Normal Matrix Model and Laplacian Growth

Arno Kuijlaars

Department of Mathematics KU Leuven, Belgium

Co-authors: Pavel Bleher, Abey López-García and Alexander Tovbis

Recent Advances on Log-Gases Paris, IHP, 21 March, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Log gases

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Interacting particle system x_1, \ldots, x_n with energy

$$E(x_1,...,x_n) = -\frac{1}{n^2} \sum_{i \neq j} \log |x_i - x_j| + \frac{1}{n} \sum_{j=1}^n V(x_j)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Log-gases have applications in

- Random matrix theory
- Orthogonal polynomials and approximation theory
- Equidistribution of points

Gibbs measure

$$\frac{1}{Z_n} e^{-\frac{\beta}{2}n^2 E(x_1, x_2, \dots, x_n)} \frac{1}{Z_n} \prod_{i < j} |x_i - x_j|^{\beta} \prod_{j=1}^n e^{-\frac{\beta}{2}nV(x_j)}$$

- β ensembles in random matrix theory
- For $\beta = 1, 2, 4$ these are eigenvalue distributions of random matrices from invariant ensembles

$$e^{-\frac{\beta}{2}n\operatorname{Tr}V(M)}dM$$

・ロト・日本・モート モー うへぐ

 $\begin{cases} \beta = 1: & \text{real symmetric matrices} \\ \beta = 2: & \text{Hermitian matrices} \\ \beta = 4: & \text{quaternionic self-dual matrices} \end{cases}$

Log-energy

$$E(x_1,...,x_n) = -\frac{1}{n^2} \sum_{i \neq j} \log |x_i - x_j| + \frac{1}{n} \sum_{j=1}^n V(x_j)$$

• Continuum limit = log. energy in external field

$$E(\mu) = \iint \log rac{1}{|x-y|} d\mu(x) d\mu(y) + \int V(x) d\mu(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Equilibrium measure in external field

Assume
$$V$$
 is continuous and $\displaystyle rac{V(x)}{\log |x|}
ightarrow +\infty$ as $|x|
ightarrow \infty$

Theorem (Frostman)

There is a unique probability measure μ_V with

$$E(\mu_V) = \min_{\mu} E(\mu)$$

The measure is compactly supported and for some ℓ_V

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

These conditions characterize μ_V .

μ_V is equilibrium measure in external field

Large deviation principle and a.s. convergence

Emperical measure for points x_1, \ldots, x_n

$$\frac{1}{n}\sum_{j=1}^{n}\delta_{x_j}$$

Theorem (Ben Arous–Guionnet)

Empirical measures satisfy a large deviation principle with speed n^2 and good rate function

$$E(\mu) - E(\mu_V)$$

The empirical measures converge weakly to μ_V almost surely

$$\frac{1}{n}\sum_{j=1}^n \delta_{x_j} \stackrel{*}{\to} \mu_V \qquad \text{a.s.}$$

Log gases in 2D

Ginibre random matrix

- $n \times n$ matrix with independent complex Gaussian entries
- Joint p.d.f. for eigenvalues

$$\frac{1}{Z_n}\prod_{i< j}|z_i-z_j|^2\prod_{j=1}^n e^{-|z_j|^2}, \qquad z_j\in\mathbb{C}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Circular law

• Eigenvalues in the Ginibre ensemble (after scaling by \sqrt{n}) have a limiting distribution as $n \to \infty$ that is uniform in a disk.

Ginibre (1965)

Products of Ginibre matrices

$$M = G_k \cdots G_1$$

Theorem (Akemann-Burda (2012))

Eigenvalues of M have joint p.d.f.

$$rac{1}{Z_n}\prod_{i< j}|z_i-z_j|^2\prod_{j=1}^n w(|z_j|), \qquad z_j\in \mathbb{C}$$

where *w* is a Meijer G-function

$$w(r) = G_{0,k}^{k,0} \begin{pmatrix} - \\ 0, \dots, 0 \end{pmatrix} r^2$$
$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s)^k r^{-2s} ds, \quad c > 0$$

SAC

э

ヘロト 人間 とくほと くほど

Normal matrix model

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

Normal matrix model

• Probability measure on *n* × *n* complex matrices

$$\frac{1}{Z_n}e^{-\frac{n}{t_0}\operatorname{Tr}(MM^*-V(M)-\overline{V}(M^*))}dM, \qquad t_0>0,$$

where

$$V(M) = \sum_{k=1}^{\infty} \frac{t_k}{k} M^k.$$

Model depends on parameters

$$t_0>0, \qquad t_1,t_2,\ldots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• For $t_1 = t_2 = \cdots = 0$ this is the Ginibre ensemble.

• Eigenvalues of *M* have joint p.d.f.

$$\frac{1}{Z_n} \prod_{j < k} |z_j - z_k|^2 \prod_{j=1}^n e^{-\frac{n}{t_0} \mathcal{V}(z_j)} \qquad \mathcal{V}(z) = |z|^2 - 2 \operatorname{Re} V(z)$$

• Logarithmic energy in external field

$$\iint \log \frac{1}{|z-w|} d\mu(z) d\mu(w) + \frac{1}{t_0} \int \left(|z|^2 - 2\operatorname{Re} V(z) \right) d\mu(z)$$

• Minimizer is

$$d\mu_{\mathcal{V}}(z) = rac{1}{\pi t_0} \, \mathbb{1}_{z \in \Omega} \, dA(z)$$

2D Lebesgue measure restricted to domain $\Omega = \Omega(t_0)$ with

$$\operatorname{area}(\Omega) = \pi t_0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Laplacian growth

• Ω is characterized by area $(\Omega) = \pi t_0$ and

$$t_k = -rac{1}{\pi} \iint_{\mathbb{C}\setminus\Omega} rac{dA(z)}{z^k}, \qquad k \geq 1,$$

• As a function of t_0 , the boundary of Ω evolves according to the model of Laplacian growth

Wiegmann-Zabrodin (2000) Teoderescu-Bettelheim-Agam-Zabrodin-Wiegmann (2005)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ - めんぐ

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ - めんぐ

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ - めんぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Orthogonal polynomials

• Average characteristic polynomial

$$P_n(z) = \mathbb{E}\left[zI_n - M\right]$$

is an orthogonal polynomial for scalar product

$$\langle f,g\rangle = \iint_{\mathbb{C}} f(z)\overline{g(z)}e^{-\frac{n}{t_0}(|z|^2 - V(z) - \overline{V(z)})} dA(z)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Average characteristic polynomial

$$P_n(z) = \mathbb{E}\left[zI_n - M\right]$$

is an orthogonal polynomial for scalar product

$$\langle f,g\rangle = \iint_{\mathbb{C}} f(z)\overline{g(z)}e^{-\frac{n}{t_0}(|z|^2 - V(z) - \overline{V(z)})} dA(z)$$

- The zeros of P_n do not fill out the domain Ω , but accumulate along a contour Σ .
- In the cubic case $V(z) = \frac{1}{3}z^3$ the contour is a three-star

$$\Sigma = [0, z_1] \cup [0, \omega z_1] \cup [0, \omega^2 z_1], \qquad \omega = e^{2\pi i/3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mathematical problem

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

Mathematical problem

Normal matrix model

$$\frac{1}{Z_n}e^{-\frac{n}{t_0}\operatorname{Tr}(MM^*-V(M)-\overline{V}(M^*))}dM, \qquad t_0>0,$$

is not well-defined if V is a polynomial of degree ≥ 3

• The integral defining the scalar product

$$\iint_{\mathbb{C}} f(z)\overline{g(z)}e^{-\frac{n}{t_0}(|z|^2-2\operatorname{Re} V(z))}dA(z)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

does not converge if f and g are polynomials.

Mathematical problem

Normal matrix model

$$\frac{1}{Z_n}e^{-\frac{n}{t_0}\operatorname{Tr}(MM^*-V(M)-\overline{V}(M^*))}dM, \qquad t_0>0,$$

is not well-defined if V is a polynomial of degree ≥ 3

• The integral defining the scalar product

$$\iint_{\mathbb{C}} f(z)\overline{g(z)}e^{-\frac{n}{t_0}(|z|^2-2\operatorname{Re} V(z))}dA(z)$$

does not converge if f and g are polynomials.

No convergence problem for

$$V(x) = -\log|z-a|$$

Balogh, Bertola, Lee, McLaughlin (arXiv 2012)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Cut-off approach

- Elbau and Felder (2005) use a cut-off domain. They restrict to matrices with eigenvalues in some bounded domain *D*.
- Then probability measure on eigenvalues is a log-gas on *D*.

$$\frac{1}{Z_n}\prod_{j< k}|z_j-z_k|^2\prod_{j=1}^n e^{-\frac{n}{t_0}\mathcal{V}(z_j)}, \qquad z_j\in D$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cut-off approach

- Elbau and Felder (2005) use a cut-off domain. They restrict to matrices with eigenvalues in some bounded domain *D*.
- Then probability measure on eigenvalues is a log-gas on *D*.

$$\frac{1}{Z_n}\prod_{j< k}|z_j-z_k|^2\prod_{j=1}^n e^{-\frac{n}{t_0}\mathcal{V}(z_j)}, \qquad z_j\in D$$

• Eigenvalues fill out a domain Ω that evolves according to Laplacian growth if t_0 is small enough.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Different approach

Different approach

• Scalar product

$$\langle f,g\rangle = \iint_{\mathbb{C}} f(z)\overline{g(z)}e^{-\frac{n}{t_0}(|z|^2 - V(z) - \overline{V(z)})} dA(z)$$

satisfies (due to Green's theorem)

$$n\langle zf,g\rangle = t_0\langle f,g'
angle + n\langle f,V'g
angle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Scalar product

$$\langle f,g\rangle = \iint_{\mathbb{C}} f(z)\overline{g(z)}e^{-\frac{n}{t_0}(|z|^2 - V(z) - \overline{V(z)})} dA(z)$$

satisfies (due to Green's theorem)

$$n\langle zf,g\rangle = t_0\langle f,g'\rangle + n\langle f,V'g\rangle$$

• We look for other scalar product satisfying this structure relation, and also the Hermitian form condition

$$\langle g, f \rangle = \overline{\langle f, g \rangle}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Bleher-Kuijlaars, Bertola (2003))

If deg V = r + 1 then the space of Hermitian forms satisfying

$$n\langle zf,g\rangle = t_0\langle f,g'\rangle + n\langle f,V'g\rangle$$

is r^2 dimensional. Any such Hermitian form is of the form

$$\sum_{j,k=0}^{r} C_{j,k} \int_{\Gamma_{j}} dz \int_{\overline{\Gamma}_{k}} dw f(z)\overline{g}(w) e^{-\frac{n}{t_{0}}(zw-V(z)-\overline{V}(w))}$$

where $(C_{j,k})_{j,k=0,...r}$ is a Hermitian matrix with zero row and column sums, and $\Gamma_0, \ldots, \Gamma_r$ are unbounded contours along which the integrals converge.

Contours Γ_i for cubic potential

• Contours Γ_0 , Γ_1 , Γ_2 for $V(z) = \frac{1}{3}z^3$ with $t_3 > 0$.

$$\sum_{j,k=0}^{r} C_{j,k} \int_{\Gamma_{j}} dz \int_{\overline{\Gamma}_{k}} dw f(z)\overline{g}(w) e^{-\frac{n}{t_{0}}(zw-V(z)-\overline{V}(w))}$$

- Problem: Analyze the OPs for this Hermitian form and prove that
- * Zeros accumulate on Σ with limiting measure μ^* .
- * Domain Ω exists such that

$$rac{1}{\pi t_0} \iint_\Omega \log |z\!-\!x| d A(x) = \int_\Sigma \log |z\!-\!s| d \mu^*(s), \qquad z \in \mathbb{C} ackslash \Omega$$

and $\partial \Omega$ evolves according to Laplacian growth.

Theorem (Bleher-Kuijlaars)

In cubic model, there is a choice for the Hermitian form, such that for

$$0 < t_0 < t_{0,crit} = rac{1}{8}$$

the following hold.

(a) The orthogonal polynomial P_n exists for n large.
(b) The zeros of P_n accumulate on

$$\Sigma = \bigcup_{j=0}^{2} [0, \omega^{j} z_{1}], \quad z_{1} = \frac{3}{4} \left(1 - \sqrt{1 - 8t_{0}}\right)^{2/3}$$

with a limiting density μ^*

Theorem (continued)

(c) The equation

$$z^2 + t_0 \int \frac{d\mu^*(s)}{z-s} = \overline{z}$$

defines a simple closed curve $\partial\Omega$ that is the boundary of a domain Ω that evolves according to Laplacian growth. (d) In addition

$$\frac{1}{\pi t_0} \iint_{\Omega} \log |z - x| dA(x) = \int_{\Sigma} \log |z - s| d\mu^*(s), \qquad z \in \mathbb{C} \setminus \Omega$$

(e) μ^* is minimizer for a vector equilibrium problem.

Extension to $V(z) = \frac{z^d}{d}$ with $d \ge 3$, Kuijlaars-López Gárcia (arxiv 2014)

Supercritical regime

Schwarz function in cubic model

• The function

$$\xi(z) = z^2 + t_0 \int \frac{d\mu^*(s)}{z-s}$$

is the Schwarz function for Ω .

• It satisfies an algebraic equation (spectral curve)

$$\xi^3 - z^2 \xi^2 - (1 + t_0) z \xi + z^3 + A = 0$$

with

$$A = \frac{1}{32}(1 + 20t_0 - 8t_0^2 - (1 - 8t_0)^{3/2})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Boutroux condition

• What happens for $t_0 > t_{0,crit} = \frac{1}{8}$?

• For $t_0 < t_{0,crit}$ the number $A = A(t_0)$ is chosen such that

$$\xi^3 - z^2 \xi^2 - (1 + t_0) z \xi + z^3 + A = 0$$

defines a Riemann surface of genus zero

• For $t_0 > t_{0,crit}$ we choose it such that

$$\oint_{\gamma} \xi dz$$
 is purely imaginary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all cycles γ on the Riemann surface.

• This is **Boutroux condition**.

Theorem (Kuijlaars-Tovbis)

For $t_{0,crit} < t_0 < \hat{t}_{0,crit}$ we can find $A = A(t_0) > 0$ such that the Boutroux condition is satisfied. The OPs P_n exist for infinitely many n, and their zeros accumulate with limiting measure μ^* on

$$\Sigma = \bigcup_{j=0}^{2} \left([0, \omega^{j} z_{1}] \cup [\omega^{j} z_{1}, \omega^{j} z_{2}] \cup [\omega^{j} z_{1}, \omega^{j} z_{3}] \right)$$

Domain Ω

• There is a domain with boundary

 $\partial \Omega(t_0)$: $\xi(z) = \overline{z}$

• Domain shrinks as t_0 increases, and completely disappears at the second critical value.

Thank you for your attention.