Energy approach to Coulomb and log gases

Sylvia SERFATY

Université P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions & Courant Institute, New York University

IHP, 21 mars 2014

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

The classical Coulomb gas

$$H_n(x_1, \dots, x_n) = \sum_{i \neq j} w(x_i - x_j) + n \sum_{i=1}^n V(x_i) \qquad x_i \in \mathbb{R}^d$$
$$w(x) = \frac{1}{|x|^{d-2}} \quad \text{if } d \ge 3 \qquad = -\log|x| \quad \text{if } d = 2$$
$$-\Delta w = c_d \delta_0$$

V confining potential, sufficiently smooth and growing at infinity Can be considered for d = 1 and $-\log$, then "log gas" With temperature: Gibbs measure

$$d\mathbb{P}_{n,\beta}(x_1,\cdots,x_n)=\frac{1}{Z_{n,\beta}}e^{-\frac{\beta}{2}H_n(x_1,\ldots,x_n)}dx_1\ldots dx_n \qquad x_i\in\mathbb{R}^n$$

 $Z_{n,\beta}$ partition function Limit $n \to \infty$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The classical Coulomb gas

$$H_n(x_1, \dots, x_n) = \sum_{i \neq j} w(x_i - x_j) + n \sum_{i=1}^n V(x_i) \qquad x_i \in \mathbb{R}^d$$
$$w(x) = \frac{1}{|x|^{d-2}} \quad \text{if } d \ge 3 \qquad = -\log|x| \quad \text{if } d = 2$$
$$-\Delta w = c_d \delta_0$$

V confining potential, sufficiently smooth and growing at infinity Can be considered for d=1 and $-\log$, then "log gas" With temperature: Gibbs measure

$$d\mathbb{P}_{n,\beta}(x_1,\cdots,x_n)=\frac{1}{Z_{n,\beta}}e^{-\frac{\beta}{2}H_n(x_1,\ldots,x_n)}dx_1\ldots dx_n \qquad x_i\in\mathbb{R}^n$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

 $Z_{n,\beta}$ partition function Limit $n \to \infty$?

The classical Coulomb gas

$$H_n(x_1, \dots, x_n) = \sum_{i \neq j} w(x_i - x_j) + n \sum_{i=1}^n V(x_i) \qquad x_i \in \mathbb{R}^d$$
$$w(x) = \frac{1}{|x|^{d-2}} \quad \text{if } d \ge 3 \qquad = -\log|x| \quad \text{if } d = 2$$
$$-\Delta w = c_d \delta_0$$

V confining potential, sufficiently smooth and growing at infinity Can be considered for d = 1 and $-\log$, then "log gas" With temperature: Gibbs measure

$$d\mathbb{P}_{n,\beta}(x_1,\cdots,x_n)=\frac{1}{Z_{n,\beta}}e^{-\frac{\beta}{2}H_n(x_1,\ldots,x_n)}dx_1\ldots dx_n \qquad x_i\in\mathbb{R}^n$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

 $Z_{n,\beta}$ partition function Limit $n \to \infty$?

statistical mechanics

d = 1 Coulomb kernel: completely solvable Lenard,

Aizenman-Martin, Brascamp-Lieb $d = 1 \log$ gas or $d \ge 2$ Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13

 connection to random matrices (first noticed by Wigner, Dyson), Valko-Virag, Bourgade-Erdös-Yau...

 weighted Fekete points, Fekete points on spheres Rakhmanov-Saff-Zhou

$$\min_{x_1,\ldots,x_n\in\mathbb{S}^d}-\sum_{i\neq j}\log|x_i-x_j|$$

► Riesz *s*-energy

$$\min_{x_1...x_n\in\mathbb{S}^d}\sum_{i\neq j}\frac{1}{|x_i-x_j|^s}$$

cf. Smale's 7th problem originating in computational complexity theory

Dac

statistical mechanics

d = 1 Coulomb kernel: completely solvable Lenard,

Aizenman-Martin, Brascamp-Lieb $d = 1 \log$ gas or $d \ge 2$ Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13

- connection to random matrices (first noticed by Wigner, Dyson), Valko-Virag, Bourgade-Erdös-Yau...
- weighted Fekete points, Fekete points on spheres Rakhmanov-Saff-Zhou

$$\min_{x_1,\ldots,x_n\in\mathbb{S}^d}-\sum_{i\neq j}\log|x_i-x_j|$$

▶ Riesz *s*-energy

$$\min_{x_1...x_n \in \mathbb{S}^d} \sum_{i \neq j} \frac{1}{|x_i - x_j|^s}$$

cf. Smale's 7th problem originating in computational complexity theory

statistical mechanics

d = 1 Coulomb kernel: completely solvable Lenard,

Aizenman-Martin, Brascamp-Lieb $d = 1 \log$ gas or $d \ge 2$ Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13

- connection to random matrices (first noticed by Wigner, Dyson), Valko-Virag, Bourgade-Erdös-Yau...
- weighted Fekete points, Fekete points on spheres Rakhmanov-Saff-Zhou

$$\min_{x_1,\ldots,x_n\in\mathbb{S}^d}-\sum_{i\neq j}\log|x_i-x_j|$$

► Riesz *s*-energy

$$\min_{x_1...x_n \in \mathbb{S}^d} \sum_{i \neq j} \frac{1}{|x_i - x_j|^s}$$

cf. Smale's 7th problem originating in computational complexity theory

statistical mechanics

d = 1 Coulomb kernel: completely solvable Lenard,

Aizenman-Martin, Brascamp-Lieb $d = 1 \log$ gas or $d \ge 2$ Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13

- connection to random matrices (first noticed by Wigner, Dyson), Valko-Virag, Bourgade-Erdös-Yau...
- weighted Fekete points, Fekete points on spheres Rakhmanov-Saff-Zhou

$$\min_{x_1,\ldots,x_n\in\mathbb{S}^d}-\sum_{i\neq j}\log|x_i-x_j|$$

Riesz s-energy

$$\min_{x_1...x_n\in\mathbb{S}^d}\sum_{i\neq j}\frac{1}{|x_i-x_j|^s}$$

cf. Smale's 7th problem originating in computational complexity theory

For (x_1, \ldots, x_n) minimizing H_n , one can prove

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n\delta_{x_i}}{n}=\mu_0\qquad\lim_{n\to\infty}\frac{\min H_n}{n^2}=\mathcal{E}(\mu_0)$$

where μ_0 is the unique minimizer of

$$\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

 \mathcal{E} has a unique minimizer μ_0 among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- ▶ Denote Σ = Supp(μ₀). We assume Σ is compact with C¹ boundary and μ₀ has a density bounded above and below on Σ with is C¹ in Σ.
- Example: $V(x) = |x|^2$, then $\mu_0 = \frac{1}{c_d} \mathbb{1}_{B_1}$ (circle law).
- ▶ With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, for d = 2)

For (x_1, \ldots, x_n) minimizing H_n , one can prove

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n\delta_{x_i}}{n}=\mu_0\qquad\lim_{n\to\infty}\frac{\min H_n}{n^2}=\mathcal{E}(\mu_0)$$

where μ_0 is the unique minimizer of

$$\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

 \mathcal{E} has a unique minimizer μ_0 among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- ▶ Denote $\Sigma = Supp(\mu_0)$. We assume Σ is compact with C^1 boundary and μ_0 has a density bounded above and below on Σ with is C^1 in Σ .
- Example: $V(x) = |x|^2$, then $\mu_0 = \frac{1}{c_J} \mathbb{1}_{B_1}$ (circle law).
- ▶ With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, for d = 2)

For (x_1, \ldots, x_n) minimizing H_n , one can prove

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n\delta_{x_i}}{n}=\mu_0\qquad\lim_{n\to\infty}\frac{\min H_n}{n^2}=\mathcal{E}(\mu_0)$$

where μ_0 is the unique minimizer of

$$\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

 \mathcal{E} has a unique minimizer μ_0 among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- ▶ Denote Σ = Supp(μ₀). We assume Σ is compact with C¹ boundary and μ₀ has a density bounded above and below on Σ with is C¹ in Σ.
- Example: $V(x) = |x|^2$, then $\mu_0 = \frac{1}{c_d} \mathbb{1}_{B_1}$ (circle law).
- ▶ With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, for d = 2)

For (x_1, \ldots, x_n) minimizing H_n , one can prove

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n\delta_{x_i}}{n}=\mu_0\qquad\lim_{n\to\infty}\frac{\min H_n}{n^2}=\mathcal{E}(\mu_0)$$

where μ_0 is the unique minimizer of

$$\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

 \mathcal{E} has a unique minimizer μ_0 among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- ▶ Denote Σ = Supp(μ₀). We assume Σ is compact with C¹ boundary and μ₀ has a density bounded above and below on Σ with is C¹ in Σ.
- Example: $V(x) = |x|^2$, then $\mu_0 = \frac{1}{c_d} \mathbb{1}_{B_1}$ (circle law).
- ▶ With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, for d = 2)

• For (x_1, \ldots, x_n) minimizing H_n , one can prove

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n\delta_{x_i}}{n}=\mu_0\qquad\lim_{n\to\infty}\frac{\min H_n}{n^2}=\mathcal{E}(\mu_0)$$

where μ_0 is the unique minimizer of

$$\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

 \mathcal{E} has a unique minimizer μ_0 among probability measures, called the equilibrium measure (Frostman 50's potential theory)

- ▶ Denote Σ = Supp(μ₀). We assume Σ is compact with C¹ boundary and μ₀ has a density bounded above and below on Σ with is C¹ in Σ.
- Example: $V(x) = |x|^2$, then $\mu_0 = \frac{1}{c_4} \mathbb{1}_{B_1}$ (circle law).
- ▶ With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, for d = 2)
- ► Expanding $\sum_{i=1}^{n} \delta_{x_i}$ as $n\mu_0 + (\sum_{i=1}^{n} \delta_{x_i} n\mu_0)$ and inserting into H_n we are able to look into next order terms.

- ► In Sandier-S, we developed an essentially 2D approach to the problem, inspired from our work on the Ginzburg-Landau functional of superconductivity. Relies on "ball construction methods", introduced by Jerrard, Sandier in the context of GL. Works for -log in d = 1, 2.
- ► In Rougerie-S we developed an approach valid for any d ≥ 2, based instead on Onsager's lemma (smearing out the charges). (Previous related work Rougerie-S-Yngvason)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Theorem (ground state energy, Rougerie-S $d \ge 2$, Sandier-S d = 1, 2)

Under suitable assumptions on V, as $n \to \infty$ we have

$$\min H_n = \begin{cases} n^2 \mathcal{E}(\mu_0) + n^{2-2/d} \left(\frac{\alpha_d}{c_d} \int \mu_0^{2-2/d}(x) dx + o(1) \right) & \text{if } d \ge 3 \\ n^2 \mathcal{E}(\mu_0) - \frac{n}{2} \log n + n \left(\frac{\alpha_2}{2\pi} - \frac{1}{2} \int \mu_0(x) \log \mu_0(x) dx + o(1) \right) & \text{if } d = 2 \\ n^2 \mathcal{E}(\mu_0) - n \log n + n \left(\frac{\alpha_1}{2\pi} - \int \mu_0(x) \log \mu_0(x) dx + o(1) \right) & \text{if } d = 1 \end{cases}$$
where $\alpha_d = \min \mathcal{W}$ depends only on d (see later).

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Theorem (ctd, free energy expansion)

Assume there exists $\beta_1 > 0$ such that $\begin{cases} \int e^{-\beta_1 V(x)/2} dx < \infty \text{ when } d \ge 3 \\ \int e^{-\beta_1 (\frac{V(x)}{2} - \log |x|)} dx < \infty \text{ when } d = 2. \end{cases}$ Let $F_{n,\beta} = -\frac{2}{\beta} \log Z_{n,\beta} \text{ free energy.}$ if $d \ge 3$ and $\beta \ge cn^{2/d-1}$ or d = 2 and $\beta \ge c(\log n)^{-1}$ $|F_{n,\beta} - \min H_n| \le o(n^{2-2/d}) + C\frac{n}{\beta}.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \rightsquigarrow transition regime $eta \propto {\it n}^{2/d-1}$

Theorem (ctd, free energy expansion)

Assume there exists $\beta_1 > 0$ such that $\begin{cases} \int e^{-\beta_1 V(x)/2} dx < \infty \text{ when } d \ge 3 \\ \int e^{-\beta_1 (\frac{V(x)}{2} - \log |x|)} dx < \infty \text{ when } d = 2. \end{cases}$ Let $F_{n,\beta} = -\frac{2}{\beta} \log Z_{n,\beta} \text{ free energy.}$ if $d \ge 3$ and $\beta \ge cn^{2/d-1}$ or d = 2 and $\beta \ge c(\log n)^{-1}$ $|F_{n,\beta} - \min H_n| \le o(n^{2-2/d}) + C\frac{n}{\beta}.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \rightsquigarrow transition regime $\beta \propto n^{2/d-1}$

Blow-up procedure and jellium

After blow up the points should interact according to a Coulomb interaction, but screened by a fixed background charge: jellium

 $\exists \cdot b$

Sac

 $\equiv \rightarrow$

< A > <

- Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_i} n\mu_0$, and blow up.
- ► Set $\mu'_0(x') = \mu_0(x'n^{-1/d})$, blown-up background density and for x_1, \ldots, x_n , set $x'_i = n^{1/d}x_i$ and

$$h_n(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_0 \right) = w * \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_0 \right)$$

- For any x, η > 0, let δ^(η)_x = 1/|B(0,η)|</sub> 1[∎]_{B(x,η)}, "smeared out" Dirac mass at scale η
- ▶ Newton's theorem: the potentials generated by δ_0 and $\delta_0^{(\eta)}$ (i.e. $w * \delta_0 = w$ and $w * \delta_0^{(\eta)}$) coincide outside $B(0, \eta)$, and $w \ge w * \delta_0^{(\eta)}$. Then

$$h_{n,\eta}(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^n \delta_{x_i}^{(\eta)} - \mu_0' \right) = w * \left(\cdots \right)$$

can be defined unambiguously and coincides with h_n outside $\bigcup_i B(x'_i, \eta)$.

- ► Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_i} n\mu_0$, and blow up.
- ► Set $\mu'_0(x') = \mu_0(x'n^{-1/d})$, blown-up background density and for x_1, \ldots, x_n , set $x'_i = n^{1/d}x_i$ and

$$h_n(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_0 \right) = w * \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_0 \right)$$

- For any x, η > 0, let δ^(η)_x = 1/|B(0,η)|</sub> 1 B_(x,η), "smeared out" Dirac mass at scale η
- Newton's theorem: the potentials generated by δ₀ and δ₀^(η) (i.e. w * δ₀ = w and w * δ₀^(η)) coincide outside B(0, η), and w ≥ w * δ₀^(η). Then

$$h_{n,\eta}(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^n \delta_{x_i}^{(\eta)} - \mu_0' \right) = w * \left(\cdots \right)$$

can be defined unambiguously and coincides with h_n outside $\cup_i B(x'_i, \eta)$.

- ► Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_i} n\mu_0$, and blow up.
- ► Set $\mu'_0(x') = \mu_0(x'n^{-1/d})$, blown-up background density and for x_1, \ldots, x_n , set $x'_i = n^{1/d}x_i$ and

$$h_n(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_0 \right) = w * \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_0 \right)$$

- For any x, η > 0, let δ^(η)_x = 1/|B(0,η)|</sub> 1 B_(x,η), "smeared out" Dirac mass at scale η
- Newton's theorem: the potentials generated by δ₀ and δ₀^(η) (i.e. w * δ₀ = w and w * δ₀^(η)) coincide outside B(0, η), and w ≥ w * δ₀^(η). Then

$$h_{n,\eta}(x') = -c_d \Delta^{-1} \Big(\sum_{i=1}^n \delta_{x_i'}^{(\eta)} - \mu_0' \Big) = w * \Big(\cdots \Big)$$

can be defined unambiguously and coincides with h_n outside $\bigcup_i B(x'_i, \eta)$.

- ► Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_i} n\mu_0$, and blow up.
- ► Set $\mu'_0(x') = \mu_0(x'n^{-1/d})$, blown-up background density and for x_1, \ldots, x_n , set $x'_i = n^{1/d}x_i$ and

$$h_n(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_0 \right) = w * \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_0 \right)$$

- For any x, η > 0, let δ^(η)_x = 1/|B(0,η)|</sub> 𝔅_{B(x,η)}, "smeared out" Dirac mass at scale η
- Newton's theorem: the potentials generated by δ₀ and δ₀^(η) (i.e. w * δ₀ = w and w * δ₀^(η)) coincide outside B(0, η), and w ≥ w * δ₀^(η). Then

$$h_{n,\eta}(x') = -c_d \Delta^{-1} \Big(\sum_{i=1}^n \delta_{x'_i}^{(\eta)} - \mu'_0 \Big) = w * \Big(\cdots \Big)$$

can be defined unambiguously and coincides with h_n outside $\bigcup_i B(x'_i, \eta)$.

Splitting formula

As in Onsager's lemma (used in "stability of matter", cf Lieb-Oxford, Lieb-Seiringer): from Newton's theorem we have

$$\sum_{i \neq j} w(x_i - x_j) \ge \sum_{i \neq j} \iint w(x - y) \delta_{x_i}^{(\ell)}(x) \delta_{x_j}^{(\ell)}(y)$$

$$= \iint w(x - y) \Big(\sum_{i=1}^n \delta_{x_i}^{(\ell)} \Big)(x) \Big(\sum_{j=1}^n \delta_{x_j}^{(\ell)} \Big)(y) - n \underbrace{\iint w(x - y) \delta_0^{(\ell)}(x) \delta_0^{(\ell)}(y)}_{\text{cst self-interaction term} = \kappa_d c_d^{-1} w(\ell)}$$

Insert splitting $\sum_{i=1}^{n} \delta_{x_i}^{(\ell)} = n\mu_0 + \left(\sum_{i=i}^{n} \delta_{x_i}^{(\ell)} - n\mu_0\right)$ and characterization of μ_0 :

$$w * \mu_0 + \frac{1}{2}V = \zeta + \left(\frac{1}{2}\mathcal{E}(\mu_0) + \iint w(x-y) \, d\mu_0(x) d\mu_0(y)\right)$$

for some function $\zeta \ge 0$, $\zeta = 0$ in Σ . Then choose $\ell = \eta n^{-1/d}$ and blow-up everything by $n^{1/d}$.

Splitting formula

As in Onsager's lemma (used in "stability of matter", cf Lieb-Oxford, Lieb-Seiringer): from Newton's theorem we have

$$\sum_{i \neq j} w(x_i - x_j) \ge \sum_{i \neq j} \iint w(x - y) \delta_{x_i}^{(\ell)}(x) \delta_{x_j}^{(\ell)}(y)$$

$$= \iint_{i=1}^n w(x - y) \Big(\sum_{i=1}^n \delta_{x_i}^{(\ell)} \Big)(x) \Big(\sum_{j=1}^n \delta_{x_j}^{(\ell)} \Big)(y) - n \underbrace{\iint_{i=1}^n w(x - y) \delta_0^{(\ell)}(x) \delta_0^{(\ell)}(y)}_{\text{cst self-interaction term} = \kappa_d c_d^{-1} w(\ell)}$$

Insert splitting $\sum_{i=1}^{n} \delta_{x_i}^{(\ell)} = n\mu_0 + \left(\sum_{i=i}^{n} \delta_{x_i}^{(\ell)} - n\mu_0\right)$ and characterization of μ_0 :

$$w * \mu_0 + \frac{1}{2}V = \zeta + \left(\frac{1}{2}\mathcal{E}(\mu_0) + \iint w(x-y) d\mu_0(x)d\mu_0(y)\right)$$

for some function $\zeta \ge 0$, $\zeta = 0$ in Σ . Then choose $\ell = \eta n^{-1/d}$ and blow-up everything by $n^{1/d}$.

Splitting formula

As in Onsager's lemma (used in "stability of matter", cf Lieb-Oxford, Lieb-Seiringer): from Newton's theorem we have

$$\sum_{i \neq j} w(x_i - x_j) \ge \sum_{i \neq j} \iint w(x - y) \delta_{x_i}^{(\ell)}(x) \delta_{x_j}^{(\ell)}(y)$$

$$= \iint_{i=1}^n w(x - y) \Big(\sum_{i=1}^n \delta_{x_i}^{(\ell)} \Big)(x) \Big(\sum_{j=1}^n \delta_{x_j}^{(\ell)} \Big)(y) - n \underbrace{\iint_{i=1}^n w(x - y) \delta_0^{(\ell)}(x) \delta_0^{(\ell)}(y)}_{\text{cst self-interaction term} = \kappa_d c_d^{-1} w(\ell)}$$

Insert splitting $\sum_{i=1}^{n} \delta_{x_i}^{(\ell)} = n\mu_0 + \left(\sum_{i=i}^{n} \delta_{x_i}^{(\ell)} - n\mu_0\right)$ and characterization of μ_0 :

$$w * \mu_0 + \frac{1}{2}V = \zeta + \left(\frac{1}{2}\mathcal{E}(\mu_0) + \iint w(x-y) d\mu_0(x)d\mu_0(y)\right)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for some function $\zeta \ge 0$, $\zeta = 0$ in Σ . Then choose $\ell = \eta n^{-1/d}$ and blow-up everything by $n^{1/d}$.

Proposition (Splitting formula)
For
$$d \ge 2$$
, for any n , $(x_1, ..., x_n)$, $\eta > 0$,
 $H_n(x_1, ..., x_n) \ge n^2 \mathcal{E}(\mu_0) - \left(\frac{n}{2}\log n\right) \mathbb{1}_{d=2}$
 $+ n^{1-2/d} \left[\frac{1}{c_d} \left(\int_{\mathbb{R}^d} |\nabla h_{n,\eta}|^2 - n\kappa_d w(\eta)\right) - C\eta^2\right] + 2n \sum_{i=1}^n \zeta(x_i)$.

The next step is to study the term in brackets and take its limit $n \to \infty,$ then $\eta \to 0.$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The renormalized energy

Recall

$$-\Delta h_n = c_d (\sum_{i=1}^n \delta_{x'_i} - \mu'_0).$$

Centering the blow-up around a point $x_0 \in \Sigma$, in the limit $n \to \infty$ we get solutions to

$$-\Delta h = c_d \Big(\sum_{p \in \Lambda} N_p \delta_p - \mu_0(x_0) \Big) \longleftrightarrow - \Delta h_\eta = c_d \Big(\sum_{p \in \Lambda} N_p \delta_p^{(\eta)} - \mu_0(x_0) \Big)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A infinite discrete set of points in \mathbb{R}^d , $N_p \in \mathbb{N}^*$.

Definition

Let m > 0. Call $\overline{\mathcal{A}}_m$ the class of ∇h such that

$$-\Delta h = c_d \Big(\sum_{p \in \Lambda} N_p \delta_p - m\Big)$$

(日) (四) (日) (日) (日)

nac

with $N_p \in \mathbb{N}^*$ and \mathcal{A}_m the class of ∇h such that all $N_p = 1$.

Definition (Rougerie-S) Set $K_R = [-R, R]^d$. For $\nabla h \in \overline{\mathcal{A}}_m$ we let $\mathcal{W}(\nabla h) = \liminf_{\eta \to 0} \left(\limsup_{R \to \infty} \int_{\mathcal{K}_R} |\nabla h_\eta|^2 - \kappa_d m w(\eta)\right).$

Alternate definition by Sandier-S in d = 1, 2, originating in Ginzburg-Landau theory.

Definition

Let m > 0. Call $\overline{\mathcal{A}}_m$ the class of ∇h such that

$$-\Delta h = c_d \Big(\sum_{p \in \Lambda} N_p \delta_p - m\Big)$$

with $N_p \in \mathbb{N}^*$ and \mathcal{A}_m the class of ∇h such that all $N_p = 1$.

Definition (Rougerie-S) Set $K_R = [-R, R]^d$. For $\nabla h \in \overline{\mathcal{A}}_m$ we let $\mathcal{W}(\nabla h) = \liminf_{\eta \to 0} \left(\limsup_{R \to \infty} f_{K_R} |\nabla h_\eta|^2 - \kappa_d m w(\eta)\right).$

・ロト ・ 中 ・ エ ・ ・ エ ・ うくつ

Alternate definition by Sandier-S in d = 1, 2, originating in Ginzburg-Landau theory.

Definition

Let m > 0. Call $\overline{\mathcal{A}}_m$ the class of ∇h such that

$$-\Delta h = c_d \Big(\sum_{p \in \Lambda} N_p \delta_p - m\Big)$$

with $N_p \in \mathbb{N}^*$ and \mathcal{A}_m the class of ∇h such that all $N_p = 1$.

Definition (Rougerie-S) Set $K_R = [-R, R]^d$. For $\nabla h \in \overline{\mathcal{A}}_m$ we let $\mathcal{W}(\nabla h) = \liminf_{\eta \to 0} \left(\limsup_{R \to \infty} \int_{\mathcal{K}_R} |\nabla h_\eta|^2 - \kappa_d m w(\eta)\right).$

Alternate definition by Sandier-S in d = 1, 2, originating in Ginzburg-Landau theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

- If $\mathcal{W}(\nabla h) < +\infty$ then $\lim_{R \to \infty} \oint_{\mathcal{K}_R} (\sum_p N_p \delta_p) = m$.
- By scaling, one can reduce to $\overline{\mathcal{A}}_1$, with

$$\inf_{\overline{A}_{m}} \mathcal{W} = m^{2-2/d} \inf_{\overline{A}_{1}} \mathcal{W} \qquad d \ge 3$$
$$= m \left(\inf_{\overline{A}_{1}} \mathcal{W} - \pi \log m \right) \qquad d = 2$$

► W is bounded below, and has minimizers over A
₁, even sequences of periodic minimizers (with larger and larger period)

・ロト ・ 中 ・ エ ・ ・ エ ・ うくつ

Assume Λ is \mathbb{T} -periodic. Then W is $+\infty$ unless all $N_p = 1$, and can be written as a function of $\Lambda^{"} = "\{a_1, \ldots, a_M\}$, $M = |\mathbb{T}|$.

$$\mathcal{W}(a_1,\cdots,a_M)=rac{c_d^2}{|\mathbb{T}|}\sum_{j\neq k}G(a_j-a_k)+cst,$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

where G = Green's function of the torus $(-\Delta G = \delta_0 - 1/|\mathbb{T}|)$.

We can look for minimizers of ${\cal W}$ among perfect lattice configurations (Bravais lattices) with unit volume.

Theorem (Sandier-S.)

In dimension d = 1 ($w = -\log$), the minimum of W over all possible configurations is achieved for the lattice \mathbb{Z} . In dimension d = 2, the minimum of W over perfect lattice configurations is achieved uniquely, modulo rotations, by the triangular lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda, 50's, on the minimization of $\zeta(s) = \sum_{\rho \in \Lambda} \frac{1}{|\rho|^s}$.

There is no corresponding result in higher dimension! In dimension 3, does the FCC (face centered cubic) lattice play this role?

We can look for minimizers of ${\cal W}$ among perfect lattice configurations (Bravais lattices) with unit volume.

Theorem (Sandier-S.)

In dimension d = 1 ($w = -\log$), the minimum of W over all possible configurations is achieved for the lattice \mathbb{Z} . In dimension d = 2, the minimum of W over perfect lattice configurations is achieved uniquely, modulo rotations, by the triangular lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda, 50's, on the minimization of $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$.

There is no corresponding result in higher dimension! In dimension 3, does the FCC (face centered cubic) lattice play this role?

We can look for minimizers of ${\cal W}$ among perfect lattice configurations (Bravais lattices) with unit volume.

Theorem (Sandier-S.)

In dimension d = 1 ($w = -\log$), the minimum of W over all possible configurations is achieved for the lattice \mathbb{Z} . In dimension d = 2, the minimum of W over perfect lattice configurations is achieved uniquely, modulo rotations, by the triangular lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda, 50's, on the minimization of $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$.

There is no corresponding result in higher dimension! In dimension 3, does the FCC (face centered cubic) lattice play this role?

Conjecture

In dimension 2, the "Abrikosov" triangular lattice is a global minimizer of \mathcal{W} .

Bétermin shows that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order *n* term in the expansion of the minimal logarithmic energy on S^2 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへ⊙

Conjecture

In dimension 2, the "Abrikosov" triangular lattice is a global minimizer of \mathcal{W} .

Bétermin shows that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order *n* term in the expansion of the minimal logarithmic energy on \mathbb{S}^2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Equidistribution of points and energy in dimension 2

Theorem (Rota Nodari-S)

Let $(x_1, \ldots, x_n) \subset (\mathbb{R}^2)^n$ minimize H_n , and assume the equilibrium measure $\mu_0 \in L^{\infty}$, then - for all $i, x_i \in \Sigma$ - letting $\nu'_n = \sum_i \delta_{x'_i}$, if $\ell \ge c > 0$ and $dist(K_\ell(a), \partial \Sigma') \ge n^{\beta/2}$ ($\beta < 1$), we have

$$\limsup_{n\to\infty}\left|\nu_n'(K_\ell(a))-\int_{K_\ell(a)}\mu_0'(x)\,dx\right|\leq C\ell.$$

- equidistribution of energy

$$\begin{split} \lim_{n\to\infty,\eta\to 0} \sup_{|\nabla h_{n,\eta}'|^2 - \kappa_d \nu_n'(\mathcal{K}_\ell(a)) w(\eta)} \\ & - \int_{\mathcal{K}_\ell(a)} (\min_{\overline{\mathcal{A}}_{\mu_n'(x)}} \mathcal{W}) \, dx \bigg| \leq o_\ell(\ell^2). \end{split}$$

- Method inspired by Alberti-Choksi-Otto
- \blacktriangleright We prove the same for minimizers of ${\mathcal W}$ themselves
- Should work also in $d \ge 3$
- ▶ Compare to Ameur- Ortega Cerda: only first result, with $o(\ell^2)$ error.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

The averaged formulation

► Let $(x_1, ..., x_n) \in (\mathbb{R}^d)^n$. We denote P_n the probability, push-forward of the normalized Lebesgue measure on Σ by

 $x \mapsto (x, \nabla h_n(n^{1/d}x + \cdot))$

where h_n is the potential generated by $\sum_{i=1}^n \delta_{x'_i} - \mu'_0$.

- ► If the next order terms in H_n are bounded by Cn^{2-2/d}, then P_n is tight and up to a subsequence converges to some probability P
- ▶ *P* belongs to the class *C* of probabilities on $(x, \nabla h)$'s such that
 - The first marginal of P is the normalized Lebesgue measure on Σ, and P is translation-invariant
 - 2. For P-a.e. $(x, \nabla h)$, we have $\nabla h \in \overline{\mathcal{A}}_{\mu_0(x)}$.

• Define then $\widetilde{\mathcal{W}}(P) = \frac{|\Sigma|}{c_d} \int \mathcal{W}(\nabla h) \, dP(x, \nabla h)$

$$\min_{\mathcal{C}} \widetilde{\mathcal{W}} = \frac{1}{c_d} \int_{\Sigma} \min_{\overline{\mathcal{A}}_{\mu_0(\mathbf{x})}} \mathcal{W} \, d\mathbf{x}.$$

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

Theorem (Rougerie-S)

Let $d \ge 2$, $(x_1, \ldots, x_n) \in (\mathbb{R}^d)^n$ and P_n be as above. Up to extraction of a subsequence, we have $P_n \rightarrow P \in C$ and

$$\liminf_{n\to\infty} n^{2/d-2} \left(H_n(x_1,\ldots,x_n) - n^2 \mathcal{E}(\mu_0) + (\frac{n}{2}\log n) \mathbb{1}_{d=2} \right) \geq \widetilde{\mathcal{W}}(P).$$

This lower bound is sharp, thus for minimizers of H_n

$$\liminf_{n\to\infty} n^{2/d-2} \left(\min H_n - n^2 \mathcal{E}(\mu_0) + \left(\frac{n}{2} \log n\right) \mathbb{1}_{d=2} \right) = \min_{\mathcal{C}} \widetilde{\mathcal{W}}$$

and P minimizes \widetilde{W} over C (i.e. P-a.e. $(x, \nabla h)$ we have ∇h minimizes W over $\overline{\mathcal{A}}_{\mu_0(x)}$).

Informally: for minimizers, after blow-up around "almost every point in Σ ", we get in the limit $n \to \infty$ an infinite configuration of points minimizing W in the corresponding class.

Theorem (Rougerie-S $d \ge 3$, Sandier-S d = 2)

Let $\bar{\beta} = \limsup_{n \to +\infty} \beta n^{1-2/d}$, assume $\bar{\beta} > 0$. Then, there exists $C_{\bar{\beta}}$ such that $\lim_{\bar{\beta}\to\infty} C_{\bar{\beta}} = 0$, and if $A_n \subset (\mathbb{R}^d)^n$

$$\limsup_{n\to\infty} \frac{\log \mathbb{P}_{n,\beta}(A_n)}{n^{2-2/d}} \leq -\frac{\beta}{2} \left(\inf_{P \in A_\infty} \widetilde{\mathcal{W}} - \xi_d - C_{\bar{\beta}} \right)$$

where

 $A_{\infty} = \{P : \exists (x_1, \dots, x_n) \in A_n, P_n \to P \text{ up to a subsequence} \}.$

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

Extensions (ongoing)

• With T. Leblé, full LDP at speed $n^{2-2/d}$ with rate function

$$rac{eta}{2}\widetilde{\mathcal{W}}(P)+\mathit{Ent}(P)$$

where *Ent* is a specific relative entropy with respect to a Poisson-type process.

▶ With M. Petrache, case of Riesz kernel interaction potential:

$$H_n(x_1,...,x_n) = \sum_{i \neq j} \frac{1}{|x_i - x_j|^s} + n \sum_{i=1}^n V(x_i) \quad d-2 < s < d$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

similar "renormalized energy" derived for minimizers

Thank you for your attention!