Energy approach to Coulomb and log gases

Sylvia SERFATY

Université P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions \& Courant Institute, New York University

IHP, 21 mars 2014

The classical Coulomb gas

$$
\begin{gathered}
H_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \neq j} w\left(x_{i}-x_{j}\right)+n \sum_{i=1}^{n} V\left(x_{i}\right) \quad x_{i} \in \mathbb{R}^{d} \\
w(x)=\frac{1}{|x|^{d-2}} \quad \text { if } d \geq 3 \quad=-\log |x| \quad \text { if } d=2 \\
-\Delta w=c_{d} \delta_{0}
\end{gathered}
$$

V confining potential, sufficiently smooth and growing at infinity Can be considered for $d=1$ and $-\log$, then "log gas" With temperature: Gibbs measure

$Z_{n, \beta}$ partition function

The classical Coulomb gas

$$
\begin{gathered}
H_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \neq j} w\left(x_{i}-x_{j}\right)+n \sum_{i=1}^{n} V\left(x_{i}\right) \quad x_{i} \in \mathbb{R}^{d} \\
w(x)=\frac{1}{|x|^{d-2}} \text { if } d \geq 3 \quad=-\log |x| \quad \text { if } d=2 \\
-\Delta w=c_{d} \delta_{0}
\end{gathered}
$$

V confining potential, sufficiently smooth and growing at infinity
Can be considered for $d=1$ and $-\log$, then "log gas"

With temperature: Gibbs measure

$Z_{n, \beta}$ partition function
Limit $n \rightarrow \infty$?

The classical Coulomb gas

$$
\begin{gathered}
H_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \neq j} w\left(x_{i}-x_{j}\right)+n \sum_{i=1}^{n} V\left(x_{i}\right) \quad x_{i} \in \mathbb{R}^{d} \\
w(x)=\frac{1}{|x|^{d-2}} \text { if } d \geq 3 \quad=-\log |x| \quad \text { if } d=2 \\
-\Delta w=c_{d} \delta_{0}
\end{gathered}
$$

V confining potential, sufficiently smooth and growing at infinity
Can be considered for $d=1$ and - log, then "log gas"
With temperature: Gibbs measure

$$
d \mathbb{P}_{n, \beta}\left(x_{1}, \cdots, x_{n}\right)=\frac{1}{Z_{n, \beta}} e^{-\frac{\beta}{2} H_{n}\left(x_{1}, \ldots, x_{n}\right)} d x_{1} \ldots d x_{n} \quad x_{i} \in \mathbb{R}^{d}
$$

$Z_{n, \beta}$ partition function
Limit $n \rightarrow \infty$?

Motivations

- statistical mechanics
$d=1$ Coulomb kernel: completely solvable Lenard, Aizenman-Martin, Brascamp-Lieb $d=1 \log$ gas or $d \geq 2$ Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76,
Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat '93, Kiessling
'93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13
- connection to random matrices (first noticed by Wigner, Dyson),

Valko-Virag, Bourgade-Erdös-Yau

- weighted Fekete points, Fekete points on spheres

Rakhmanov-Saff-Zhou

- Riesz s-energy

cf. Smale's 7th problem originating in computational complexity theory

Motivations

- statistical mechanics
$d=1$ Coulomb kernel: completely solvable Lenard, Aizenman-Martin, Brascamp-Lieb $d=1 \log$ gas or $d \geq 2$ Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13
- connection to random matrices (first noticed by Wigner, Dyson), Valko-Virag, Bourgade-Erdös-Yau.
- weighted Fekete points, Fekete points on spheres Rakhmanov-Saff-Zhou

- Riesz s-energy

cf. Smale's 7th problem originating in computational complexity
theory

Motivations

- statistical mechanics
$d=1$ Coulomb kernel: completely solvable Lenard, Aizenman-Martin, Brascamp-Lieb $d=1 \log$ gas or $d \geq 2$ Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13
- connection to random matrices (first noticed by Wigner, Dyson), Valko-Virag, Bourgade-Erdös-Yau...
- weighted Fekete points, Fekete points on spheres Rakhmanov-Saff-Zhou

- Riesz s-energy

cf. Smale's 7th problem originating in computational complexity theory

Motivations

- statistical mechanics
$d=1$ Coulomb kernel: completely solvable Lenard,
Aizenman-Martin, Brascamp-Lieb $d=1$ log gas or $d \geq 2$ Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13
- connection to random matrices (first noticed by Wigner, Dyson), Valko-Virag, Bourgade-Erdös-Yau...
- weighted Fekete points, Fekete points on spheres

Rakhmanov-Saff-Zhou

$$
\min _{x_{1}, \ldots, x_{n} \in \mathbb{S}^{d}}-\sum_{i \neq j} \log \left|x_{i}-x_{j}\right|
$$

- Riesz s-energy

$$
\min _{x_{1} \ldots x_{n} \in \mathbb{S}^{d}} \sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|^{s}}
$$

cf. Smale's 7th problem originating in computational complexity theory

The mean field limit

- For $\left(x_{1}, \ldots, x_{n}\right)$ minimizing H_{n}, one can prove

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \delta_{x_{i}}}{n}=\mu_{0} \quad \lim _{n \rightarrow \infty} \frac{\min H_{n}}{n^{2}}=\mathcal{E}\left(\mu_{0}\right)
$$

where μ_{0} is the unique minimizer of

$$
\mathcal{E}(\mu)=\int_{\mathbb{R}^{\boldsymbol{d}} \times \mathbb{R}^{\boldsymbol{d}}} w(x-y) d \mu(x) d \mu(y)+\int_{\mathbb{R}^{\boldsymbol{d}}} V(x) d \mu(x)
$$

among probability measures.
\mathcal{E} has a unique minimizer μ_{0} among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- Denote $\Sigma=\operatorname{Supp}\left(\mu_{0}\right)$. We assume Σ is compact with C^{1} boundary and μ_{0} has a density bounded above and below on Σ with is C^{1} in Σ.
- Example: $V(x)=|x|^{2}$, then $\mu_{0}=\frac{1}{c_{d}} \mathbb{1}_{B_{1}}$ (circle law).
- With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, for $d=2$)

The mean field limit

- For $\left(x_{1}, \ldots, x_{n}\right)$ minimizing H_{n}, one can prove

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \delta_{x_{i}}}{n}=\mu_{0} \quad \lim _{n \rightarrow \infty} \frac{\min H_{n}}{n^{2}}=\mathcal{E}\left(\mu_{0}\right)
$$

where μ_{0} is the unique minimizer of

$$
\mathcal{E}(\mu)=\int_{\mathbb{R}^{\boldsymbol{d}} \times \mathbb{R}^{\boldsymbol{d}}} w(x-y) d \mu(x) d \mu(y)+\int_{\mathbb{R}^{\boldsymbol{d}}} V(x) d \mu(x)
$$

among probability measures.
\mathcal{E} has a unique minimizer μ_{0} among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- Denote $\Sigma=\operatorname{Supp}\left(\mu_{0}\right)$. We assume Σ is compact with C^{1} boundary and μ_{0} has a density bounded above and below on Σ with is C^{1} in Σ.
- With temperature, a corresponding LDP can be proven (Petz-Hiai Ben Arous-Zeitouni, for $d=2$)

The mean field limit

- For $\left(x_{1}, \ldots, x_{n}\right)$ minimizing H_{n}, one can prove

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \delta_{x_{i}}}{n}=\mu_{0} \quad \lim _{n \rightarrow \infty} \frac{\min H_{n}}{n^{2}}=\mathcal{E}\left(\mu_{0}\right)
$$

where μ_{0} is the unique minimizer of

$$
\mathcal{E}(\mu)=\int_{\mathbb{R}^{\boldsymbol{d}} \times \mathbb{R}^{\boldsymbol{d}}} w(x-y) d \mu(x) d \mu(y)+\int_{\mathbb{R}^{\boldsymbol{d}}} V(x) d \mu(x)
$$

among probability measures.
\mathcal{E} has a unique minimizer μ_{0} among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- Denote $\Sigma=\operatorname{Supp}\left(\mu_{0}\right)$. We assume Σ is compact with C^{1} boundary and μ_{0} has a density bounded above and below on Σ with is C^{1} in Σ.
- Example: $V(x)=|x|^{2}$, then $\mu_{0}=\frac{1}{c_{d}} \mathbb{1}_{B_{1}}$ (circle law).
- With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, for $d=2$)

The mean field limit

- For $\left(x_{1}, \ldots, x_{n}\right)$ minimizing H_{n}, one can prove

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \delta_{x_{i}}}{n}=\mu_{0} \quad \lim _{n \rightarrow \infty} \frac{\min H_{n}}{n^{2}}=\mathcal{E}\left(\mu_{0}\right)
$$

where μ_{0} is the unique minimizer of

$$
\mathcal{E}(\mu)=\int_{\mathbb{R}^{\boldsymbol{d}} \times \mathbb{R}^{\boldsymbol{d}}} w(x-y) d \mu(x) d \mu(y)+\int_{\mathbb{R}^{\boldsymbol{d}}} V(x) d \mu(x)
$$

among probability measures.
\mathcal{E} has a unique minimizer μ_{0} among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- Denote $\Sigma=\operatorname{Supp}\left(\mu_{0}\right)$. We assume Σ is compact with C^{1} boundary and μ_{0} has a density bounded above and below on Σ with is C^{1} in Σ.
- Example: $V(x)=|x|^{2}$, then $\mu_{0}=\frac{1}{c_{d}} \mathbb{1}_{B_{1}}$ (circle law).
- With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, for $d=2$)

The mean field limit

- For $\left(x_{1}, \ldots, x_{n}\right)$ minimizing H_{n}, one can prove

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \delta_{x_{i}}}{n}=\mu_{0} \quad \lim _{n \rightarrow \infty} \frac{\min H_{n}}{n^{2}}=\mathcal{E}\left(\mu_{0}\right)
$$

where μ_{0} is the unique minimizer of

$$
\mathcal{E}(\mu)=\int_{\mathbb{R}^{\boldsymbol{d}} \times \mathbb{R}^{\boldsymbol{d}}} w(x-y) d \mu(x) d \mu(y)+\int_{\mathbb{R}^{\boldsymbol{d}}} V(x) d \mu(x)
$$

among probability measures.
\mathcal{E} has a unique minimizer μ_{0} among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- Denote $\Sigma=\operatorname{Supp}\left(\mu_{0}\right)$. We assume Σ is compact with C^{1} boundary and μ_{0} has a density bounded above and below on Σ with is C^{1} in Σ.
- Example: $V(x)=|x|^{2}$, then $\mu_{0}=\frac{1}{c_{d}} \mathbb{1}_{B_{1}}$ (circle law).
- With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, for $d=2$)
- Expanding $\sum_{i=1}^{n} \delta_{x_{i}}$ as $n \mu_{0}+\left(\sum_{i=1}^{n} \delta_{x_{i}}-n \mu_{0}\right)$ and inserting into H_{n} we are able to look into next order terms.

Approach

- In Sandier-S, we developed an essentially 2D approach to the problem, inspired from our work on the Ginzburg-Landau functional of superconductivity. Relies on "ball construction methods", introduced by Jerrard, Sandier in the context of GL. Works for - log in $d=1,2$.
- In Rougerie-S we developed an approach valid for any $d \geq 2$, based instead on Onsager's lemma (smearing out the charges). (Previous related work Rougerie-S-Yngvason)

Next order expansion of $\min H_{n}$ and $Z_{n, \beta}$

Theorem (ground state energy, Rougerie-S $d \geq 2$, Sandier-S $d=1,2$)

Under suitable assumptions on V, as $n \rightarrow \infty$ we have
$\min H_{n}=$

$$
\left\{\begin{array}{l}
n^{2} \mathcal{E}\left(\mu_{0}\right)+n^{2-2 / d}\left(\frac{\alpha_{d}}{c_{d}} \int \mu_{0}^{2-2 / d}(x) d x+o(1)\right) \quad \text { if } d \geq 3 \\
n^{2} \mathcal{E}\left(\mu_{0}\right)-\frac{n}{2} \log n+n\left(\frac{\alpha_{2}}{2 \pi}-\frac{1}{2} \int \mu_{0}(x) \log \mu_{0}(x) d x+o(1)\right) \quad \text { if } d= \\
n^{2} \mathcal{E}\left(\mu_{0}\right)-n \log n+n\left(\frac{\alpha_{1}}{2 \pi}-\int \mu_{0}(x) \log \mu_{0}(x) d x+o(1)\right) \quad \text { if } d=1
\end{array}\right.
$$

where $\alpha_{d}=\min \mathcal{W}$ depends only on d (see later).

Theorem (ctd, free energy expansion)
Assume there exists $\beta_{1}>0$ such that
$\left\{\begin{array}{l}\int e^{-\beta_{1} V(x) / 2} d x<\infty \text { when } d \geq 3 \\ \int e^{-\beta_{\mathbf{1}}\left(\frac{v(x)}{2}-\log |x|\right)} d x<\infty \text { when } d=2 .\end{array}\right.$
Let

$$
F_{n, \beta}=-\frac{2}{\beta} \log Z_{n, \beta} \quad \text { free energy. }
$$

if $d \geq 3$ and $\beta \geq c n^{2 / d-1}$ or $d=2$ and $\beta \geq c(\log n)^{-1}$

$$
\left|F_{n, \beta}-\min H_{n}\right| \leq o\left(n^{2-2 / d}\right)+C \frac{n}{\beta} .
$$

Theorem (ctd, free energy expansion)
Assume there exists $\beta_{1}>0$ such that
$\left\{\begin{array}{l}\int e^{-\beta_{1} V(x) / 2} d x<\infty \text { when } d \geq 3 \\ \int e^{-\beta_{\mathbf{1}}\left(\frac{v(x)}{2}-\log |x|\right)} d x<\infty \text { when } d=2 .\end{array}\right.$
Let

$$
F_{n, \beta}=-\frac{2}{\beta} \log Z_{n, \beta} \quad \text { free energy. }
$$

if $d \geq 3$ and $\beta \geq c n^{2 / d-1}$ or $d=2$ and $\beta \geq c(\log n)^{-1}$

$$
\left|F_{n, \beta}-\min H_{n}\right| \leq o\left(n^{2-2 / d}\right)+C \frac{n}{\beta} .
$$

\rightsquigarrow transition regime $\beta \propto n^{2 / d-1}$

Blow-up procedure and jellium

After blow up the points should interact according to a Coulomb interaction, but screened by a fixed background charge: jellium

Some notation

- Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_{i}}-n \mu_{0}$, and blow up.
- Set $\mu_{0}^{\prime}\left(x^{\prime}\right)=\mu_{0}\left(x^{\prime} n^{-1 / d}\right)$, blown-up background density and for x_{1}, \ldots, x_{n}, set $x_{i}^{\prime}=n^{1 / d} x_{i}$ and

$$
h_{n}\left(x^{\prime}\right)=-c_{d} \Delta^{-1}\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}\right)=w *\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}\right)
$$

- For any $x, \eta>0$, let $\delta_{x}^{(\eta)}=\frac{1}{|B(0, \eta)|} \mathbb{1}_{B(x, \eta)}$, "smeared out" Dirac mass at scale η
- Newton's theorem: the potentials generated by δ_{0} and $\delta_{0}^{(\eta)}$ (i.e. Then

Some notation

- Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_{i}}-n \mu_{0}$, and blow up.
- Set $\mu_{0}^{\prime}\left(x^{\prime}\right)=\mu_{0}\left(x^{\prime} n^{-1 / d}\right)$, blown-up background density and for x_{1}, \ldots, x_{n}, set $x_{i}^{\prime}=n^{1 / d} x_{i}$ and

$$
h_{n}\left(x^{\prime}\right)=-c_{d} \Delta^{-1}\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}\right)=w *\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}\right)
$$

- For any $x, \eta>0$, let $\delta_{x}^{(\eta)}=\frac{1}{|B(0, \eta)|} \mathbb{1}_{B(x, \eta)}$, "smeared out" Dirac mass at scale η
- Newton's theorem: the potentials generated by δ_{0} and $\delta_{0}^{(1)}$ (i.e. Then

Some notation

- Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_{i}}-n \mu_{0}$, and blow up.
- Set $\mu_{0}^{\prime}\left(x^{\prime}\right)=\mu_{0}\left(x^{\prime} n^{-1 / d}\right)$, blown-up background density and for x_{1}, \ldots, x_{n}, set $x_{i}^{\prime}=n^{1 / d} x_{i}$ and

$$
h_{n}\left(x^{\prime}\right)=-c_{d} \Delta^{-1}\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}\right)=w *\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}\right)
$$

- For any $x, \eta>0$, let $\delta_{x}^{(\eta)}=\frac{1}{|B(0, \eta)|} \mathbb{1}_{B(x, \eta)}$, "smeared out" Dirac mass at scale η
- Newton's theorem: the potentials generated by δ_{0} and $\delta_{0}^{(\eta)}$ (i.e. $w * \delta_{0}=w$ and $\left.w * \delta_{0}^{(\eta)}\right)$ coincide outside $B(0, \eta)$, and $w \geq w * \delta_{0}^{(\eta)}$.

Some notation

- Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_{i}}-n \mu_{0}$, and blow up.
- Set $\mu_{0}^{\prime}\left(x^{\prime}\right)=\mu_{0}\left(x^{\prime} n^{-1 / d}\right)$, blown-up background density and for x_{1}, \ldots, x_{n}, set $x_{i}^{\prime}=n^{1 / d} x_{i}$ and

$$
h_{n}\left(x^{\prime}\right)=-c_{d} \Delta^{-1}\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}\right)=w *\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}\right)
$$

- For any $x, \eta>0$, let $\delta_{x}^{(\eta)}=\frac{1}{|B(0, \eta)|} \mathbb{1}_{B(x, \eta)}$, "smeared out" Dirac mass at scale η
- Newton's theorem: the potentials generated by δ_{0} and $\delta_{0}^{(\eta)}$ (i.e. $w * \delta_{0}=w$ and $\left.w * \delta_{0}^{(\eta)}\right)$ coincide outside $B(0, \eta)$, and $w \geq w * \delta_{0}^{(\eta)}$. Then

$$
h_{n, \eta}\left(x^{\prime}\right)=-c_{d} \Delta^{-1}\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}^{(\eta)}-\mu_{0}^{\prime}\right)=w *(\cdots)
$$

can be defined unambiguously and coincides with h_{n} outside $\cup_{i} B\left(x_{i}^{\prime}, \eta\right)$.

Splitting formula

As in Onsager's lemma (used in "stability of matter", cf Lieb-Oxford, Lieb-Seiringer): from Newton's theorem we have

$$
\begin{aligned}
& \sum_{i \neq j} w\left(x_{i}-x_{j}\right) \geq \sum_{i \neq j} \iint w(x-y) \delta_{x_{i}}^{(\ell)}(x) \delta_{x_{j}}^{(\ell)}(y) \\
= & \underbrace{\iint w(x-y)\left(\sum_{i=1}^{n} \delta_{x_{i}}^{(\ell)}\right)(x)\left(\sum_{j=1}^{n} \delta_{x_{j}}^{(\ell)}\right)(y)}_{\text {total interaction between smeared-out charges }}-n \underbrace{\iint w(x-y) \delta_{0}^{(\ell)}(x) \delta_{0}^{(\ell)}(y)}_{\text {cst self-interaction term }=\kappa_{d} c_{d}^{-1} w(\ell)}
\end{aligned}
$$

Insert splitting $\sum_{i=1}^{n} \delta_{x_{i}}^{(\ell)}=n \mu_{0}+\left(\sum_{i=i}^{n} \delta_{x_{i}}^{(\ell)}-n \mu_{0}\right)$ and characterization of μ_{0} :

for some function $\zeta \geq 0, \zeta=0$ in Σ.

Splitting formula

As in Onsager's lemma (used in "stability of matter", cf Lieb-Oxford, Lieb-Seiringer): from Newton's theorem we have

$$
\begin{aligned}
& \sum_{i \neq j} w\left(x_{i}-x_{j}\right) \geq \sum_{i \neq j} \iint w(x-y) \delta_{x_{i}}^{(\ell)}(x) \delta_{x_{j}}^{(\ell)}(y) \\
= & \underbrace{\iint w(x-y)\left(\sum_{i=1}^{n} \delta_{x_{i}}^{(\ell)}\right)(x)\left(\sum_{j=1}^{n} \delta_{x_{j}}^{(\ell)}\right)(y)}_{\text {total interaction between smeared-out charges }}-n \underbrace{\iint w(x-y) \delta_{0}^{(\ell)}(x) \delta_{0}^{(\ell)}(y)}_{\text {cst self-interaction term }=\kappa_{d} c_{d}^{-1} w(\ell)}
\end{aligned}
$$

Insert splitting $\sum_{i=1}^{n} \delta_{x_{i}}^{(\ell)}=n \mu_{0}+\left(\sum_{i=i}^{n} \delta_{x_{i}}^{(\ell)}-n \mu_{0}\right)$ and characterization of μ_{0} :

$$
w * \mu_{0}+\frac{1}{2} V=\zeta+\left(\frac{1}{2} \mathcal{E}\left(\mu_{0}\right)+\iint w(x-y) d \mu_{0}(x) d \mu_{0}(y)\right)
$$

for some function $\zeta \geq 0, \zeta=0$ in Σ.

Splitting formula

As in Onsager's lemma (used in "stability of matter", cf Lieb-Oxford, Lieb-Seiringer): from Newton's theorem we have

$$
\begin{aligned}
& \sum_{i \neq j} w\left(x_{i}-x_{j}\right) \geq \sum_{i \neq j} \iint w(x-y) \delta_{x_{i}}^{(\ell)}(x) \delta_{x_{j}}^{(\ell)}(y) \\
= & \underbrace{\iint w(x-y)\left(\sum_{i=1}^{n} \delta_{x_{i}}^{(\ell)}\right)(x)\left(\sum_{j=1}^{n} \delta_{x_{j}}^{(\ell)}\right)(y)}_{\text {total interaction between smeared-out charges }}-n \underbrace{\iint w(x-y) \delta_{0}^{(\ell)}(x) \delta_{0}^{(\ell)}(y)}_{\text {cst self-interaction term }=\kappa_{d} c_{d}^{-1} w(\ell)}
\end{aligned}
$$

Insert splitting $\sum_{i=1}^{n} \delta_{x_{i}}^{(\ell)}=n \mu_{0}+\left(\sum_{i=i}^{n} \delta_{x_{i}}^{(\ell)}-n \mu_{0}\right)$ and characterization of μ_{0} :

$$
w * \mu_{0}+\frac{1}{2} V=\zeta+\left(\frac{1}{2} \mathcal{E}\left(\mu_{0}\right)+\iint w(x-y) d \mu_{0}(x) d \mu_{0}(y)\right)
$$

for some function $\zeta \geq 0, \zeta=0$ in Σ.
Then choose $\ell=\eta n^{-1 / d}$ and blow-up everything by $n^{1 / d}$.

Proposition (Splitting formula)

For $d \geq 2$, for any $n,\left(x_{1}, \ldots, x_{n}\right), \eta>0$,

$$
\begin{aligned}
& H_{n}\left(x_{1}, \ldots, x_{n}\right) \geq n^{2} \mathcal{E}\left(\mu_{0}\right)-\left(\frac{n}{2} \log n\right) \mathbb{1}_{d=2} \\
& \quad+n^{1-2 / d}\left[\frac{1}{c_{d}}\left(\int_{\mathbb{R}^{d}}\left|\nabla h_{n, \eta}\right|^{2}-n \kappa_{d} w(\eta)\right)-C \eta^{2}\right]+\underbrace{2 n \sum_{i=1}^{n} \zeta\left(x_{i}\right)}_{\geq 0} .
\end{aligned}
$$

The next step is to study the term in brackets and take its limit $n \rightarrow \infty$, then $\eta \rightarrow 0$.

The renormalized energy

Recall

$$
-\Delta h_{n}=c_{d}\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}\right)
$$

Centering the blow-up around a point $x_{0} \in \Sigma$, in the limit $n \rightarrow \infty$ we get solutions to

$$
-\Delta h=c_{d}\left(\sum_{p \in \Lambda} N_{p} \delta_{p}-\mu_{0}\left(x_{0}\right)\right) \longleftrightarrow-\Delta h_{\eta}=c_{d}\left(\sum_{p \in \Lambda} N_{p} \delta_{p}^{(\eta)}-\mu_{0}\left(x_{0}\right)\right)
$$

Λ infinite discrete set of points in $\mathbb{R}^{d}, N_{p} \in \mathbb{N}^{*}$.

Definition

Let $m>0$. Call $\overline{\mathcal{A}}_{m}$ the class of ∇h such that

$$
-\Delta h=c_{d}\left(\sum_{p \in \Lambda} N_{p} \delta_{p}-m\right)
$$

with $N_{p} \in \mathbb{N}^{*}$ and \mathcal{A}_{m} the class of ∇h such that all $N_{p}=1$.

Definition (Rougerie-S)

Set $K_{R}=[-R . R]^{d}$ For $\nabla h \in \bar{A}_{m}$ we let

Alternate definition by Sandier-S in $d=1,2$, originating in
Ginzburg-Landau theory.

Definition

Let $m>0$. Call $\overline{\mathcal{A}}_{m}$ the class of ∇h such that

$$
-\Delta h=c_{d}\left(\sum_{p \in \Lambda} N_{p} \delta_{p}-m\right)
$$

with $N_{p} \in \mathbb{N}^{*}$ and \mathcal{A}_{m} the class of ∇h such that all $N_{p}=1$.

Definition (Rougerie-S)

Set $K_{R}=[-R, R]^{d}$. For $\nabla h \in \overline{\mathcal{A}}_{m}$ we let

$$
\mathcal{W}(\nabla h)=\liminf _{\eta \rightarrow 0}\left(\limsup _{R \rightarrow \infty} f_{K_{R}}\left|\nabla h_{\eta}\right|^{2}-\kappa_{d} m w(\eta)\right) .
$$

Alternate definition by Sandier-S in $d=1,2$, originating in Ginzburg-Landau theory.

Definition

Let $m>0$. Call $\overline{\mathcal{A}}_{m}$ the class of ∇h such that

$$
-\Delta h=c_{d}\left(\sum_{p \in \Lambda} N_{p} \delta_{p}-m\right)
$$

with $N_{p} \in \mathbb{N}^{*}$ and \mathcal{A}_{m} the class of ∇h such that all $N_{p}=1$.

Definition (Rougerie-S)

Set $K_{R}=[-R, R]^{d}$. For $\nabla h \in \overline{\mathcal{A}}_{m}$ we let

$$
\mathcal{W}(\nabla h)=\liminf _{\eta \rightarrow 0}\left(\limsup _{R \rightarrow \infty} f_{K_{R}}\left|\nabla h_{\eta}\right|^{2}-\kappa_{d} m w(\eta)\right) .
$$

Alternate definition by Sandier-S in $d=1,2$, originating in Ginzburg-Landau theory.

- If $\mathcal{W}(\nabla h)<+\infty$ then $\lim _{R \rightarrow \infty} f_{K_{R}}\left(\sum_{p} N_{p} \delta_{p}\right)=m$.
- By scaling, one can reduce to $\overline{\mathcal{A}}_{1}$, with

$$
\begin{aligned}
\frac{\inf }{\mathcal{A}_{m}} \mathcal{W} & =m^{2-2 / d} \frac{\inf }{\mathcal{A}_{1}} \mathcal{W} \quad d \geq 3 \\
& =m\left(\frac{\inf }{\mathcal{A}_{1}} \mathcal{W}-\pi \log m\right) \quad d=2
\end{aligned}
$$

- \mathcal{W} is bounded below, and has minimizers over $\overline{\mathcal{A}}_{1}$, even sequences of periodic minimizers (with larger and larger period)

The case of the torus

Assume Λ is \mathbb{T}-periodic. Then W is $+\infty$ unless all $N_{p}=1$, and can be written as a function of $\Lambda "="\left\{a_{1}, \ldots, a_{M}\right\}, M=|\mathbb{T}|$.

$$
\mathcal{W}\left(a_{1}, \cdots, a_{M}\right)=\frac{c_{d}^{2}}{|\mathbb{T}|} \sum_{j \neq k} G\left(a_{j}-a_{k}\right)+c s t
$$

where $G=G r e e n ' s$ function of the torus $\left(-\Delta G=\delta_{0}-1 /|\mathbb{T}|\right)$.

Minimization among lattices

We can look for minimizers of \mathcal{W} among perfect lattice configurations (Bravais lattices) with unit volume.

Theorem (Sandier-S.)

In dimension $d=1(w=-\log)$, the minimum of \mathcal{W} over all possible configurations is achieved for the lattice \mathbb{Z}.
In dimension $d=2$, the minimum of \mathcal{W} over perfect lattice configurations is achieved uniquely, modulo rotations, by the triangular lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda, 50 's, on the minimization of $\zeta(s)=\sum_{p \in \Lambda} \frac{1}{|p|^{s}}$

There is no corresponding result in higher dimension! In dimension 3, does the FCC (face centered cubic) lattice play this role?

Minimization among lattices

We can look for minimizers of \mathcal{W} among perfect lattice configurations (Bravais lattices) with unit volume.

Theorem (Sandier-S.)

In dimension $d=1(w=-\log)$, the minimum of \mathcal{W} over all possible configurations is achieved for the lattice \mathbb{Z}.
In dimension $d=2$, the minimum of \mathcal{W} over perfect lattice configurations is achieved uniquely, modulo rotations, by the triangular lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda, 50 's, on the minimization of $\zeta(s)=\sum_{p \in \Lambda} \frac{1}{|p|^{s}}$.

There is no corresponding result in higher dimension! In dimension 3, does the FCC (face centered cubic) lattice play this role?

Minimization among lattices

We can look for minimizers of \mathcal{W} among perfect lattice configurations (Bravais lattices) with unit volume.

Theorem (Sandier-S.)

In dimension $d=1(w=-\log)$, the minimum of \mathcal{W} over all possible configurations is achieved for the lattice \mathbb{Z}.
In dimension $d=2$, the minimum of \mathcal{W} over perfect lattice configurations is achieved uniquely, modulo rotations, by the triangular lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda, 50 's, on the minimization of $\zeta(s)=\sum_{p \in \Lambda} \frac{1}{|p|^{s}}$.
There is no corresponding result in higher dimension! In dimension 3, does the FCC (face centered cubic) lattice play this role?

Conjecture

In dimension 2, the "Abrikosov" triangular lattice is a global minimizer of \mathcal{W}.

Bétermin shows that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order n term in the expansion of the minimal logarithmic energy on \mathbb{S}^{2}.

Conjecture

In dimension 2, the "Abrikosov" triangular lattice is a global minimizer of \mathcal{W}.

Bétermin shows that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order n term in the expansion of the minimal logarithmic energy on \mathbb{S}^{2}.

Equidistribution of points and energy in dimension 2

Theorem (Rota Nodari-S)

Let $\left(x_{1}, \ldots, x_{n}\right) \subset\left(\mathbb{R}^{2}\right)^{n}$ minimize H_{n}, and assume the equilibrium measure $\mu_{0} \in L^{\infty}$, then

- for all $i, x_{i} \in \Sigma$
- letting $\nu_{n}^{\prime}=\sum_{i} \delta_{x_{i}^{\prime}}$, if $\ell \geq c>0$ and $\operatorname{dist}\left(K_{\ell}(a), \partial \Sigma^{\prime}\right) \geq n^{\beta / 2}(\beta<1)$, we have

$$
\limsup _{n \rightarrow \infty}\left|\nu_{n}^{\prime}\left(K_{\ell}(a)\right)-\int_{K_{\ell}(a)} \mu_{0}^{\prime}(x) d x\right| \leq C \ell
$$

- equidistribution of energy

$$
\begin{aligned}
&\left.\limsup _{n \rightarrow \infty, \eta \rightarrow 0}\left|\int_{K_{\ell}(a)}\right| \nabla h_{n, \eta}^{\prime}\right|^{2}-\kappa_{d} \nu_{n}^{\prime}\left(K_{\ell}(a)\right) w(\eta) \\
&-\int_{K_{\ell}(a)}\left(\min _{\mu_{\mu_{0}^{\prime}(x)}} \mathcal{W}\right) d x \mid \leq o_{\ell}\left(\ell^{2}\right) .
\end{aligned}
$$

- Method inspired by Alberti-Choksi-Otto
- We prove the same for minimizers of \mathcal{W} themselves
- Should work also in $d \geq 3$
- Compare to Ameur- Ortega Cerda: only first result, with o(ℓ^{2}) error.

The averaged formulation

- Let $\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{R}^{d}\right)^{n}$. We denote P_{n} the probability, push-forward of the normalized Lebesgue measure on Σ by

$$
x \mapsto\left(x, \nabla h_{n}\left(n^{1 / d} x+\cdot\right)\right)
$$

where h_{n} is the potential generated by $\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}^{\prime}$.

- If the next order terms in H_{n} are bounded by $\mathrm{Cn}^{2-2 / d}$, then P_{n} is tight and up to a subsequence converges to some probability P
- P belongs to the class \mathcal{C} of probabilities on $(x, \nabla h)$'s such that

1. The first marginal of P is the normalized Lebesgue measure on Σ, and P is translation-invariant
2. For P-a.e. $(x, \nabla h)$, we have $\nabla h \in \overline{\mathcal{A}}_{\mu_{0}(x)}$.

- Define then $\widetilde{\mathcal{W}}(P)=\frac{|\Sigma|}{c_{d}} \int \mathcal{W}(\nabla h) d P(x, \nabla h)$

$$
\min _{\mathcal{C}} \widetilde{\mathcal{W}}=\frac{1}{c_{d}} \int_{\Sigma} \min _{\mathcal{A}_{\mu_{0}(x)}} \mathcal{W} d x
$$

Theorem (Rougerie-S)

Let $d \geq 2,\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{R}^{d}\right)^{n}$ and P_{n} be as above. Up to extraction of a subsequence, we have $P_{n} \rightarrow P \in \mathcal{C}$ and

$$
\liminf _{n \rightarrow \infty} n^{2 / d-2}\left(H_{n}\left(x_{1}, \ldots, x_{n}\right)-n^{2} \mathcal{E}\left(\mu_{0}\right)+\left(\frac{n}{2} \log n\right) \mathbb{1}_{d=2}\right) \geq \widetilde{\mathcal{W}}(P)
$$

This lower bound is sharp, thus for minimizers of H_{n}

$$
\liminf _{n \rightarrow \infty} n^{2 / d-2}\left(\min H_{n}-n^{2} \mathcal{E}\left(\mu_{0}\right)+\left(\frac{n}{2} \log n\right) \mathbb{1}_{d=2}\right)=\min _{\mathcal{C}} \widetilde{\mathcal{W}}
$$

and P minimizes $\widetilde{\mathcal{W}}$ over \mathcal{C} (i.e. P-a.e. $(x, \nabla h)$ we have ∇h minimizes \mathcal{W} over $\left.\overline{\mathcal{A}}_{\mu_{0}(x)}\right)$.

Informally: for minimizers, after blow-up around "almost every point in $\Sigma^{\prime \prime}$, we get in the limit $n \rightarrow \infty$ an infinite configuration of points minimizing \mathcal{W} in the corresponding class.

Microscopic behavior of thermal states

Theorem (Rougerie-S $d \geq 3$, Sandier-S $d=2$)
Let $\bar{\beta}=\lim \sup _{n \rightarrow+\infty} \beta n^{1-2 / d}$, assume $\bar{\beta}>0$. Then, there exists $C_{\bar{\beta}}$ such that $\lim _{\bar{\beta} \rightarrow \infty} C_{\bar{\beta}}=0$, and if $A_{n} \subset\left(\mathbb{R}^{d}\right)^{n}$

$$
\limsup _{n \rightarrow \infty} \frac{\log \mathbb{P}_{n, \beta}\left(A_{n}\right)}{n^{2-2 / d}} \leq-\frac{\beta}{2}\left(\inf _{P \in A_{\infty}} \widetilde{\mathcal{W}}-\xi_{d}-C_{\bar{\beta}}\right)
$$

where

$$
A_{\infty}=\left\{P: \exists\left(x_{1}, \ldots, x_{n}\right) \in A_{n}, P_{n} \rightarrow P \text { up to a subsequence }\right\} .
$$

Extensions (ongoing)

- With T. Leblé, full LDP at speed $n^{2-2 / d}$ with rate function

$$
\frac{\beta}{2} \widetilde{\mathcal{W}}(P)+\operatorname{Ent}(P)
$$

where Ent is a specific relative entropy with respect to a Poisson-type process.

- With M. Petrache, case of Riesz kernel interaction potential:

$$
H_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|^{s}}+n \sum_{i=1}^{n} V\left(x_{i}\right) \quad d-2<s<d
$$

similar "renormalized energy" derived for minimizers

Thank you for your attention!

