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The classical Coulomb gas

H,,(Xl,...,x,,):Zw(x;ij)+nz V(xi) x; € R?
i#j i=1

1
W(X)ZW ifd>3 =—log|x| ifd=2

—Aw = Cd50

V confining potential, sufficiently smooth and growing at infinity
Can be considered for d =1 and — log, then “log gas"
With temperature: Gibbs measure

1 s
dPp g(x1, -+, xp) = e_gH"(Xl’“"X")dxl ...dx, x; € RY

Zn,5 partition function
Limit n — o0?



Motivations

» statistical mechanics
d =1 Coulomb kernel: completely solvable Lenard,
Aizenman-Martin, Brascamp-Lieb



Motivations

» statistical mechanics
d =1 Coulomb kernel: completely solvable Lenard,
Aizenman-Martin, Brascamp-Lieb d = 1 log gas or d > 2 Coulomb
gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76,
Alastuey-Jancovici '81 , Jancovici-Lebowitz-Manificat '93, Kiessling
'93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13

u]

&)
I

i
it




Motivations

» statistical mechanics
d =1 Coulomb kernel: completely solvable Lenard,
Aizenman-Martin, Brascamp-Lieb d = 1 log gas or d > 2 Coulomb
gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76,
Alastuey-Jancovici '81 , Jancovici-Lebowitz-Manificat '93, Kiessling
'93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13

» connection to random matrices (first noticed by Wigner, Dyson),
Valko-Virag, Bourgade-Erdos-Yau...

u]
&)
I
i
it




Motivations

» statistical mechanics
d =1 Coulomb kernel: completely solvable Lenard,
Aizenman-Martin, Brascamp-Lieb d = 1 log gas or d > 2 Coulomb
gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76,
Alastuey-Jancovici '81 , Jancovici-Lebowitz-Manificat '93, Kiessling
'93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13

» connection to random matrices (first noticed by Wigner, Dyson),
Valko-Virag, Bourgade-Erdos-Yau...

» weighted Fekete points, Fekete points on spheres
Rakhmanov-Saff-Zhou

m|n Zlog [xi — x|
i#]

X1,.--

» Riesz s-energy

cf. Smale’s 7th problem originating in computational complexity
theory



The mean field limit

» For (x1,...,x,) minimizing H,, one can prove
n .
1 Ox; min H
lim @ — lim n_¢g
Jim == po  lim — (10)

where g is the unique minimizer of
e = [, wix=y)dutdun) + [ Vix)du(x).
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The mean field limit

» For (x1,...,x,) minimizing H,, one can prove
n .
. 1 0x; . minH
lim @ = 1o lim 5 T = &(uo)
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where g is the unique minimizer of

e = [, wlx=y)du() duty) + [ V) )

among probability measures.
£ has a unique minimizer 119 among probability measures, called the
equilibrium measure (Frostman 50's potential theory)
» Denote ¥ = Supp(ji0). We assume ¥ is compact with C! boundary
and i has a density bounded above and below on ¥ with is C! in X.
» Example: V(x) = |x|?, then o = éll,g1 (circle law).
» With temperature, a corresponding LDP can be proven (Petz-Hiai,
Ben Arous-Zeitouni, for d = 2)

» Expanding Y"1, 0y, as nuo + (D1, 8x — nuo) and inserting into H,,
we are able to look into next order terms.



Approach

» In Sandier-S, we developed an essentially 2D approach to the
problem, inspired from our work on the Ginzburg-Landau functional
of superconductivity. Relies on “ball construction methods",
introduced by Jerrard, Sandier in the context of GL. Works for — log
ind=1,2.

» In Rougerie-S we developed an approach valid for any d > 2, based
instead on Onsager's lemma (smearing out the charges). (Previous
related work Rougerie-S-Yngvason)



Next order expansion of min H, and Z, 3

Theorem (ground state energy, Rougerie-S d > 2, Sandier-S
d=1,2)

Under suitable assumptions on V', as n — oo we have
min H, =
n?E (o) + n?=2/4 (Z’/ 272/d(x)dx + o(1) ifd >3
n?E (o) — n Iogn +n (22 - % po(x) log po(x) dx + 0(1)) ifd=2
5(M0)n|ogn+n( /;Lo ) log po(x dx+o(1)> ifd=1

where ag = min W depends only on d (see later).
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[ e—B1(YF2—log xI) gy <« 00 when d = 2.
Let

2
Frp = ~3 log Z, g free energy.
ifd>3and 8> cn*9 1 ord =2 and § > c(logn)~t

n

|Fn3 — min H,| < o(n2_2/d) 4 Cﬂ

~~ transition regime 3 o n?/d-1



Blow-up procedure and jellium

After blow up the points should interact according to a Coulomb
interaction, but screened by a fixed background charge: jellium
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Some notation

» Start with the potential generated by Y7, ., — nuo, and blow up.
> Set 115(x") = po(x'n~1/?), blown-up background density and for
Xi, ...y Xp, set x| = n'/9x; and

ho(x") = —caA™ (25/ Ho)—W*(Z5’ u0>

> For any x, n > 0, let 5% = mﬂg(x,n), “smeared out" Dirac
mass at scale n
» Newton’s theorem: the potentials generated by dg and 5(()") (i.e.

w o = w and w * 6§") coincide outside B(0, ), and w > w x 537,
Then

hnﬂ](, = —cqA~ (2577 ’):W*(...>

can be defined unambiguously and coincides with h,, outside
UiB(Xi/v 77)



Splitting formula
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Splitting formula

As in Onsager's lemma (used in “stability of matter", cf Lieb-Oxford,
Lieb-Seiringer): from Newton's theorem we have

Sl —x)= Y [ [ wix-9)s000800)

i) i#j

=//W(X—y)(;6£f> (ZM —n //W(x )60 (x)85 ()

. . 1
cst self-interaction term KdCy w(?)

total interaction between smeared-out charges

Insert splitting >, 5)(5) = npip + (ZL (5(@ — nuo) and
characterization of pq:

W*p,0+ V C+ E(uo) // w(x — y) duo(x)duo(y ))

for some function ¢ >0, ( =0in X.
Then choose ¢ = n~1/9 and blow-up everything by n'/



Proposition (Splitting formula)

For d > 2, for any n, (x1,...,xn), n >0,
n
Ho(x1, ..oy Xn) > nQE(MO)f <§ log n) 1g—

l n
o (/Rd |V hnql? — n/fdw(n)) — cnﬂ + 2n;g(x,-).

———
>0

i n1—2/d[

The next step is to study the term in brackets and take its limit n — oo,
then n — 0.



The renormalized energy

Recall
n
—Ah, = Cd(z Oy — Hp)-
i=1
Centering the blow-up around a point xg € ¥, in the limit n — oo we get
solutions to

—Ah= Cd(Z Npdp — Ho(Xo)><—> — Dby = Cd(z /Vp5£") - Mo(Xo))

peEN peEN

A infinite discrete set of points in RY, N, € N*.
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Definition
Let m > 0. Call A, the class of Vh such that

~ah=ca( D" Npdp — m)

peEN
with N, € N* and A, the class of Vh such that all N, = 1.

Definition (Rougerie-S)
Set Kr = [~R,R]9. For Vh € A, we let

W(Vh) = liminf (Iim sup][ |V hy |2 — Iide(n)> .
T]*}O KR

R— o

Alternate definition by Sandier-S in d = 1,2, originating in
Ginzburg-Landau theory.



» If W(Vh) < 400 then limg_ 0o fKR(Zp Ny6,) = m.

» By scaling, one can reduce to A;, with

infW=m?>"2/9infWw  d>3
Am Az

_m<ian—7r|ogm> d=2
Ay

» W is bounded below, and has minimizers over A;, even sequences of
periodic minimizers (with larger and larger period)



The case of the torus

Assume A is T-periodic. Then W is +00 unless all N, =1, and can be

written as a function of A*="{ay,...,am}, M =|T|.
W(a1, - ,am) m ZG ) + cst,
JFk

where G= Green's function of the torus (—AG = §o — 1/|T|).



Minimization among lattices

We can look for minimizers of YW among perfect lattice configurations
(Bravais lattices) with unit volume.

Theorem (Sandier-S.)

In dimension d =1 (w = —log), the minimum of W over all possible
configurations is achieved for the lattice 7.

In dimension d = 2, the minimum of VW over perfect lattice
configurations is achieved uniquely, modulo rotations, by the triangular
lattice.
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Minimization among lattices

We can look for minimizers of YW among perfect lattice configurations
(Bravais lattices) with unit volume.

Theorem (Sandier-S.)

In dimension d =1 (w = —log), the minimum of W over all possible
configurations is achieved for the lattice 7.

In dimension d = 2, the minimum of VW over perfect lattice
configurations is achieved uniquely, modulo rotations, by the triangular
lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda,
’ .. . . _ 1
50's, on the minimization of ((s) = >_ .5 e

There is no corresponding result in higher dimension! In dimension 3,
does the FCC (face centered cubic) lattice play this role?



Conjecture
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In dimension 2, the “Abrikosov" triangular lattice is a global minimizer of
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Conjecture

In dimension 2, the “Abrikosov" triangular lattice is a global minimizer of
W.

R2e © o o o
o o o o o
e o 0o o o o
e o o o o
e o o o o o
e o o o o

Bétermin shows that this conjecture is equivalent to a conjecture of
Brauchart-Hardin-Saff on the order n term in the expansion of the
minimal logarithmic energy on S2.



Equidistribution of points and energy in dimension 2

Theorem (Rota Nodari-S)

Let (x1,...,%,) C (R?)" minimize H,, and assume the equilibrium
measure g € L*°, then

-foralli, x; e X

- letting v}, = 3" 8,r, if £ > ¢ > 0 and dist(K,(a),0%") > nf/2 (B < 1),
we have '

limsup
n—oo

vi(ki(@) = [ i) | < Ct.

Ke(a)

- equidistribution of energy

lim sup
n—o0,n—0

/K CAEACIOT
ela

—/ (_min W) dx| < og(£?).
Ke(a) Al




vV v . vYy

Method inspired by Alberti-Choksi-Otto
We prove the same for minimizers of W themselves
Should work also in d > 3

Compare to Ameur- Ortega Cerda: only first result, with o(¢2) error.






The averaged formulation

> Let (x1,...,%,) € (RY)". We denote P, the probability,
push-forward of the normalized Lebesgue measure on ¥ by

x = (x, Vho(n/9x +))

where h, is the potential generated by >""_; Ox1 — -
> If the next order terms in H, are bounded by Cn?®=2/9 then P, is
tight and up to a subsequence converges to some probability P

» P belongs to the class C of probabilities on (x, Vh)'s such that

1. The first marginal of P is the normalized Lebesgue measure on X,
and P is translation-invariant B
2. For P—a.e. (x,Vh), we have Vh € A, (-

> Define then W(P) = = [ W(Vh) dP(x, Vh)

o~ 1 .
man:—/imln W dx.
¢ Cd ):Auo(X)



Theorem (Rougerie-S)

Letd >2, (x1,...,x,) € (RY)" and P, be as above. Up to extraction of
a subsequence, we have P, — P € C and

lim inf n?/d—2 (H,,(xl7 ey Xn) — n25(u0)+(g log n)Ldi) > W(P).

n—o0

This lower bound is sharp, thus for minimizers of H,

lim inf n?/4=2 (min Hn — n?E (o) (g log n)Ldfz) = mcin w

n—oo

and P minimizes W over C (i.e. P-a.e. (x,Vh) we have Vh minimizes
W over ‘Alto(X))‘

Informally: for minimizers, after blow-up around “almost every point in
> " we get in the limit n — oo an infinite configuration of points
minimizing W in the corresponding class.



Microscopic behavior of thermal states

Theorem (Rougerie-S d > 3, Sandier-S d = 2)

Let 3 = limsup, , ., Bn'~%/9 assume 3 > 0. Then, there exists Cz
such that limz_, . C5 =0, and if A, C (R9)"

lim sup < —=

log PH,B(An) B . v _
msup—aaig = o \plf WG
where

Aso ={P:3(x1,...,xn) € An, P, — P up to a subsequence} .



Extensions (ongoing)

» With T. Leblé, full LDP at speed n?>~2/? with rate function
B~
where Ent is a specific relative entropy with respect to a

Poisson-type process.
» With M. Petrache, case of Riesz kernel interaction potential:

1
Hn(Xl,...,Xn):Zm—FnZV(Xi) d—-2<s<d
i j :

similar “renormalized energy" derived for minimizers



Thank you for your attention!



