Recent advances on log gases, IHP

March 21st 2014

Large-N asymptotic expansions in
 1-d repulsive particle systems

Gaëtan Borot
MPIM Bonn \& MIT

based on joint works with
Alice Guionnet, MIT
Karol Kozlowski, Dijon

Large-N asymptotic expansions in 1-d repulsive particle systems

1. Model and results
2. Schwinger-Dyson equations
3. Sketch of proof of the main result
4. Conclusion

The β ensembles

- Probability measure on $A^{N} \subseteq \mathbb{R}^{N}$
$\mathrm{d} \mu_{N}^{A}=\frac{1}{Z_{N}^{A}} \exp \left(N \sum_{i=1}^{N} T\left(\lambda_{i}\right)\right) \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i=1}^{N} \mathbf{1}_{A}\left(\lambda_{i}\right) \mathrm{d} \lambda_{i} \quad \beta>0$
- It is the measure induced on eigenvalues of a random matrix M
> $\mathrm{d} M e^{N \operatorname{Tr} T(M)}$
> Wigner, Dyson, Mehta (50s-60s)

$$
\begin{cases}\beta=1 & \text { real symmetric matrices } \\ \beta=2 & \text { hermitian matrices } \\ \beta=4 & \text { quaternionic self-dual matrices }\end{cases}
$$

all $\beta>0, T$ polynomial of even degree
$M=$ triagonal
Dumitriu, Edelman '02
Krishnapur, Rider, Virág '13

Mean-field models

- Probability measure on $A^{N} \subseteq \mathbb{R}^{N}$

$$
\mathrm{d} \mu_{N}=\frac{1}{Z_{N}} \exp \left(N^{2} \mathcal{T}_{0}\left(L_{N}^{(\lambda)}\right)\right) \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i=1}^{N} \mathbf{1}_{A}\left(\lambda_{i}\right) \mathrm{d} \lambda_{i} \quad \beta>0
$$

where $L_{N}^{(\lambda)}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ is the (random) empirical measure

- Exemples
in Chern-Simons theory

$$
\mathcal{T}_{0}(\mu)=\iint \mathrm{d} \mu(x) \mathrm{d} \mu(y) \sum_{m} \beta_{m} \ln \left|\frac{\sinh \left[\alpha_{m}(x-y)\right]}{\alpha_{m}(x-y)}\right|
$$

$\mathrm{O}(\mathrm{n})$ model on random lattices

$$
\mathcal{T}_{0}(\mu)=-\frac{n}{2} \iint \mathrm{~d} \mu(x) \mathrm{d} \mu(y) \ln |x+y|
$$

- Here, we take

$$
\begin{aligned}
& \mathcal{T}_{0}(\mu)=\int T\left(x_{1}, \ldots, x_{r}\right) \prod_{i=1}^{r} \mathrm{~d} \mu\left(x_{i}\right) \\
& T \text { real-analytic on } A^{r}
\end{aligned}
$$

We would like to study when $\mathrm{N} \rightarrow \infty \ldots$

- the (random) empirical measure $L_{N}^{(\lambda)}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}$
\rightsquigarrow what kind of random variable is $\sum_{i=1}^{N} f\left(\lambda_{i}\right)=N \int f(\xi) \mathrm{d} L_{N}^{(\lambda)}(\xi)$?
- the partition function

$$
Z_{N}=\int_{A^{N}} \exp \left(N^{2} \mathcal{T}_{0}\left(L_{N}^{(\lambda)}\right)\right) \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i=1}^{N} \mathrm{~d} \lambda_{i}
$$

- the k-point correlators

$$
W_{k}\left(x_{1}, \ldots, x_{k}\right)=\text { Cumulant }\left(\int \frac{N \mathrm{~d} L_{N}^{(\lambda)}\left(\xi_{1}\right)}{x_{1}-\xi_{1}}, \ldots, \int \frac{N \mathrm{~d} L_{N}^{(\lambda)}\left(\xi_{k}\right)}{x_{k}-\xi_{k}}\right)
$$

The leading order ... is given by a continuous approximation

- Define the energy functional on a proba. measure μ

$$
\mathcal{T}(\mu)=\int\left[\prod_{i=1}^{r} \mathrm{~d} \mu\left(x_{i}\right)\right] T\left(x_{1}, \ldots, x_{r}\right)+\frac{\beta}{2} \iint \mathrm{~d} \mu\left(x_{1}\right) \mathrm{d} \mu\left(x_{2}\right) \ln \left|x_{1}-x_{2}\right|
$$

- Assumption 1 : uniqueness of maximizer μ_{eq}
- Characterization : exists a constant C such that $\mathcal{T}^{\prime}\left(\mu_{\text {eq }}\right)\left[\delta_{x}\right] \leq C$ for $x \in A \quad \mu_{\text {eq }}$-everywhere
- Assumption 2 : local strict concavity at $\mu_{\text {eq }}$
for any $\nu=$ finite signed measure of mass 0

$$
\begin{aligned}
-\mathcal{T}^{\prime \prime}\left(\mu_{\mathrm{eq})}\right)[\nu, \nu] & =\mathfrak{D}^{2}[\nu] \in[0,+\infty] \\
\text { and } & =0 \text { iff } \nu=0
\end{aligned}
$$

The leading order ... is given by a continuous approximation

- Define the energy functional on a proba measure μ
$\mathcal{T}(\mu)=\int\left[\prod_{i=1}^{r} \mathrm{~d} \mu\left(x_{i}\right)\right] T\left(x_{1}, \ldots, x_{r}\right)+\frac{\beta}{2} \iint \mathrm{~d} \mu\left(x_{1}\right) \mathrm{d} \mu\left(x_{2}\right) \ln \left|x_{1}-x_{2}\right|$
- Assumption 1 : uniqueness of maximizer μ_{eq}
- Assumption 2 : local strict concavity at $\mu_{\text {eq }}$

Lemma

$L_{N}^{(\lambda)} \longrightarrow \mu_{\text {eq }} \quad$ almost surely and in expectation
$Z_{N}=\exp \left\{N^{2}\left(\mathcal{T}\left(\mu_{\text {eq }}\right)+o(1)\right)\right\}$

Large deviations for a single particle

- A particle at position x feels the effective potential

$$
J(x)=\mathcal{T}^{\prime}\left(\mu_{\mathrm{eq}}\right)\left[\delta_{x}\right]-\sup _{\xi \in A} \mathcal{T}^{\prime}\left(\mu_{\mathrm{eq}}\right)\left[\delta_{\xi}\right]
$$

Lemma

For any closed $F \subseteq A$

$$
\mathbb{P}\left[\exists i, \lambda_{i} \in F\right] \leq \exp \left\{N\left(\sup _{x \in F} J(x)+o(1)\right)\right\}
$$

\rightsquigarrow One can restrict to a compact $B \subseteq A$ neighborhood of $\{J(x)=0\}$

$$
Z_{N}^{B}=Z_{N}^{A}\left(1+o\left(e^{-c N}\right)\right)
$$

Large deviations of empirical measure

- Natural "distance" $-\mathcal{T}^{\prime \prime}\left(\mu_{\mathrm{eq}}\right)[\nu, \nu]=\mathfrak{D}^{2}[\nu] \in[0,+\infty]$
but $\mathfrak{D}\left[L_{N}^{(\lambda)}-\mu_{\text {eq }}\right]=+\infty$ because of atoms and log singularity
- Let us pick a nice regularization idea from Maïda, Maurel-Segala

$$
L_{N}^{(\lambda)}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \rightsquigarrow \widetilde{L}_{N}^{(\lambda)}
$$

Lemma

If T is smooth, we have for N large enough
$\mathbb{P}_{N}\left[\mathfrak{D}\left[\widetilde{L}_{N}^{(\lambda)}-\mu_{\mathrm{eq}}\right]>t\right] \leq \exp \left(N \ln N-N^{2} t^{2} / 2\right)$

The equilibrium measure

- T real-analytic $\Longrightarrow\left\{\begin{array}{l}\mu_{\text {eq }} \text { is supported on a finite number of segments } \\ S=\bigcup_{h=0}^{g}\left[a_{h}, b_{h}\right]\end{array}\right.$
- $\alpha \in \partial S$ is a hard edge if $\alpha \in \partial A$, is a soft edge otherwise

$$
\mathrm{d} \mu_{\mathrm{eq}}(x)=\frac{\mathbf{1}_{S}(x) \mathrm{d} x}{2 \pi} M(x) \prod_{\alpha \text { soft }}|x-\alpha|^{1 / 2} \prod_{\alpha \text { hard }}|x-\alpha|^{-1 / 2}
$$

- We say that $\mu_{\text {eq }}$ is off-critical when $M(x)>0$ on A

Finite size corrections : we assume ...

- Uniqueness of maximizer μ_{eq}
- Local strict concavity at μ_{eq}
- $V=V_{0}+(1 / N) V_{1}+\cdots \begin{cases}V_{0} & \text { real analytic on } A \\ V_{1} & \text { complex analytic on } A\end{cases}$
- Control of large deviations $J(x)<0$ for $x \in A \backslash S$
- $\mu_{\text {eq }}$ is off-critical
- $f=$ test function, analytic on A

Result in the 1 -cut regime

- $1 / \mathrm{N}$ asymptotic expansion

$$
Z_{N}=N^{\gamma N+\gamma^{\prime}} \exp \left[\sum_{m \geq-2} N^{-m} F^{[m]}+O\left(N^{-\infty}\right)\right]
$$

γ, γ^{\prime} depend only on β and the nature of the edges

- Central limit theorem

$$
\left(\sum_{i=1}^{N} f\left(\lambda_{i}\right)-N \int_{A} f(\xi) \mathrm{d} \mu_{\mathrm{eq}}(\xi)\right) \longrightarrow \text { (non-centered) gaussian }
$$

Result in the $(g+1)$-cuts regime

- Oscillatory asymptotic expansion

$$
\begin{aligned}
& Z_{N}=N^{\gamma N+\gamma^{\prime}}\left(\mathcal{D}_{N} \Theta_{\left.-N \epsilon^{e q}\right)}\right)\left(F^{[-1]^{\prime}} \mid F^{[-2]^{\prime \prime}}\right) \exp \left[\sum_{m \geq-2} N^{-m} F^{[m]}+O\left(N^{-\infty}\right)\right] \\
& \text { where } \mathcal{D}_{N}=\sum_{p \geq 0} \frac{1}{p!} \sum_{\substack{\ell_{1}, \ldots, \ell_{p} \geq 1 \\
m_{1}, \ldots, m_{p} \geq-2 \\
\sum_{i}\left(m_{i}+\ell_{i}\right)>0}} N^{-\sum_{i}\left(m_{i}+\ell_{i}\right)} \prod_{i=1}^{p} \frac{F_{\mathrm{eq}}^{\left[m_{i}\right],\left(\ell_{i}\right)} \cdot \nabla_{\mathbf{w}}^{\otimes \ell_{i}}}{\ell_{i}!}
\end{aligned}
$$

acts as a differential operator on the Siegel theta function

$$
\Theta_{\mu}(\mathbf{w} \mid \mathbf{Q})=\sum_{\mathbf{m} \in \mathbb{Z}^{g}} e^{\mathbf{w} \cdot(\mathbf{m}+\mu)+\frac{1}{2}(\mathbf{m}+\mu) \cdot \mathbf{Q} \cdot(\mathbf{m}+\mu)}
$$

- (Pseudo)-periodicity come from $\mu=-N \epsilon_{\text {eq }} \bmod \mathbb{Z}^{g}$

Result in the $(\mathrm{g}+1)$-cuts regime

- No central limit theorem in general ...

$$
\begin{aligned}
& \quad \mathbb{E}\left[e^{\mathrm{i} s\left(\sum_{i=1}^{N} f\left(\lambda_{i}\right)-N \int f(x) \mathrm{d} \mu_{\mathrm{eq}}(x)\right)}\right] \underset{N \infty}{\sim} e^{\mathrm{i} s m_{1}[f]-m_{2}[f] s^{2} / 2} \frac{\Theta_{-N \epsilon_{\mathrm{eq}}}\left(F^{[-1]^{\prime}}+\mathrm{i} s v[f] \mid F^{[-2]^{\prime \prime}}\right)}{\Theta_{-N \epsilon_{\mathrm{eq}}}\left(F^{[-1]^{\prime}} \mid F^{[-2]^{\prime \prime}}\right)} \\
& \text { (non-centered) gaussian }
\end{aligned}
$$

+ discrete Gaussian, centered at $\mu=-N \epsilon_{\mathrm{eq}} \bmod \mathbb{Z}^{g}$
step $v[f] \propto\left(\int_{S} \frac{f(x) x^{i} \mathrm{~d} x}{\prod_{\alpha}|x-\alpha|^{1 / 2}}\right)_{0 \leq i \leq g-1}$

Corollary

$$
\left(\sum_{i=1}^{N} f\left(\lambda_{i}\right)-N \int_{A} f(\xi) \mathrm{d} \mu_{\mathrm{eq}}(\xi)\right)
$$

converges in law along subsequences

History of β ensembles : 1 -cut regime

$\beta=2 \quad$ - If $1 / N$ expansion exists, then $Z_{N}=N^{\gamma N+\gamma^{\prime}} \exp \left[\sum_{m \geq-1} N^{-2 m} F^{\{m\}}\right]$ and $F^{\{m\}}$ can be computed by the moment method Ambjørn, Chekhov, Kristjansen, Makeenko, 90s

- Rewriting of $\mathrm{F}^{\{\mathrm{m}\}}$ in terms of a universal topological recursion Eynard,'04
- Existence of $1 / \mathrm{N}$ expansion by
- analysis of SD equations

Albeverio, Pastur, Shcherbina '01

- RH techniques

Ercolani, McLaughlin '02

- analysis of int. system

Bleher, Its, '05

History of β ensembles : 1 -cut regime

$\beta>0 \quad$ - if $1 / \mathrm{N}$ expansion exists, then $Z_{N}=N^{\gamma N+\gamma^{\prime}} \exp \left[\sum_{m \geq-2} N^{-m} F^{[m]}\right]$ and $\mathrm{F}^{[m]}$ computed by a β-topological recursion Chekhov, Eynard '06

- Central limit theorem Johansson '98
- Existence of $1 / \mathrm{N}$ expansion (analysis of SD eqn) Borot, Guionnet '11

History of β ensembles : multi-cut regime

$\beta=2 \quad$ - numerous observations of oscillatory behavior physicists, '90s

- Riemann-Hilbert techniques up to o(1) Deift, Kriecherbauer, McLaughlin, Venakides, Zhou, ...
- heuristic derivation up to o(1)

Bonnet, David, Eynard '00

- generalization to all orders Eynard '07
- observation of "no CLT"

Pastur '06
$\beta>0 \quad$ • Proof of "no CLT" and asymptotics of Z_{N}^{A} up to o(1) Shcherbina '12

- General proof Borot, Guionnet '13

History of mean-field models

$\mathrm{d} \mu_{N}=\frac{1}{Z_{N}} \exp \left(N^{2} \mathcal{T}_{0}\left(L_{N}^{(\lambda)}\right)\right) \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i=1}^{N} \mathbf{1}_{A}\left(\lambda_{i}\right) \mathrm{d} \lambda_{i}$
with r-body interaction $\quad \mathcal{T}_{0}(\mu)=\int T\left(x_{1}, \ldots, x_{r}\right) \prod_{i=1}^{r} \mathrm{~d} \mu\left(x_{i}\right)$

- same results for mean field models

Borot, Guionnet, Kozlowski '13

- computation of expansion by topological recursion Borot, '13

Large-N asymptotic expansions in 1-d repulsive particle systems

1. Model and results
2. Schwinger-Dyson equations
3. Sketch of proof of the main result
4. Conclusion

What are Schwinger-Dyson equations?

$=$ relations between expectation values from integration by parts

- In the model $\mathrm{d} \mu_{N}=\frac{1}{Z_{N}} \exp \left(N^{2} \mathcal{T}_{0}\left(L_{N}^{(\lambda)}\right)\right) \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i=1}^{N} \mathbf{1}_{A}\left(\lambda_{i}\right) \mathrm{d} \lambda_{i}$ we find for any smooth test function h and smooth functional \mathcal{O}

$$
\begin{aligned}
\mathbb{E} & {\left[\left(\sum_{i} N h\left(\lambda_{i}\right) \mathcal{T}_{0}^{\prime}\left(L_{N}^{(\lambda)}\right)\left[\delta_{\lambda_{i}}\right]+\beta \sum_{i<j} \frac{h\left(\lambda_{i}\right)-h\left(\lambda_{j}\right)}{\lambda_{i}-\lambda_{j}}+\sum_{i} h^{\prime}\left(\lambda_{i}\right)\right) \mathcal{O}\left(L_{N}^{(\lambda)}\right)\right.} \\
& \left.+\sum_{i} N^{-1} h\left(\lambda_{i}\right) \mathcal{O}^{\prime}\left(L_{N}^{(\lambda)}\right)\left[\delta_{\lambda_{i}}\right]\right]+ \text { boundary }=0
\end{aligned}
$$

What are Schwinger-Dyson equations?

- Remind the k-points correlators

$$
W_{k}\left(x_{1}, \ldots, x_{k}\right)=\operatorname{Cumulant}\left(\int \frac{N \mathrm{~d} L_{N}^{(\lambda)}\left(\xi_{1}\right)}{x_{1}-\xi_{1}}, \ldots, \int \frac{N \mathrm{~d} L_{N}^{(\lambda)}\left(\xi_{k}\right)}{x_{k}-\xi_{k}}\right)
$$

- Choose $h_{z}(x)=\frac{1}{z-x}$ and $\mathcal{O}_{z_{2}, \ldots, z_{k}}\left(L_{N}^{(\lambda)}\right)=\prod_{i=2}^{k} \int \frac{\mathrm{~d} L_{N}^{(\lambda)}\left(\xi_{i}\right)}{z_{i}-\xi_{i}}$ for $z, z_{i} \in \mathbb{C} \backslash A$
\longrightarrow family of functional relations between W_{1}, \ldots, W_{r+k-1} indexed by $k \geq 1$

The master operator

- Decompose $W_{1}(z)=N\left(W_{\mathrm{eq}}(z)+\delta_{-1} W_{1}(z)\right)$
with $W_{\text {eq }}(z)=\int \frac{\mathrm{d} \mu_{\text {eq }}(\xi)}{z-\xi}$
- Schwinger-Dyson equations can be recast

$$
\begin{aligned}
& (\mathcal{K}+\delta \mathcal{K})\left[\delta_{-1} W_{1}\right](z)=A_{1}+\text { boundary } \\
& (\mathcal{K}+\delta \mathcal{K})\left[W_{n}\left(\cdot, z_{2}, \ldots, z_{n}\right)\right](z)=A_{n}+\text { boundary }
\end{aligned}
$$

with: $\mathcal{K}[f](z)=2 W_{\mathrm{eq}}(z) f(z)+\frac{2}{\beta} \mathcal{T}_{0}^{\prime}\left(\mu_{\mathrm{eq}}\right)\left[\frac{f(\lambda) \mathrm{d} \lambda}{z-\lambda}\right]$

$$
\delta \mathcal{K}[f](z)=2 \delta_{-1} W_{1}(z) f(z)+N^{-1}(1-2 / \beta) \partial_{z} f(z)+\cdots
$$

Asymptotic analysis

- Introduce norms $\|f\|_{\Gamma}=\sup _{z \in \operatorname{Ext}(\Gamma)}|f(z)|$
- Large deviations of empirical measure

$$
\begin{aligned}
\left\|N \delta_{-1} W_{1}\right\|_{\Gamma_{1}} & \leq C_{1}(N \ln N)^{1 / 2} \\
\left\|W_{k}\right\|_{\Gamma_{k}} & \leq C_{k}(N \ln N)^{k / 2}
\end{aligned}
$$

- Large deviation of single eigenvalue : boundary effects $\in o\left(e^{-c N}\right)$
- Rigidity of SD equations : if \mathcal{K} invertible and $\left\|\mathcal{K}^{-1}[f]\right\|_{\Gamma_{i+1}} \leq c\|f\|_{\Gamma_{i}}$

$$
\begin{gathered}
\left\{\begin{aligned}
\left\|N \delta_{-1} W_{1}\right\|_{\Gamma_{i_{1}}} & \leq c_{1}\left(\eta_{N} \kappa_{N}+1\right) \\
\left\|W_{k}\right\|_{\Gamma_{i_{k}}} & \leq c_{k}\left(\eta_{N}^{k} \kappa_{N}+N^{2-k}\right) \\
& \Downarrow
\end{aligned}\right. \\
\left\{\begin{aligned}
\left\|N \delta_{-1} W_{1}\right\|_{\Gamma_{i_{1}+2}} & \leq c_{1}^{\prime}\left(\eta_{N}\left(\eta_{N} / N\right) \kappa_{N}+1\right) \\
\left\|W_{k}\right\|_{\Gamma_{i_{k}+2}} & \leq c_{k}^{\prime}\left(\eta_{N}^{k}\left(\eta_{N} / N\right) \kappa_{N}+N^{2-k}\right)
\end{aligned}\right\}
\end{gathered}
$$

Asymptotic analysis

Large deviations of empirical measure

+ Rigidity of SD equations

Corollary

If \mathcal{K} invertible and $\left\|\mathcal{K}^{-1}[f]\right\|_{\Gamma_{i+1}} \leq c\|f\|_{\Gamma_{i}}$
we have, for any $M \geq 0$ an asymptotic expansion
$W_{k}=\sum_{m=k-2}^{M-1} N^{-m} W_{k}^{[m]}+O\left(N^{-M} ; \Gamma_{M, k}\right)$

- Remark :
($g+1$) cuts
$\longrightarrow \quad \operatorname{dim}$ Ker $\mathcal{K}=g+c$
$\mathrm{c}=\mathrm{nb}$. critical conditions

Large-N asymptotic expansions in 1-d repulsive particle systems

1. Model and results
2. Schwinger-Dyson equations
3. Sketch of proof of the main result
4. Conclusion

Scheme of the proof

Models with
 fixed filling fractions

Initial model (multi-cut regime)

Conditioning on the filling fractions

- From large deviations on single eigenvalue : up to $o\left(e^{-c N}\right)$, we can choose

$$
A=\bigcup_{h=0}^{g} A_{h}
$$

- We will study $\mu_{\left(N_{0}, \ldots, N_{g}\right)}^{\left(A_{0}, \ldots, A_{g}\right)}=\mu_{N}^{A}$ conditioned to have $\left\{\begin{array}{l}N_{0} \text { first } \lambda^{\prime} \mathrm{s} \text { in } A_{0} \\ N_{1} \text { next } \lambda^{\prime} \mathrm{s} \text { in } A_{1} \\ \text { etc. }\end{array}\right.$

The partition function decomposes $\quad Z_{N}^{A}=\sum_{N_{0}+\cdots N_{g}=N} \frac{N!}{\prod_{h=0}^{g} N_{h}!} Z_{\left(N_{0}, \ldots, N_{g}\right)}^{\left(A_{0}, \ldots, A_{g}\right)}$

- $\epsilon_{h}=N_{h} / N$ are the filling fractions

Equilibrium measures ...

- Assumption 1 : uniqueness of maximizer $\left(=\mu_{\mathrm{eq}}\right)$ of

$$
\mathcal{T}(\mu)=\int\left[\prod_{i=1}^{r} \mathrm{~d} \mu\left(x_{i}\right)\right] T\left(x_{1}, \ldots, x_{r}\right)+\frac{\beta}{2} \iint \mathrm{~d} \mu\left(x_{1}\right) \mathrm{d} \mu\left(x_{2}\right) \ln \left|x_{1}-x_{2}\right|
$$

among all proba. measures
Let $\epsilon_{\mathrm{eq}, h}=\mu_{\mathrm{eq}}\left[A_{h}\right]$ be the equilibrium filling fraction

- Assumption 2 : local strict concavity at $\mu_{\text {eq }}$

Lemma 1

For ϵ close enough to ϵ_{eq}
\mathcal{T} has a unique maximizer ($=\mu_{\text {eq }, \epsilon}$) over proba. measure with $\mu\left[A_{h}\right]=\epsilon_{h}$

Equilibrium measures ..

- Assumption 1 : uniqueness of maximizer $\left(=\mu_{\mathrm{eq}}\right)$ of
$\mathcal{T}(\mu)=\int\left[\prod_{i=1}^{k} \mathrm{~d} \mu\left(x_{i}\right)\right] T\left(x_{1}, \ldots, x_{k}\right)+\frac{\beta}{2} \iint \mathrm{~d} \mu\left(x_{1}\right) \mathrm{d} \mu\left(x_{2}\right) \ln \left|x_{1}-x_{2}\right|$
among all proba. measures
Let $\epsilon_{\mathrm{eq}, h}=\mu_{\mathrm{eq}}\left[A_{h}\right]$ be the equilibrium filling fraction
- Assumption 2 : local strict concavity at $\mu_{\text {eq }}$
- Assumption $3: T$ is analytic
- Assumption 4 : μ_{eq} has $(\mathrm{g}+1)$ cuts and is off-critical

Lemma 2

For ϵ close enough to $\epsilon_{\text {eq }}$
$\mu_{\text {eq; } \epsilon}$ has $(g+1)$ cuts and is off-critical
The edges depend smoothly on ϵ
The density of $\mu_{\mathrm{eq} ; \epsilon}$ depends smoothly on ϵ away from edges

Equilibrium measures ...

- Assumption 1 : uniqueness of maximizer $\left(=\mu_{\mathrm{eq}}\right)$ of
$\mathcal{T}(\mu)=\int\left[\prod_{i=1}^{k} \mathrm{~d} \mu\left(x_{i}\right)\right] T\left(x_{1}, \ldots, x_{k}\right)+\frac{\beta}{2} \iint \mathrm{~d} \mu\left(x_{1}\right) \mathrm{d} \mu\left(x_{2}\right) \ln \left|x_{1}-x_{2}\right|$
among all proba. measures
Let $\epsilon_{\mathrm{eq}, h}=\mu_{\mathrm{eq}}\left[A_{h}\right]$ be the equilibrium filling fraction
- Assumption 2 : local strict concavity at $\mu_{\text {eq }}$
- Assumption 3 : T is analytic
- Assumption 4 : μ_{eq} has $(\mathrm{g}+1)$ cuts and is off-critical

Lemma 3

For ϵ close enough to $\epsilon_{\text {eq }}$
the large deviation estimates also holds uniformly
in the conditioned model with filling fractions ϵ

The return of the master operator

- The correlators W_{k} in the initial model $W_{k ; \epsilon}$ in the conditioned model satisfy the same Schwinger-Dyson equations
- We have $\oint_{A_{h_{1}}} \cdots \oint_{A_{h_{k}}} W_{k ; \epsilon}\left(z_{1}, \ldots, z_{k}\right) \prod_{i=1}^{k} \frac{\mathrm{~d} z_{i}}{2 \mathrm{i} \pi}=\delta_{k, 1} N \epsilon_{h_{1}}$
\Longrightarrow we need the restriction $\mathcal{K}_{0 ; \epsilon}$ of \mathcal{K}_{ϵ} to the codim. $=\mathrm{g}$ subspace

$$
\left\{f, \quad \forall h, \quad \oint_{A_{h}} f(z) \mathrm{d} z=0\right\}
$$

Lemma 4

For ϵ close enough to $\epsilon_{\text {eq }}$
$\mathcal{K}_{0 ; \epsilon}$ is continuously invertible, and $\mathcal{K}_{0 ; \epsilon}^{-1}$ depends smoothly on ϵ

Asymptotic expansion of correlators in the conditioned model

Corollary

For ϵ close enough to $\epsilon_{\text {eq }}$
we have, for any $M \geq 0$, an asymptotic expansion

$$
W_{k ; \epsilon}=\sum_{m=k-2}^{M-1} W_{k ; \epsilon}^{[m]}+O\left(N^{-M} ; \Gamma_{M, k}\right)
$$

depending smoothly on ϵ, with remainder uniform in ϵ

Partition function of the conditioned model

$$
\frac{Z_{N ; \epsilon}^{\left(T_{1}\right)}}{Z_{N ; \epsilon}^{\left(T_{0}\right)}}=\exp \left(N^{2-r} \int \partial_{t} T_{t}\left(x_{1}, \ldots, x_{r}\right) \prod_{i=1}^{r} \mathrm{~d} L_{N}^{(\lambda), T_{t}}\left(x_{i}\right)\right)
$$

can be expressed in terms of $W_{j ; \epsilon}^{T_{t}}$ for the model with interaction T_{t}

- If we can find a interpolating family $\left(T_{t}\right)_{t \in[0,1]}$
respecting uniformly our assumptions
放 for which $Z_{N ; \epsilon}^{\left(T_{0}\right)}$ is known
we deduce an expansion $\quad Z_{N ; \epsilon}^{\left(T_{1}\right)}=Z_{N ; \epsilon}^{\left(T_{0}\right)} \times \exp \left(\sum_{m=-2}^{M-1} N^{-m} F_{\epsilon}^{[m]}+O\left(N^{-M}\right)\right)$
- Idea : interpolate in the space of equilibrium measures

$$
\left(\mu_{\mathrm{eq} ; \epsilon}^{t}\right)_{t \in[0,1]} \longleftrightarrow\left(T_{t}\right)_{t \in[0,1]}
$$

An interpolation path ...

Sums and interferences $-1 / 3$

We initially wanted to compute $\quad Z_{N}=\sum_{N_{0}+\cdots N_{g}=N} \frac{N!}{\prod_{h=0}^{g} N_{h}!} Z_{N ;\left(N_{0} / N, \ldots, N_{g} / N\right)}$

- From large deviations of empirical measures :

$$
Z_{N}=\left(\sum_{\left|\mathbf{N}-N \epsilon^{\star}\right| \leq \ln N} \frac{N!}{\prod_{h=0}^{g} N_{h}!} Z_{N ; \mathbf{N} / N}\right)\left(1+O\left(e^{-c N}\right)\right)
$$

- For $\mathbf{N}-N \epsilon^{\star} \in o(N)$, we just proved, with $\epsilon=\left(N_{h} / N\right)_{1 \leq h \leq g}$

$$
\frac{N!}{\prod_{h=0}^{g} N_{h}!} Z_{N ; \epsilon}=N^{\gamma N+\gamma^{\prime}} \exp \left[\sum_{m=-2}^{M-1} N^{-m} F_{\epsilon}^{[m]}+O\left(N^{-M}\right)\right]
$$

where $F_{\epsilon}^{[m]}$ depend smoothly on $\epsilon \approx \epsilon_{\text {eq }}$

- Extra lemma : $\left(\nabla_{\epsilon} F^{[-2]}\right)_{\epsilon_{\mathrm{eq}}}=0$ and $\left(\nabla_{\epsilon} \nabla_{\epsilon} F^{[-2]}\right)_{\epsilon_{\mathrm{eq}}}<0$

Sums and interferences $-2 / 3$

We plug the asymptotic formula and use a Taylor expansion at $\epsilon \approx \epsilon_{\mathrm{eq}}$

- E.g. up to o(1):

$$
\begin{aligned}
& Z_{N}=N^{\gamma N+\gamma^{\prime}} e^{N^{2} F_{\mathrm{eq}}^{[-2]}+N F_{\mathrm{eq}}^{[-1]}+F_{\mathrm{eq}}^{[0]}} \\
& \times\left(\sum_{\left|\mathbf{N}-N \epsilon_{\mathrm{eq}}\right| \leq \ln N} e^{\frac{1}{2}\left(\nabla^{\otimes 2} F^{[-2]}\right)_{\mathrm{eq}} \cdot\left(\mathbf{N}-N \epsilon_{\mathrm{eq} q}\right)^{\otimes 2}+\left(\nabla F^{[-1]}\right)_{\mathrm{eq}} \cdot\left(\mathbf{N}-N \epsilon_{\mathrm{eq}}\right)}\right)\left(1+O\left(e^{-c^{\prime}(\ln N)^{3} / N}\right)\right)
\end{aligned}
$$

It is the general term of a super-exponentially fast converging series :

$$
\begin{aligned}
& Z_{N}=N^{\gamma N+\gamma^{\prime}} e^{N^{2} F_{\mathrm{eq}}^{[-2]}+N F_{\mathrm{eq}}^{[-1]}+F_{\mathrm{eq}}^{[0]}} \\
& \times\left(\sum_{\mathrm{N} \in \mathbb{Z}^{g}} e^{\frac{1}{2}\left(\nabla^{\otimes 2} F^{[-2]}\right)_{\mathrm{eq}} \cdot\left(\mathrm{~N}-N \epsilon_{\mathrm{eq} q}\right)^{\otimes 2}+\left(\nabla F^{[-1]}\right)_{\mathrm{eq}} \cdot\left(\mathrm{~N}-N \epsilon_{\mathrm{eq}}\right)}\right)\left(1+O\left(e^{-c^{\prime \prime}(\ln N)^{3} / N}\right)\right)
\end{aligned}
$$

- We recognize $\Theta_{-N \epsilon_{\mathrm{eq}}}\left(\left(\nabla F^{[-1]}\right)_{\mathrm{eq}} \mid\left(\nabla^{\otimes 2} F^{[-2]}\right)_{\mathrm{eq}}\right)$

Sums and interferences - $3 / 3$

- Including higher orders yields terms of the form
$\sum_{\mathbf{N} \in \mathbb{Z}^{g}} \frac{1}{p!}\left(\prod_{i=1}^{p} \frac{\left(\nabla^{\otimes \ell_{i}} F^{\left[m_{i}\right]}\right)_{\mathrm{eq}}}{\ell_{i}!}\right) \cdot\left(\mathbf{N}-N \epsilon_{\mathrm{eq}}\right)^{\otimes\left(\sum_{i} \ell_{i}\right)} e^{\frac{1}{2} \mathbf{Q} \cdot\left(\mathbf{N}-N \epsilon_{\mathrm{eq}}\right)^{\otimes 2}+\mathbf{w} \cdot\left(\mathbf{N}-N \epsilon_{\mathrm{eq}}\right)}$
We recognize $\sum_{\mathbf{N} \in \mathbb{Z}^{g}} \frac{1}{p!}\left(\prod_{i=1}^{p} \frac{\left(\nabla^{\otimes \ell_{i}} F^{\left[m_{i}\right]}\right)_{\mathrm{eq}}}{\ell_{i}!}\right) \cdot\left(\nabla_{\mathbf{w}}^{\otimes\left(\sum_{i} \ell_{i}\right)} \Theta_{-N \epsilon_{\mathrm{eq}}}\right)(\mathbf{w} \mid \mathbf{Q})$
Here $\mathbf{Q}=\left(\nabla^{\otimes 2} F^{[-2]}\right)_{\text {eq }}$ and $\mathbf{w}=\left(\nabla F^{[-1]}\right)_{\text {eq }}$
- We justified step by step the heuristics of Bonnet, David, Eynard '00, Eynard '07

Summary: the $(g+1)$-cuts regime

- Oscillatory asymptotic expansion

$Z_{N}=N^{\gamma N+\gamma^{\prime}}\left(\mathcal{D}_{N} \Theta_{-N \epsilon_{\text {eq }}}\right)\left(\left(\nabla F^{[-1]}\right)_{\text {eq }} \mid\left(\nabla^{\otimes 2} F^{[-2]}\right)_{\text {eq }}\right) \exp \left[\sum_{m \geq-2} N^{-m} F^{[m]}+O\left(N^{-\infty}\right)\right]$
where $\mathcal{D}_{N}=\sum_{p \geq 0} \frac{1}{p!} \sum_{\ell_{1}, \ldots, \ell_{p} \geq 1} N^{-\sum_{i}\left(m_{i}+\ell_{i}\right)} \prod_{i=1}^{p} \frac{\left(\nabla^{\otimes \ell_{i}} F^{\left[m_{i}\right]}\right)_{\mathrm{eq}} \cdot \nabla_{\mathbf{w}}^{\otimes \ell_{i}}}{\ell_{i}!}$

$$
\begin{aligned}
& m_{1}, \ldots, m_{p} \geq-2 \\
& \sum_{i}\left(m_{i}+\ell_{i}\right)>0
\end{aligned}
$$

acts as a differential operator on the Siegel theta function

$$
\Theta_{\mu}(\mathbf{w} \mid \mathbf{Q})=\sum_{\mathbf{m} \in \mathbb{Z}^{g}} e^{\mathbf{w} \cdot(\mathbf{m}+\mu)+\frac{1}{2}(\mathbf{m}+\mu) \cdot \mathbf{Q} \cdot(\mathbf{m}+\mu)}
$$

- Moving characteristics

$$
\mu=-N \epsilon_{\mathrm{eq}} \bmod \mathbb{Z}^{g}
$$

Quadratic form

$$
\mathbf{Q}=-\operatorname{Hessian}_{\epsilon=\epsilon_{\mathrm{eq}}}\left[\mathcal{T}\left(\mu_{\mathrm{eq} ;} ;\right)\right]
$$

All order asymptotics for β-ensembles in the multi-cut regime

1. Beta-ensembles and random matrices
2. Applications to orthogonal polynomials
3. Sketch of the proof of the main result
4. Conclusion

In progress

- A toy model for XXZ spin correlation functions (two-scale problem)

$$
Z_{N}=\prod_{1 \leq i<j \leq N} \sinh \left[N^{\alpha} c_{1}\left(\lambda_{i}-\lambda_{j}\right)\right] \sinh \left[N^{\alpha} c_{2}\left(\lambda_{i}-\lambda_{j}\right)\right] \prod_{i=1}^{N} e^{-N^{1+\alpha} V\left(\lambda_{i}\right)} \mathrm{d} \lambda_{i}
$$

Open problems

- Same questions for $\lambda_{i} \in \mathbb{Z}$?
no Schwinger-Dyson equations ...
- Same questions for multi-matrix models ?
more complicated Schwinger-Dyson equations and convexity issues ...
- Universality from Schwinger-Dyson equations?

