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The B ensembles

= Probability measure on A" C RY

N N
1
dpify = 3 exp (NZT()\Z-)) TT 1 =M1 TT1a0h)dn, 8> 0
N i=1 i=1

1<i<j<N

= |t is the measure induced on eigenvalues of a random matrix M

q0f N TeT(M) B =1 real symmetric matrices
e

B8 =2 hermitian matrices

Wigner, Dyson, Mehta L :
(5083_605) ’ 5 =4 quaternionic self-dual matrices

M = triagonal all 8 >0, T polynomial of even degree

Dumitriu, Edelman ’02
Krishnapur, Rider, Virag '13



Mean-field models

= Probability measure on A" C RY

N
Ay = —— exp (NQT(LW)) IT NPT 1a00dy B>0

Z
N 1<i<j<N

where LM = LS~¥ 3y, is the (random) empirical measure

» Exemples
| ' sinh|[a, (z — y)]
in Chern-Simons theory // dp(z)du(y Zﬁm In o
O(n) model on )
random lattices Toln) = 9 // dp(x)dp(y) n |z + y|

= Here, we take (k) = / (21, .. Hdu Zi)

T real-analytic on AT



We would like to study when N = o ...

= the (random) empirical measure L = LSV 4,

~ what kind of random variable is S, f(\) = N [ f(€) dLE\?)(f) ¢

= the partition function

N
ZN — / EXP (NQ%(LE\)[\))) H ’)\z — )\j‘ﬁ Hd)\z
AN

1<i<j<N i=1

= the k-point correlators

NaL (&) NdLY (&) )

Wk(xl,...,xk):Cumulant( e
— &1 T — &k



The Ieading order ... s given by a continuous approximation

= Define the energy functional on a proba. measure p

T = | [if[ldu<xi>} T o)+ 5 [[ anteante) i — o,

= Assumption 1 : uniqueness of maximizer feq

m Characterization : exists a constant C such that T’ (fteq)[0z] < C
for x € A peq-everywhere

m Assumption 2 : local strict concavity at fieq

for any v = finite signed measure of mass O
—T"(pteq)[v, v] = D*[v] € [0, +o0]
and =0 iff v =0



The Ieading order ... s given by a continuous approximation

= Define the energy functional on a proba measure p

T = | [if[ldu<xi>} T o)+ 5 [[ anteante) i — o,

= Assumption 1 : uniqueness of maximizer fieq

= Assumption 2 : local strict concavity at fieq

Lemma

LE\’,\) — leq almost surely and in expectation

4N = exp {N2 (T(Meq) T 0(1))}



Large deviations for a single particle

m A particle at position x feels the effective potential
J(x) = T (peq)[0x] — sup T" (tieq) [0¢]

ccA
Lemma
For any closed F C A P(3i, \; € F| <exp {N( sup J(z) + 0(1))}
zeF
J(z)
; () ~+ One can restrict to a compact B C A

neighborhood of {J(z) =0}

Zy = Zy(1+o(e™N))




Large deviations of empirical measure

s Natural “distance” —T"(peq)[v,v] = D*[V] € [0, +o9]

but D[LYY — pieq] = +o0 because of atoms and log singularity

m et us pICk d nice regularization idea from Maida, Maurel-Segala

LY = Z 5y, ~ IO

Lemma
If 1" is smooth, we have for N large enough

Pr [DILY — preq] > t] < exp (NIn N — N2¢2/2)



The equilibrium measure

leq is supported on a finite number of segments
n T real-analytic = g

S — U [Cbh, bh]

h=0

s €05 isahardedgeif a € dA, is a soft edge otherwise

Ytea(r) = Y 1) TT o0 T o —af

2T

o soft o hard

1-cut regime (g + T)-cuts regime
transition
A A

through

)
)
. o . ~—
T < T

&
=)
~—

o
)
=

» We say that peq is off-critical when M(z) >0 on A



Finite size corrections : we assume ...

" Uniqueness of maximizer fleq

" |ocal strict concavity at feq

Vo real analyticon A
V=V +(1/N)V3 +--- |
V1 complex analyticon A

= Control of large deviations J(x) <0 for x € A\ S
m [leq IS Off-critical

m [ = test function, analytic on A



Result in the 1-cut regime

feq/d

= 1/N asymptotic expansion

Zn = NNV exp [ N N Ry O(N—OO)]
m>==—2

v,~" depend only on 3 and the nature of the edges

s Central limit theorem

N
(Z f(Ai) — N/ f(ﬁ)dﬂeq(§)> — (non-centered) gaussian
i=1 A



Result in the (g + 1)-cuts regime

feq/da

» Oscillatory asymptotic expansion

Zn = NV (DyO_ o) (FV [F) exp [ 30 N B4 o(v=)]

m>—2

'V

1 P Fe[mi]’(gi) B vAIZ:
where Dy =3~ 3 NTZlmA) T Ve
p

- . l;!
p=>0 lq,..., ﬁp21 1=1
miq,..., mpZ—Q

> i (mi+£;)>0

acts as a differential operator on the Siegel theta function

0,.(W|Q) = Z oW (m+tp)+ 5 (m+4) Q- (m+p)
mecZ9

= (Pseudo)-periodicity come from p = —Neéeq mod Z7



Result in the (g + 1)-cuts regime

feq/da

= No central limit theorem in general ...

E[eis(zil FO-N T (@dﬂeq(w))} s malfl-malf]s?/2
N oo

(non-centered) gaussian /

+ discrete Gaussian, centered at = —Neeq mod Z9

s o lz—alt/2/0<i<g—1

step v|f] x (

Corollary

(00 -n | 1€)anea(©)

converges in law along subsequences




History of B ensembles : 1-cut regime

B =2 = If 1/N expansion exists, then Zy = NN+ exp | Z N—2m p{m}
m>—1
and F'™ can be computed by the moment method

Ambjarn, Chekhov, Kristjansen, Makeenko, 90s

= Rewriting of FI™ in terms of a universal topological recursion
Eynard, 04

» Existence of 1/N expansion by
- analysis of SD equations  Albeverio, Pastur, Shcherbina 01
- RH techniques Ercolani, McLaughlin '02
- analysis of int. system Bleher, Its, '05



History of B ensembles : 1-cut regime

5 >0 = if 1/N expansion exists, then Zy = NN+ exp [ Z N—™ F[m]}
m>—2
and FI™ computed by a B-topological recursion

Chekhov, Eynard 06

s Central limit theorem

Johansson 798

= Existence of 1/N expansion (analysis of SD eqn)

Borot, Guionnet '11



History of B ensembles : multi-cut regime

5 =2 = numerous observations of oscillatory behavior
physicists, ‘90s

= Riemann-Hilbert techniques up to o(1)
Deift, Kriecherbauer, McLaughlin, Venakides, Zhou, ...

= heuristic derivation up to o(1)
Bonnet, David, Eynard 00

= generalization to all orders
Eynard '07

s Observation of “no CLT”
Pastur '06

B>0 = Proof of “no CLT” and asymptotics of Zx up to o(1)
Shcherbina "12

s General proof

Borot, Guionnet ’13



History of mean-field models

N
iy = —— exp (NZR(LE\?))) IT =1 T 1an)dn
1=1

Z
N 1<i<j<N

with r-body interaction T (n) = /T(xh-..,xr)Hdu(wz’)
1=1

s same results for mean field models

Borot, Guionnet, Kozlowski ’13

s computation of expansion by topological recursion
Borot, ‘13
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What are Schwinger-Dyson equations ?

= relations between expectation values from integration by parts

1

N

N
* In the model duy = —— exp (N275(L§V/\))) TT 1h = A1° T 1a(h)da

1<i<j<N

we find for any smooth test function h
and smooth functional O

E (ZNh )T (L) [6 +5Z A_i(AJ Zh’ ) orLM)
J

1<J

-|—ZN Lh(X) O L()‘))[&\] + boundary = 0




What are Schwinger-Dyson equations ?

= Remind the k-points correlators

N LY (&) /NdLﬁ@(sk))
—& T — &k

Wi(zy,...,z5) = Cumulant(/

1 dL(A) Z
m Choose h.(x) = and 0., L(/\) H/ 5
for z,2; € C \ A

—> family of functional relations between Wi,...., W, 41
indexed by £ >1



The master operator

= Decompose Wi(z) = N(Weq(2) + 0_1W1(2))

with Weq(2) :/d/;ef(g)

s Schwinger-Dyson equations can be recast
(K + 6K)[0_1W1](2z) = Ay + boundary
(K 4+ 6K) [ Wi(-, z2,...,2n)](2) = A, + boundary

f (A)dk}

with  K[f](2) = 2Weq(2) F(2) + 5 T (rreq) [ 225

B
OK[f1(2) = 20aW1(2) f(2) + N7 (1 = 2/B)0-f (2) + -+




Asymptotic analysis

» Introduce norms ||fllp= sup |f(2)]
zeExt(T")

» lLarge deviations of empirical measure

(LEQ\FD )

||N5_1W1 |I‘1 S Cl (NlnN)l/z A

Willp, < Ck (N 1In N)*/?

= Large deviation of single eigenvalue : boundary effects € o(e™*")

= Rigidity of SD equations : if K invertible and K™ [fllr, ., < cllfllr,
||N5—1W1HI‘ C1 (aniN + 1) \>
Wl ck(MyEN + N*7F)

N N <— INIA



Asymptotic analysis

Large deviations of empirical measure

+ Rigidity of SD equations

Corollary

If K invertible and K~ [flllp,., <clfll,

we have, for any M > 0 an asymptotic expansion

M—1
We= > N W™ +O0N"MTyp)

m=k—2

m Remark:

(g + 1) cuts
c = nb. critical conditions

—s dimKerK=g¢g+c
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Scheme of the proof

Models with Initial model
fixed filling fractions (multi-cut regime)

—— same large deviations estimates —

—— same Schwinger-Dyson equations
Y

-

\

1. Eq. measure and regularity

(potential t

2. Inverti

~

neory)

oility of I

(functiona

+ cx analysis)

|

l interpolation
Y

[4. Expansion of partition fn.

y
[3. Expansion of correlators j
W
J

series
analysis

{5. Expansion of partition fn. ]




Conditioning on the filling fractions

= From large deviations on single eigenvalue :
up to o(e”“"), we can choose

A= Uz:o Ap

Ny first A'sin A

. Ag,..., A . L
= We will study “ENZNZ) = uy conditioned to have { N1 next \’s in A,
etc.
Th t._t. f t. d ZA L N' Z(AO ..... Ag)
e partition function decomposes =Y [0 Nyt 2Nl )

m ¢, = N, /N are the filling fractions



Equilibrium measures ...

= Assumption 1 : uniqueness of maximizer (= fleq) of

_[IT | P 0z —
_/[Edu(xz)} T(x1,y...,T //d,u x1)dp(zs) In |z — 29

among all proba. measures

Let €oq.n = feq|Ar] be the equilibrium filling fraction

m Assumption 2 : local strict concavity at fieq

Lemma 1

For € close enough to €eq

T has a unique maximizer (= jleq,e) Over proba. measure with u[Ay] = €,



Equilibrium measures ...

= Assumption 1 : uniqueness of maximizer (= fteq) Of

:/[Hdu(xi)] T(z1,..., 5//(1# (1) dp(zs) In |z — 2

among all proba. measures
Let €oq.n = feq|An] be the equilibrium filling fraction

m Assumption 2 : local strict concavity at fieq
m Assumption 3 : T' is analytic
» Assumption 4 : feq has (g + 1) cuts and is off-critical

Lemma 2

For € close enough to e

It Heqse has (g + 1) cuts and is off-critical
3t The edges depend smoothly on €

¥t The density of fieq;e depends smoothly on € away from edges



Equilibrium measures ...

= Assumption 1 : uniqueness of maximizer (= fteq) Of

:/[Hdu(xi)] T(z1,..., 5//(1# (1) dp(zs) In |z — 2

among all proba. measures
Let €oq.n = feq|An] be the equilibrium filling fraction

m Assumption 2 : local strict concavity at fieq
m Assumption 3 : T' is analytic
» Assumption 4 : feq has (g + 1) cuts and is off-critical

Lemma 3

For € close enough to €qq

the large deviation estimates also holds uniformly
in the conditioned model with filling fractions €



The return of the master operator

m The correlators Wi in the initial model
Wi in the conditioned model

satisfy the same Schwinger-Dyson equations

k
dz;
-Wehavej[ Wkezl,... H © —5]{71N€h1

2177
Ahl Ahk 1=1

—> we need the restriction Ky.. of K¢ to the codim. = g subspace

(f, Vh, ¢ f(z)dz=0}
Anp

Lemma 4

For € close enough to eqq

Ko.c is continuously invertible, and /C(;i depends smoothly on ¢



Asymptotic expansion of correlators
in the conditioned model

Corollary

For € close enough to eqq

we have, for any M > 0, an asymptotic expansion
M—1
Wk;e — Z WILT,Z] -+ O(N_M;FM,k)

m=k—2

depending smoothly on €, with remainder uniform in €



Partition function of the conditioned model

Zy.. . Y
Z§0> — exp (N2 /atTt(xl,...,xr)l_]ldLy (xi))

can be expressed in terms of W' for the model with interaction T;

= If we can find a interpolating family (7% ):c(o,1]
2t respecting uniformly our assumptions

3x for which Z](gz(é) is known

M-—1
we deduce an expansion  ZY = Z{®) x exp ( > NEM 4 O(N‘M))

m=—2

= Idea : interpolate in the space of equilibrium measures

(Néq;e)tE[O,l] < > (Tt)tE[O,l]



An interpolation path ...

semi-circles

// \ ag bo a1 by az b
€1 €92 |
|| | | | >

|
ao+bo a1+b1 az+bo
2 2 2

>

€0

Z(Tt) N H ap —I_ bh — AR’ — bh/

Nie 50 2
0<h<h'<g h=0

N2eheh,ﬁﬁ< Selberg 5—Gaussian >

integral over RV"



Sums and interferences - 1/3

.....

C. N
We initially wanted to compute  Zy = ) VG ZN{(No/N,....Ny /N)

= From large deviations of empirical measures :

N .
= X o A (0 )
IN—Ne*|<ln N ++h=0

" For N — Ne* € o(N), we just proved, with € = (N,/N)1<n<g

N , M-—-1
n Nh'ZN;GI NTNHY eXP{ > NTFEM L O(NTM)
=0 . m=-—2

where FI"™ depend smoothly on € = €cq

= Extra lemma: (V. FIEA), =0 and (V.V. P <0

e €eq



Sums and interferences - 2/3

We plug the asymptotic formula and use a Taylor expansion at € ~ e,

= F.g. uptoo(l):
Zn = NTN+Y eV Feg AN N4 Fg
><( Z 03 (VE2F 72 eq (N=Neeg) #2 +(VF ™ )eq (N~ Neeq)) (1 4 O(e—c’(lnN)S/N))

IN—Neéeq|<In N

It is the general term of a super-exponentially fast converging series :

/ 2 —2 —1 0
T = NIN+Y N FlA4NFE+ R

X( Z QQ(V@)QF )eq (N— Neeq)®2—|—(VF )eq (N— NGeq)) (1 + O(e—c//(lnN)S/N))

NeZ9

= We recognize ©_ . q((VF e<1| V®2F[ ]) Q)



Sums and interferences - 3/3

s Including higher orders yields terms of the form

p ®RL; |y
S L (T ) o s v

= We justified step by step the heuristics of Bonnet, David, Eynard 00, Eynard '07



Summary : the (g + 1)-cuts regime | e e

» Oscillatory asymptotic expansion

ZN _ N’yN_|_,y/ (DN@_Neeq)((vF eq ‘ v@QF[ ])eq exp |: Z N~ mF —|‘ O( )i|

m>—2
®¢; prlmi] ®L;
where Dy =3 Y R [ T
p>0 Pt “ 0,>1 i=1 v
m1 ..... Mp>—2

acts as a differential operator on the Siegel theta function

0,.(W|Q) = Z oW (m+tp)+ 5 (m+4) Q- (m+p)

mez79

= Moving characteristics 1= —Neoq mod Z9

Quadratic form Q = —Hessianc—c,, [T (teqse)]



All order asymptotics for B-ensembles
in the multi-cut regime

1. Beta-ensembles and random matrices

2. Applications to orthogonal polynomials

3. Sketch of the proof of the main result

4. Conclusion



In progress

= A toy model for XXZ spin correlation functions (two-scale problem)

N
Zy = [ sinh[N% (N — Aj)]sinh[Noer (A — M) [[e™™ VO ay,

1<i<j<N i=1

Open problems

= Same questions for \; € Z ?

no Schwinger-Dyson equations ...

= Same questions for multi-matrix models ?

more complicated Schwinger-Dyson equations and convexity issues ...

» Universality from Schwinger-Dyson equations ¢



