Normal Matrix Model and Laplacian Growth

Arno Kuijlaars

Department of Mathematics
KU Leuven, Belgium

Co-authors: Pavel Bleher, Abey López-García and Alexander Tovbis

Recent Advances on Log-Gases
Paris, IHP, 21 March, 2014

Log gases

Log-gases

- Interacting particle system x_{1}, \ldots, x_{n} with energy

$$
E\left(x_{1}, \ldots, x_{n}\right)=-\frac{1}{n^{2}} \sum_{i \neq j} \log \left|x_{i}-x_{j}\right|+\frac{1}{n} \sum_{j=1}^{n} V\left(x_{j}\right)
$$

Log-gases have applications in

- Random matrix theory
- Orthogonal polynomials and approximation theory
- Equidistribution of points

Gibbs measure

$$
\frac{1}{Z_{n}} e^{-\frac{\beta}{2} n^{2} E\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \frac{1}{Z_{n}} \prod_{i<j}\left|x_{i}-x_{j}\right|^{\beta} \prod_{j=1}^{n} e^{-\frac{\beta}{2} n V\left(x_{j}\right)}
$$

- β ensembles in random matrix theory
- For $\beta=1,2,4$ these are eigenvalue distributions of random matrices from invariant ensembles

$$
e^{-\frac{\beta}{2} n \operatorname{Tr} V(M)} d M
$$

$\begin{cases}\beta=1: & \text { real symmetric matrices } \\ \beta=2: & \text { Hermitian matrices } \\ \beta=4: & \text { quaternionic self-dual matrices }\end{cases}$

Large n limit

- Log-energy

$$
E\left(x_{1}, \ldots, x_{n}\right)=-\frac{1}{n^{2}} \sum_{i \neq j} \log \left|x_{i}-x_{j}\right|+\frac{1}{n} \sum_{j=1}^{n} V\left(x_{j}\right)
$$

- Continuum limit $=$ log. energy in external field

$$
E(\mu)=\iint \log \frac{1}{|x-y|} d \mu(x) d \mu(y)+\int V(x) d \mu(x)
$$

Assume V is continuous and $\frac{V(x)}{\log |x|} \rightarrow+\infty$ as $|x| \rightarrow \infty$

Theorem (Frostman)

There is a unique probability measure μ_{V} with

$$
E(\mu v)=\min _{\mu} E(\mu)
$$

The measure is compactly supported and for some ℓ_{V}

$$
2 \int \log \frac{1}{|x-y|} d \mu_{V}(y)+V(x) \begin{cases}=\ell_{V} & \text { on support of } \mu_{V} \\ \geq \ell_{V} & \text { elsewhere }\end{cases}
$$

These conditions characterize μ_{V}.
μ_{V} is equilibrium measure in external field

Large deviation principle and a.s. convergence

Emperical measure for points x_{1}, \ldots, x_{n}

$$
\frac{1}{n} \sum_{j=1}^{n} \delta_{x_{j}}
$$

Theorem (Ben Arous-Guionnet)
Empirical measures satisfy a large deviation principle with speed n^{2} and good rate function

$$
E(\mu)-E\left(\mu_{V}\right)
$$

The empirical measures converge weakly to μ_{V} almost surely

$$
\frac{1}{n} \sum_{j=1}^{n} \delta_{x_{j}} \stackrel{*}{\rightarrow} \mu_{V} \quad \text { a.s. }
$$

Log gases in 2D

2D log-gases

Ginibre random matrix

- $n \times n$ matrix with independent complex Gaussian entries
- Joint p.d.f. for eigenvalues

$$
\frac{1}{Z_{n}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \prod_{j=1}^{n} e^{-\left|z_{j}\right|^{2}}, \quad z_{j} \in \mathbb{C}
$$

- Eigenvalues in the Ginibre ensemble (after scaling by \sqrt{n}) have a limiting distribution as $n \rightarrow \infty$ that is uniform in a disk.

Ginibre (1965)

Products of random matrices

Products of Ginibre matrices

$$
M=G_{k} \cdots G_{1}
$$

Theorem (Akemann-Burda (2012))
Eigenvalues of M have joint p.d.f.

$$
\frac{1}{Z_{n}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \prod_{j=1}^{n} w\left(\left|z_{j}\right|\right), \quad z_{j} \in \mathbb{C}
$$

where w is a Meijer G-function

$$
\begin{aligned}
w(r) & =G_{0, k}^{k, 0}\left(\left.\begin{array}{c}
- \\
0, \ldots, 0
\end{array} \right\rvert\, r^{2}\right) \\
& =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \Gamma(s)^{k} r^{-2 s} d s, \quad c>0
\end{aligned}
$$

Normal matrix model

- Probability measure on $n \times n$ complex matrices

$$
\frac{1}{Z_{n}} e^{-\frac{n}{t_{0}} \operatorname{Tr}\left(M M^{*}-V(M)-\bar{V}\left(M^{*}\right)\right)} d M, \quad t_{0}>0
$$

where

$$
V(M)=\sum_{k=1}^{\infty} \frac{t_{k}}{k} M^{k}
$$

- Model depends on parameters

$$
t_{0}>0, \quad t_{1}, t_{2}, \ldots
$$

- For $t_{1}=t_{2}=\cdots=0$ this is the Ginibre ensemble.
- Eigenvalues of M have joint p.d.f.

$$
\frac{1}{Z_{n}} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} \prod_{j=1}^{n} e^{-\frac{n}{t_{0}} \mathcal{V}\left(z_{j}\right)} \quad \mathcal{V}(z)=|z|^{2}-2 \operatorname{Re} V(z)
$$

- Logarithmic energy in external field

$$
\iint \log \frac{1}{|z-w|} d \mu(z) d \mu(w)+\frac{1}{t_{0}} \int\left(|z|^{2}-2 \operatorname{Re} V(z)\right) d \mu(z)
$$

- Minimizer is

$$
d \mu_{\mathcal{V}}(z)=\frac{1}{\pi t_{0}} 1_{z \in \Omega} d A(z)
$$

2D Lebesgue measure restricted to domain $\Omega=\Omega\left(t_{0}\right)$
with

$$
\operatorname{area}(\Omega)=\pi t_{0}
$$

Laplacian growth

- Ω is characterized by area $(\Omega)=\pi t_{0}$ and

$$
t_{k}=-\frac{1}{\pi} \iint_{\mathbb{C} \backslash \Omega} \frac{d A(z)}{z^{k}}, \quad k \geq 1
$$

- As a function of t_{0}, the boundary of Ω evolves according to the model of Laplacian growth

Wiegmann-Zabrodin (2000)
Teoderescu-Bettelheim-Agam-Zabrodin-Wiegmann (2005)

Cubic case

Cubic case

Cubic case

Cubic case

Cubic case

Orthogonal polynomials

- Average characteristic polynomial

$$
P_{n}(z)=\mathbb{E}\left[z I_{n}-M\right]
$$

is an orthogonal polynomial for scalar product

$$
\langle f, g\rangle=\iint_{\mathbb{C}} f(z) \overline{g(z)} e^{-\frac{n}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right)} d A(z)
$$

Orthogonal polynomials

- Average characteristic polynomial

$$
P_{n}(z)=\mathbb{E}\left[z I_{n}-M\right]
$$

is an orthogonal polynomial for scalar product

$$
\langle f, g\rangle=\iint_{\mathbb{C}} f(z) \overline{g(z)} e^{-\frac{n}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right)} d A(z)
$$

- The zeros of P_{n} do not fill out the domain Ω, but accumulate along a contour Σ.
- In the cubic case $\quad V(z)=\frac{1}{3} z^{3} \quad$ the contour is a three-star

$$
\Sigma=\left[0, z_{1}\right] \cup\left[0, \omega z_{1}\right] \cup\left[0, \omega^{2} z_{1}\right], \quad \omega=e^{2 \pi i / 3}
$$

Mathematical problem

- Normal matrix model

$$
\frac{1}{Z_{n}} e^{-\frac{n}{t_{0}} \operatorname{Tr}\left(M M^{*}-V(M)-\bar{V}\left(M^{*}\right)\right)} d M, \quad t_{0}>0
$$

is not well-defined if V is a polynomial of degree ≥ 3

- The integral defining the scalar product

$$
\iint_{\mathbb{C}} f(z) \overline{g(z)} e^{-\frac{n}{t_{0}}\left(|z|^{2}-2 \operatorname{Re} V(z)\right)} d A(z)
$$

does not converge if f and g are polynomials.

- Normal matrix model

$$
\frac{1}{Z_{n}} e^{-\frac{n}{t_{0}} \operatorname{Tr}\left(M M^{*}-V(M)-\bar{V}\left(M^{*}\right)\right)} d M, \quad t_{0}>0
$$

is not well-defined if V is a polynomial of degree ≥ 3

- The integral defining the scalar product

$$
\iint_{\mathbb{C}} f(z) \overline{g(z)} e^{-\frac{n}{t_{0}}\left(|z|^{2}-2 \operatorname{Re} V(z)\right)} d A(z)
$$

does not converge if f and g are polynomials.

- No convergence problem for

$$
V(x)=-\log |z-a|
$$

Balogh, Bertola, Lee, McLaughlin (arXiv 2012)

Cut-off approach

- Elbau and Felder (2005) use a cut-off domain. They restrict to matrices with eigenvalues in some bounded domain D.
- Then probability measure on eigenvalues is a log-gas on D.

$$
\frac{1}{Z_{n}} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} \prod_{j=1}^{n} e^{-\frac{n}{t_{0}} \mathcal{V}\left(z_{j}\right)}, \quad z_{j} \in D
$$

Cut-off approach

- Elbau and Felder (2005) use a cut-off domain. They restrict to matrices with eigenvalues in some bounded domain D.
- Then probability measure on eigenvalues is a log-gas on D.

$$
\frac{1}{Z_{n}} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} \prod_{j=1}^{n} e^{-\frac{n}{t_{0}} \mathcal{V}\left(z_{j}\right)}, \quad z_{j} \in D
$$

- Eigenvalues fill out a domain Ω that evolves according to Laplacian growth if t_{0} is small enough.

Different approach

Different approach

- Scalar product

$$
\langle f, g\rangle=\iint_{\mathbb{C}} f(z) \overline{g(z)} e^{-\frac{n}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right)} d A(z)
$$

satisfies (due to Green's theorem)

$$
n\langle z f, g\rangle=t_{0}\left\langle f, g^{\prime}\right\rangle+n\left\langle f, V^{\prime} g\right\rangle
$$

- Scalar product

$$
\langle f, g\rangle=\iint_{\mathbb{C}} f(z) \overline{g(z)} e^{-\frac{n}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right)} d A(z)
$$

satisfies (due to Green's theorem)

$$
n\langle z f, g\rangle=t_{0}\left\langle f, g^{\prime}\right\rangle+n\left\langle f, V^{\prime} g\right\rangle
$$

- We look for other scalar product satisfying this structure relation, and also the Hermitian form condition

$$
\langle g, f\rangle=\overline{\langle f, g\rangle} .
$$

Theorem (Bleher-Kuijlaars, Bertola (2003))

If $\operatorname{deg} V=r+1$ then the space of Hermitian forms satisfying

$$
n\langle z f, g\rangle=t_{0}\left\langle f, g^{\prime}\right\rangle+n\left\langle f, V^{\prime} g\right\rangle
$$

is r^{2} dimensional.
Any such Hermitian form is of the form

$$
\sum_{j, k=0}^{r} C_{j, k} \int_{\Gamma_{j}} d z \int_{\bar{\Gamma}_{k}} d w f(z) \bar{g}(w) e^{-\frac{n}{t_{0}}(z w-V(z)-\bar{V}(w))}
$$

where $\left(C_{j, k}\right)_{j, k=0, \ldots r}$ is a Hermitian matrix with zero row and column sums, and $\Gamma_{0}, \ldots, \Gamma_{r}$ are unbounded contours along which the integrals converge.

Contours Γ_{j} for cubic potential

- Contours $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$ for $V(z)=\frac{1}{3} z^{3}$ with $t_{3}>0$.

$$
\sum_{j, k=0}^{r} C_{j, k} \int_{\Gamma_{j}} d z \int_{\bar{\Gamma}_{k}} d w f(z) \bar{g}(w) e^{-\frac{n}{t_{0}}}(z w-V(z)-\bar{V}(w))
$$

- Problem: Analyze the OPs for this Hermitian form and prove that
* Zeros accumulate on Σ with limiting measure μ^{*}.
* Domain Ω exists such that

$$
\frac{1}{\pi t_{0}} \iint_{\Omega} \log |z-x| d A(x)=\int_{\Sigma} \log |z-s| d \mu^{*}(s), \quad z \in \mathbb{C} \backslash \Omega
$$

and $\partial \Omega$ evolves according to Laplacian growth.

Cubic model $V(z)=\frac{1}{3} z^{3}$

Theorem (Bleher-Kuijlaars)

In cubic model, there is a choice for the Hermitian form, such that for

$$
0<t_{0}<t_{0, c r i t}=\frac{1}{8}
$$

the following hold.
(a) The orthogonal polynomial P_{n} exists for n large.
(b) The zeros of P_{n} accumulate on

$$
\Sigma=\bigcup_{j=0}^{2}\left[0, \omega^{j} z_{1}\right], \quad z_{1}=\frac{3}{4}\left(1-\sqrt{1-8 t_{0}}\right)^{2 / 3}
$$

with a limiting density μ^{*}

Laplacian growth

Theorem (continued)
(c) The equation

$$
z^{2}+t_{0} \int \frac{d \mu^{*}(s)}{z-s}=\bar{z}
$$

defines a simple closed curve $\partial \Omega$ that is the boundary of a domain Ω that evolves according to Laplacian growth.
(d) In addition

$$
\frac{1}{\pi t_{0}} \iint_{\Omega} \log |z-x| d A(x)=\int_{\Sigma} \log |z-s| d \mu^{*}(s), \quad z \in \mathbb{C} \backslash \Omega
$$

(e) μ^{*} is minimizer for a vector equilibrium problem.

Extension to $V(z)=\frac{z^{d}}{d}$ with $d \geq 3$, Kuijlaars-López Gárcia (arxiv 2014)

Supercritical regime

- The function

$$
\xi(z)=z^{2}+t_{0} \int \frac{d \mu^{*}(s)}{z-s}
$$

is the Schwarz function for Ω.

- It satisfies an algebraic equation (spectral curve)

$$
\xi^{3}-z^{2} \xi^{2}-\left(1+t_{0}\right) z \xi+z^{3}+A=0
$$

with

$$
A=\frac{1}{32}\left(1+20 t_{0}-8 t_{0}^{2}-\left(1-8 t_{0}\right)^{3 / 2}\right)
$$

- What happens for $t_{0}>t_{0, \text { crit }}=\frac{1}{8}$?
- For $t_{0}<t_{0, \text { crit }}$ the number $A=A\left(t_{0}\right)$ is chosen such that

$$
\xi^{3}-z^{2} \xi^{2}-\left(1+t_{0}\right) z \xi+z^{3}+A=0
$$

defines a Riemann surface of genus zero

- For $t_{0}>t_{0, \text { crit }}$ we choose it such that

$$
\oint_{\gamma} \xi d z \quad \text { is purely imaginary }
$$

for all cycles γ on the Riemann surface.

- This is Boutroux condition.

Polynomials in supercritical regime

Theorem (Kuijlaars-Tovbis)

For $t_{0, \text { crit }}<t_{0}<\widehat{t}_{0, \text { crit }}$ we can find $A=A\left(t_{0}\right)>0$ such that the Boutroux condition is satisfied. The OPs P_{n} exist for infinitely many n, and their zeros accumulate with limiting measure μ^{*} on

$$
\Sigma=\bigcup_{j=0}^{2}\left(\left[0, \omega^{j} z_{1}\right] \cup\left[\omega^{j} z_{1}, \omega^{j} z_{2}\right] \cup\left[\omega^{j} z_{1}, \omega^{j} z_{3}\right]\right)
$$

- There is a domain with boundary

$$
\partial \Omega\left(t_{0}\right): \quad \xi(z)=\bar{z}
$$

- Domain shrinks as t_{0} increases, and completely disappears at the second critical value.

Thank you for your attention.

