‘Dk(ZL z2,...2N, )|, for z; constrained to a com-
pact subset K C C"™ arise as optimal nodes for interpolation on
K of polynomials of degree k

e Hence, the mininimizers of E(N)(zl,.,,,zN) are the natural
higher dimensional complex analoge of Fekete points.

e T he corresponding Gibbs measure gives a probabilistic ap-
proach to locating approximate mininimizers (in the case

B~ 00)
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Relations to mathematical physics -

The Vandermonde determinant Dy (z1, 2z, ...sz) appears in Quan-
tum Mecanics as the Slater determinant for N free fermions

(electrons).

e T he one particle fermions live on C"™ and are represented by
wave functions in the vector space V,.

e They are coupled to the magnetic two form Fy = 0dq

multiplied by k -

e T he probability of locating fermions at 21,5 2Ny, IS propor-
tional to |Dk(z1,z2,...sz)|%¢o
—
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Convergence results

The Gibbs measure uéNk) defines a random point process on
X :=C" (i.e. a symmetric probability measure on XNk)

e T he corresponding empirical measure

—_

PR
N =1

defines a random measure

e When N — oo the random measure dy converges, in proba-
bility, to a uniqgue deterministic measure ug.
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e More precisely, the laws of d, satisfy a Large Deviation prin-
ciple (LDP):

1
Prob N E 0z, € Be(u)) ~ e_NBNFB(M), Fg=F+ %H
k g

)

g NN e T T
;Eﬁﬁl’r' = nﬂ-'g"i“'-‘lﬁ-'
SR LR
L pmeien > 'h‘}t_‘.
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Theorem (B. 13): Given a confining potential ¢g(z) on X :=C"
the laws of the corresponding empirical measures ) (at “inverse
temperature” ) satisfy a LDP with speed BNkk and a good rate

Uctional
1
Pl = B+ H (),

B

where

e E(u) is the pluricomplex energy of the measure u relative to

®0

e H(u) is the entropy of u relative to dV
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Here T

Eoo(1) = En) + [ don, >

where E(u) is a generalization of the standard log energy in C
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The rate functional FB admits a unique minimizer I which can
be described in terms of the complex Monge-Ampéere operator
MA : .

e ¢ is a function on C"™ with logarithmic growth at oo and
00¢ > 0

02 ¢

MA(¢) ;= det(80¢), 00¢ := (

for ¢ a “potential” i.e.
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More precisely,

G MA(¢3)dV, )

where ¢5 IS the unique potential solving the following fully non-

linear PDE in C"™_.
MA(qu) — oP(Pp—%0)

e When 3 — oo (the “zero-temperature case”) ¢3 — ¢oo, SOIVING

a free boundary value problem fo M A—operator, i.e.
Coo = MA($s0) = 1pMA($)dV,

where D is a subset of C" ‘the droplet” depending on ¢g
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Applications in complex geometry (5 =1)

Replacing C™ with a complex algebraic variety X of ‘‘general type”
the case 8 = 1 gives rise to a canonical random point process
on X (i.e. without choosing a back-ground potential ¢g) such
that, as N — oo,

1 N
Ni=1

in law, where dV g is the normalized volume form of the unique
Kahler-Einstein metric g g on X.

e The existence of gxp was established by Aubin and Yau (in-
depently) in the late 70’'s
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In other words, g g IS the unique Riemannian metric g solving

the Einstein equation

and such that g is Ka&hler, i.e. compatible with the complex
structure on X.
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A LDP for Gibbs measures associated to singular Hamilto-
nians

Consider a general “one-particle space” (X,dV) (say compact)
and let EXV) pe a symmetric function on the " N—particle space”
XN (say bounded from below).

The corresponding Gibbs me

for a given positive sequence gy of “inverse temperatures’.
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The general problem

Assume that the law of the empirical measure ép defined wrt to

satisfies an LDP in the “zero-temperature” limit, i.e. when By —
oo with rate functional E(u) and speed By N, i.e.

The general problem: 1Is there an LDP for a fixed 5 > 07

20



Heuristically (by thermodynamics) if this is the case then the
rate functional for 8 > oo should be the following free energy

type functional

Fg(p) = E(u) + Hagy (1) /B

where H () is the entropy of p rélative to ug

e In general, there is no LDP for 8 > 0O if E(N)(xl,...,a:N) is
too wild!
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Theorem (B.13): Assume that, for some sequence By — oo,
e_ﬁNE(N)d\/@N satisfies and LDP with a ‘strictly convex’ rate
functional E(u). Then, if

Ale(N)('CUl) 7:UN) <C

there is an LDP for any fixed 5 > 0 with rate functional Fg =
E+ Hgy /B

e [ he strict convexity of E ensures that FB has a unique min-
imizer pg for g >0
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The existence and strict convexity assumption on E(u) is equiv-
alent to (by the Gartner-Ellis theorem):

, 1
S L I

for a Gateaux differentiable functional £(¢) (the Legendre trans-
form of E)

e By the quasi-superharmoncity assumption the limit above is
equivalent_to — e

N
lim inf (E(N)(ajl,...,xN) + 3 ()
1=1

=— XD NIB.Z\VT X'N

) = &(¢)

\

(indicating the Legendre duality in question)
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e In the Vandermonde setting the functional £(¢) can be ex-
plicitely determined (it generalizes the “Liouville action” in
RMT and 2D Quantum Gravity)

X ~\ /Ei
\3 " ( T



This theorem applies to the setting of Vandermonde determi-
nants with X = C", where

1
(E(Nk)(%, .y ZN,,) 1= —109 | Dy (21, 22, 2N)|P - cbob

for D; the corresponding sequence of Vandermonde determi-
nants.

e The property of Acm(—Eégk)) > —C follows from A log |p|? >
O if p(z) a polynomial on C™.

e Taking By, =k (= B = oo) gives

)= = | Digo (21, 22, - ZNk)‘ /ZN
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l.e. a determinantal point-process, which can be studied
using L2—methods

e Then the case 8 > 0 follows from the previous theorem!



The proof in the zero temperature regime (8 = oco) appears in

e B.: Determinantal Point Processes and Fermions on Com-
plex Manifolds: Large Deviations and Bosonization, Comm.
in Math. Phys. (2014),

The proof builds on the joint work

e B.:Boucksom: Growth of balls of holomorphic sections and
energy at equilibrium. 42 pages, Invent. Math. (2010)

e B.; Boucksom, D. Witt Nystrom: Fekete points and conver-
gence towards equilibrium measures on complex manifolds,
26 pages, Acta Math. Vol. 207, Issue 1 (2011), 1-27,
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It is closely related to the variational approach to MA-equations
developed in the joint work

e B: Boucksom: Guedj; Zeriahi: A variational approach to
complex Monge-Ampere equations, Publications Mathéma-
tiques de I'HES (2012):



The proof in the case 8 < oo appears in

e B.: Kahler-Einstein metrics, canonical random point pro-
cesses and birational geometry. arXiv:1307.3634
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T he precise meaning of an LDP

The empirical measure oy = %Zg\;l 0z, defines a map

\\
1 1
Q\I: XN _>7D(X)7 (x]_)'amx]\f) — N Z 5:13Z

T—1

of X into the space P(X) of all probability measures. By defi-
nition its law is the probability measure

=0 TS

on P(X). Convergence in probability towards a deterministic

measure pux equivalently means convergence in law, i.e. as
N — o0,

27



weakly on P(X). A LDP for Iy at a rate NBy means, formally,

that T

My ~ e VONEW) Dy




More precisely, an LDP ns that

Q% Jim_ o100 P (Be) = ~F(w)

where Be(p) is a ball in the metric space (P(X),d), where d is
any metric compatible with the standard topology (say that X
is compact).

28



In our case we can write the L DP_as

og [ e AENavEN = () + Hay (1)
Be(.u) B

where we used the map oy to identify Be(n) C P(X) with a
subset of X%

— lim
N—00 NﬁN
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e The proof of the LDP uses the Wasserstein 2-metric dyy, on
P(X) to defined the balls

e [ he point is that the map

Q XN GgEN
N .
N

is an isometry (for a given Riemannian metric g on X)

) = (P(X), dw,)

e T his gives a Riemannian meaning to the pulled-back balls in
XN,
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The key point technical part of the proof is an asymptotically

sharp sub-mean inequality on the (singular) Riemannian space
\

C XM= xVEy >

with the metric g(N) induced by the scaled Riemannian metric
g/N on X :

" (2, e, Ty) < eV fBe(xla----axN) fdvy
~ — Vol B(zy,...;TN)

if f>0and Af > —\f (here we take f = e FE)

e [ he entropy part in FB then comes from the volume of the
corresponding balls.

e The distortion factor eV gets washed out at our logarithmic
scale!
31



3. Relations to geometric analysis

If —x is a lower bound on the Ricci curvature on X% then, by
definition, we have on XW) that ¢V) := (g/N)®VN has bounded

diameter and T
Ric ) >~ vy

and hence there exists a constant C (independent of N) such

that -
ng > —C (dim(x™) —1)

This means that we are in good shape to apply estimates from
comparison geometry/geometric analysis to (XN,g(N)).
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e More precisely, we have to work on the (singular) quotient
XW) of XN under the = y—action.

e But morally this should be fine since the previous curvature
bound still holds in a weak sense on X V) (in the sense of

Alexandrov, Lott-Villanni,...)
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The desired submean inequality is obtained by modifying the
proof of Li-Schoen ('84) of a similar inequality.

Two new features:

e (1) need a dimension dependence which is sub-exponential
on small balls

e (2) Need to work on (singular) Riemannian quotients
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T hank you!
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