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The classical Coulomb gas

Hn(x1, . . . , xn) =
∑
i 6=j

w(xi − xj) + n
n∑

i=1

V (xi ) xi ∈ Rd

w(x) =
1

|x |d−2 if d ≥ 3 = − log |x | if d = 2

−∆w = cdδ0

V confining potential, sufficiently smooth and growing at infinity
Can be considered for d = 1 and − log, then “log gas"
With temperature: Gibbs measure

dPn,β(x1, · · · , xn) =
1

Zn,β
e−

β
2 Hn(x1,...,xn)dx1 . . . dxn xi ∈ Rd

Zn,β partition function
Limit n→∞?
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Motivations

I statistical mechanics
d = 1 Coulomb kernel: completely solvable Lenard,
Aizenman-Martin, Brascamp-Lieb d = 1 log gas or d ≥ 2 Coulomb
gas Lieb-Narnhofer ’75, Penrose-Smith ’72, Sari-Merlini ’76,
Alastuey-Jancovici ’81 , Jancovici-Lebowitz-Manificat ’93, Kiessling
’93, Kiessling-Spohn ’99, Chafai-Gozlan-Zitt ’13

I connection to random matrices (first noticed by Wigner, Dyson),
Valko-Virag, Bourgade-Erdös-Yau...

I weighted Fekete points, Fekete points on spheres
Rakhmanov-Saff-Zhou

min
x1,...,xn∈Sd

−
∑
i 6=j

log |xi − xj |

I Riesz s-energy

min
x1...xn∈Sd

∑
i 6=j

1
|xi − xj |s

cf. Smale’s 7th problem originating in computational complexity
theory
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The mean field limit
I For (x1, . . . , xn) minimizing Hn, one can prove

lim
n→∞

∑n
i=1 δxi

n
= µ0 lim

n→∞

minHn

n2 = E(µ0)

where µ0 is the unique minimizer of

E(µ) =

∫
Rd×Rd

w(x − y) dµ(x) dµ(y) +

∫
Rd

V (x) dµ(x).

among probability measures.
E has a unique minimizer µ0 among probability measures, called the
equilibrium measure (Frostman 50’s potential theory)

I Denote Σ = Supp(µ0). We assume Σ is compact with C 1 boundary
and µ0 has a density bounded above and below on Σ with is C 1 in Σ.

I Example: V (x) = |x |2, then µ0 = 1
cd
1B1 (circle law).

I With temperature, a corresponding LDP can be proven (Petz-Hiai,
Ben Arous-Zeitouni, for d = 2)

I Expanding
∑n

i=1 δxi as nµ0 + (
∑n

i=1 δxi − nµ0) and inserting into Hn
we are able to look into next order terms.



The mean field limit
I For (x1, . . . , xn) minimizing Hn, one can prove

lim
n→∞

∑n
i=1 δxi

n
= µ0 lim

n→∞

minHn

n2 = E(µ0)

where µ0 is the unique minimizer of

E(µ) =

∫
Rd×Rd

w(x − y) dµ(x) dµ(y) +

∫
Rd

V (x) dµ(x).

among probability measures.
E has a unique minimizer µ0 among probability measures, called the
equilibrium measure (Frostman 50’s potential theory)

I Denote Σ = Supp(µ0). We assume Σ is compact with C 1 boundary
and µ0 has a density bounded above and below on Σ with is C 1 in Σ.

I Example: V (x) = |x |2, then µ0 = 1
cd
1B1 (circle law).

I With temperature, a corresponding LDP can be proven (Petz-Hiai,
Ben Arous-Zeitouni, for d = 2)

I Expanding
∑n

i=1 δxi as nµ0 + (
∑n

i=1 δxi − nµ0) and inserting into Hn
we are able to look into next order terms.



The mean field limit
I For (x1, . . . , xn) minimizing Hn, one can prove

lim
n→∞

∑n
i=1 δxi

n
= µ0 lim

n→∞

minHn

n2 = E(µ0)

where µ0 is the unique minimizer of

E(µ) =

∫
Rd×Rd

w(x − y) dµ(x) dµ(y) +

∫
Rd

V (x) dµ(x).

among probability measures.
E has a unique minimizer µ0 among probability measures, called the
equilibrium measure (Frostman 50’s potential theory)

I Denote Σ = Supp(µ0). We assume Σ is compact with C 1 boundary
and µ0 has a density bounded above and below on Σ with is C 1 in Σ.

I Example: V (x) = |x |2, then µ0 = 1
cd
1B1 (circle law).

I With temperature, a corresponding LDP can be proven (Petz-Hiai,
Ben Arous-Zeitouni, for d = 2)

I Expanding
∑n

i=1 δxi as nµ0 + (
∑n

i=1 δxi − nµ0) and inserting into Hn
we are able to look into next order terms.



The mean field limit
I For (x1, . . . , xn) minimizing Hn, one can prove

lim
n→∞

∑n
i=1 δxi

n
= µ0 lim

n→∞

minHn

n2 = E(µ0)

where µ0 is the unique minimizer of

E(µ) =

∫
Rd×Rd

w(x − y) dµ(x) dµ(y) +

∫
Rd

V (x) dµ(x).

among probability measures.
E has a unique minimizer µ0 among probability measures, called the
equilibrium measure (Frostman 50’s potential theory)

I Denote Σ = Supp(µ0). We assume Σ is compact with C 1 boundary
and µ0 has a density bounded above and below on Σ with is C 1 in Σ.

I Example: V (x) = |x |2, then µ0 = 1
cd
1B1 (circle law).

I With temperature, a corresponding LDP can be proven (Petz-Hiai,
Ben Arous-Zeitouni, for d = 2)

I Expanding
∑n

i=1 δxi as nµ0 + (
∑n

i=1 δxi − nµ0) and inserting into Hn
we are able to look into next order terms.



The mean field limit
I For (x1, . . . , xn) minimizing Hn, one can prove

lim
n→∞

∑n
i=1 δxi

n
= µ0 lim

n→∞

minHn

n2 = E(µ0)

where µ0 is the unique minimizer of

E(µ) =

∫
Rd×Rd

w(x − y) dµ(x) dµ(y) +

∫
Rd

V (x) dµ(x).

among probability measures.
E has a unique minimizer µ0 among probability measures, called the
equilibrium measure (Frostman 50’s potential theory)

I Denote Σ = Supp(µ0). We assume Σ is compact with C 1 boundary
and µ0 has a density bounded above and below on Σ with is C 1 in Σ.

I Example: V (x) = |x |2, then µ0 = 1
cd
1B1 (circle law).

I With temperature, a corresponding LDP can be proven (Petz-Hiai,
Ben Arous-Zeitouni, for d = 2)

I Expanding
∑n

i=1 δxi as nµ0 + (
∑n

i=1 δxi − nµ0) and inserting into Hn
we are able to look into next order terms.



Approach

I In Sandier-S, we developed an essentially 2D approach to the
problem, inspired from our work on the Ginzburg-Landau functional
of superconductivity. Relies on “ball construction methods",
introduced by Jerrard, Sandier in the context of GL. Works for − log
in d = 1, 2.

I In Rougerie-S we developed an approach valid for any d ≥ 2, based
instead on Onsager’s lemma (smearing out the charges). (Previous
related work Rougerie-S-Yngvason)



Next order expansion of minHn and Zn,β

Theorem (ground state energy, Rougerie-S d ≥ 2, Sandier-S
d = 1, 2)

Under suitable assumptions on V , as n→∞ we have

minHn =

n2E(µ0) + n2−2/d
(
αd

cd

∫
µ

2−2/d
0 (x)dx + o(1)

)
if d ≥ 3

n2E(µ0)− n
2
log n + n

(
α2

2π
− 1

2

∫
µ0(x) logµ0(x) dx + o(1)

)
if d = 2

n2E(µ0)− n log n + n
(
α1

2π
−
∫
µ0(x) logµ0(x) dx + o(1)

)
if d = 1

where αd = minW depends only on d (see later).



Theorem (ctd, free energy expansion)

Assume there exists β1 > 0 such that{∫
e−β1V (x)/2 dx <∞ when d ≥ 3∫
e−β1( V (x)

2 −log |x|) dx <∞ when d = 2.
Let

Fn,β = − 2
β
logZn,β free energy.

if d ≥ 3 and β ≥ cn2/d−1 or d = 2 and β ≥ c(log n)−1

|Fn,β −minHn| ≤ o(n2−2/d) + C
n
β
.

 transition regime β ∝ n2/d−1
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Blow-up procedure and jellium

After blow up the points should interact according to a Coulomb
interaction, but screened by a fixed background charge: jellium



Some notation

I Start with the potential generated by
∑n

i=1 δxi − nµ0, and blow up.
I Set µ′0(x ′) = µ0(x ′n−1/d), blown-up background density and for

x1, . . . , xn, set x ′i = n1/dxi and

hn(x ′) = −cd∆−1
( n∑

i=1

δx′i − µ
′
0

)
= w ∗

( n∑
i=1

δx′i − µ
′
0

)

I For any x , η > 0, let δ(η)
x = 1

|B(0,η)|1B(x,η), “smeared out" Dirac
mass at scale η

I Newton’s theorem: the potentials generated by δ0 and δ(η)
0 (i.e.

w ∗ δ0 = w and w ∗ δ(η)
0 ) coincide outside B(0, η), and w ≥ w ∗ δ(η)

0 .
Then

hn,η(x ′) = −cd∆−1
( n∑

i=1

δ
(η)
x′i
− µ′0

)
= w ∗

(
· · ·
)

can be defined unambiguously and coincides with hn outside
∪iB(x ′i , η).
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Splitting formula

As in Onsager’s lemma (used in “stability of matter", cf Lieb-Oxford,
Lieb-Seiringer): from Newton’s theorem we have

∑
i 6=j

w(xi − xj) ≥
∑
i 6=j

∫∫
w(x − y)δ(`)

xi
(x)δ(`)

xj
(y)

=

∫∫
w(x − y)

( n∑
i=1

δ(`)
xi

)
(x)
( n∑

j=1

δ(`)
xj

)
(y)︸ ︷︷ ︸

total interaction between smeared-out charges

−n
∫∫

w(x − y)δ
(`)
0 (x)δ

(`)
0 (y)︸ ︷︷ ︸

cst self-interaction term=κd c−1
d w(`)

Insert splitting
∑n

i=1 δ
(`)
xi = nµ0 +

(∑n
i=i δ

(`)
xi − nµ0

)
and

characterization of µ0:

w ∗ µ0 +
1
2
V = ζ +

(1
2
E(µ0) +

∫∫
w(x − y) dµ0(x)dµ0(y)

)
for some function ζ ≥ 0, ζ = 0 in Σ.
Then choose ` = ηn−1/d and blow-up everything by n1/d .
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Proposition (Splitting formula)

For d ≥ 2, for any n, (x1, . . . , xn), η > 0,

Hn(x1, . . . , xn) ≥ n2E(µ0)−
(n
2
log n

)
1d=2

+ n1−2/d
[ 1
cd

(∫
Rd
|∇hn,η|2 − nκdw(η)

)
− Cη2

]
+ 2n

n∑
i=1

ζ(xi )︸ ︷︷ ︸
≥0

.

The next step is to study the term in brackets and take its limit n→∞,
then η → 0.



The renormalized energy

Recall

−∆hn = cd(
n∑

i=1

δx′i − µ
′
0).

Centering the blow-up around a point x0 ∈ Σ, in the limit n→∞ we get
solutions to

−∆h = cd
(∑

p∈Λ

Npδp − µ0(x0)
)
←→−∆hη = cd

(∑
p∈Λ

Npδ
(η)
p − µ0(x0)

)
Λ infinite discrete set of points in Rd , Np ∈ N∗.



Definition
Let m > 0. Call Am the class of ∇h such that

−∆h = cd
(∑

p∈Λ

Npδp −m
)

with Np ∈ N∗ and Am the class of ∇h such that all Np = 1.

Definition (Rougerie-S)

Set KR = [−R,R]d . For ∇h ∈ Am we let

W(∇h) = lim inf
η→0

(
lim sup
R→∞

−
∫

KR

|∇hη|2 − κdmw(η)

)
.

Alternate definition by Sandier-S in d = 1, 2, originating in
Ginzburg-Landau theory.
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I If W(∇h) < +∞ then limR→∞ −
∫
KR

(
∑

p Npδp) = m.

I By scaling, one can reduce to A1, with

inf
Am

W = m2−2/d inf
A1

W d ≥ 3

= m
(
inf
A1

W − π logm
)

d = 2

I W is bounded below, and has minimizers over A1, even sequences of
periodic minimizers (with larger and larger period)



The case of the torus

Assume Λ is T-periodic. Then W is +∞ unless all Np = 1, and can be
written as a function of Λ“ = ”{a1, . . . , aM}, M = |T|.

W(a1, · · · , aM) =
c2
d
|T|
∑
j 6=k

G (aj − ak) + cst,

where G= Green’s function of the torus (−∆G = δ0 − 1/|T|).



Minimization among lattices

We can look for minimizers of W among perfect lattice configurations
(Bravais lattices) with unit volume.

Theorem (Sandier-S.)

In dimension d = 1 (w = − log), the minimum of W over all possible
configurations is achieved for the lattice Z.
In dimension d = 2, the minimum of W over perfect lattice
configurations is achieved uniquely, modulo rotations, by the triangular
lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda,
50’s, on the minimization of ζ(s) =

∑
p∈Λ

1
|p|s .

There is no corresponding result in higher dimension! In dimension 3,
does the FCC (face centered cubic) lattice play this role?
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Conjecture
In dimension 2, the “Abrikosov" triangular lattice is a global minimizer of
W.

Bétermin shows that this conjecture is equivalent to a conjecture of
Brauchart-Hardin-Saff on the order n term in the expansion of the
minimal logarithmic energy on S2.
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Equidistribution of points and energy in dimension 2

Theorem (Rota Nodari-S)

Let (x1, . . . , xn) ⊂ (R2)n minimize Hn, and assume the equilibrium
measure µ0 ∈ L∞, then
- for all i , xi ∈ Σ
- letting ν′n =

∑
i δx′i , if ` ≥ c > 0 and dist(K`(a), ∂Σ′) ≥ nβ/2 (β < 1),

we have

lim sup
n→∞

∣∣∣∣∣ν′n(K`(a))−
∫

K`(a)

µ′0(x) dx

∣∣∣∣∣ ≤ C`.

- equidistribution of energy

lim sup
n→∞,η→0

∣∣∣∣∣
∫

K`(a)

|∇h′n,η|2 − κdν
′
n(K`(a))w(η)

−
∫

K`(a)

( min
Aµ′0(x)

W) dx

∣∣∣∣∣ ≤ o`(`2).



I Method inspired by Alberti-Choksi-Otto
I We prove the same for minimizers of W themselves
I Should work also in d ≥ 3
I Compare to Ameur- Ortega Cerda: only first result, with o(`2) error.





The averaged formulation

I Let (x1, . . . , xn) ∈ (Rd)n. We denote Pn the probability,
push-forward of the normalized Lebesgue measure on Σ by

x 7→ (x ,∇hn(n1/dx + ·))

where hn is the potential generated by
∑n

i=1 δx′i − µ
′
0.

I If the next order terms in Hn are bounded by Cn2−2/d , then Pn is
tight and up to a subsequence converges to some probability P

I P belongs to the class C of probabilities on (x ,∇h)’s such that
1. The first marginal of P is the normalized Lebesgue measure on Σ,

and P is translation-invariant
2. For P−a.e. (x ,∇h), we have ∇h ∈ Aµ0(x).

I Define then W̃(P) = |Σ|
cd

∫
W(∇h) dP(x ,∇h)

min
C
W̃ =

1
cd

∫
Σ

min
Aµ0(x)

W dx .



Theorem (Rougerie-S)

Let d ≥ 2, (x1, . . . , xn) ∈ (Rd)n and Pn be as above. Up to extraction of
a subsequence, we have Pn → P ∈ C and

lim inf
n→∞

n2/d−2
(
Hn(x1, . . . , xn)− n2E(µ0)+(

n
2
log n)1d=2

)
≥ W̃(P).

This lower bound is sharp, thus for minimizers of Hn

lim inf
n→∞

n2/d−2
(
minHn − n2E(µ0)+(

n
2
log n)1d=2

)
= min

C
W̃

and P minimizes W̃ over C (i.e. P-a.e. (x ,∇h) we have ∇h minimizes
W over Aµ0(x)).

Informally: for minimizers, after blow-up around “almost every point in
Σ", we get in the limit n→∞ an infinite configuration of points
minimizing W in the corresponding class.



Microscopic behavior of thermal states

Theorem (Rougerie-S d ≥ 3, Sandier-S d = 2)

Let β̄ = lim supn→+∞ βn1−2/d , assume β̄ > 0. Then, there exists Cβ̄
such that limβ̄→∞ Cβ̄ = 0, and if An ⊂ (Rd)n

lim sup
n→∞

logPn,β(An)

n2−2/d ≤ −β
2

(
inf

P∈A∞
W̃ − ξd − Cβ̄

)
where

A∞ = {P : ∃(x1, . . . , xn) ∈ An, Pn → P up to a subsequence} .



Extensions (ongoing)

I With T. Leblé, full LDP at speed n2−2/d with rate function

β

2
W̃(P) + Ent(P)

where Ent is a specific relative entropy with respect to a
Poisson-type process.

I With M. Petrache, case of Riesz kernel interaction potential:

Hn(x1, . . . , xn) =
∑
i 6=j

1
|xi − xj |s

+ n
n∑

i=1

V (xi ) d − 2 < s < d

similar “renormalized energy" derived for minimizers



Thank you for your attention!


