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J. Barré + D. Chiron, T. Goudon, N. Masmoudi, D. Métivier, R.
Kaiser, G. Labeyrie, B. Marcos, D. Wilkowski, M. Chalony, A. Olivetti

U. of Nice-Sophia Antipolis and U. of Orléans, and Institut Universitaire de
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A magneto optical trap



Outline

1. Magneto-optical trap modelling: why do they -partially- fit
into this conference’s topic?
Dalibard 1988, Walker-Sesko-Wieman 1990.

2. Analogy with non-neutral plasmas: cloud’s shape, cloud’s
dynamics, variational structures.

3. More realistic modelling: all the variational structure is lost!
What can we do?



Basic principle of a Magneto-Optical trap, 1

Trapping and cooling atoms with lasers: techniques developed
during the 70s and 80s.

• Classical (ie not quantum) description for atoms; quantum
description for light
• Basic mechanism: interactions between photons and atoms

energy hν0

photon,
frequency two-level atom

Atom at rest: absorption probability max. when ν=ν0

Momentum conservation → effective force on the atoms.
Timescale considered for the atomic dynamics: many cycles
absorption/spontaneous emission → description by an averaged
force



Basic principle of a Magneto-Optical trap, 2

• Trapping in velocity space

Red detuned laser beams

Velocity Net force

Moving atom

The laser frequency is slightly below an atomic resonance:
→ Doppler cooling

• Trapping in space: similar idea, uses a magnetic field gradient

→ an (over)simplified vision: linear friction (−κ~v) + velocity
diffusion + external trapping potential (∼ quadratic, anisotropic)



Effective long range repulsion in a Magneto-Optical trap

Photons

Laser Laser

Multiple diffusion and effective force

atomic cloud

"Coulombian" effective force

→ ~Fi ∝
∑
j

~ri − ~rj
|~ri − ~rj |3

The 1/r2 dependence of the force comes from the solid angle in
3D.

Again, this is an oversimplification; more or less a ”standard
model” (Sesko, Walker, Wieman 1990).



Effective long range attraction in a Magneto-Optical trap
• Shadow effect:

Laser Laser

Laser intensities decrease while propagating into the cloud
→ effective force towards the center
Weak absorption approximation: ∇ · Fshadow ∝ −ρ (Dalibard 1988)

→ Just like gravitation. . . but it does not derive from a potential!

In most experimental situation, the repulsive force is stronger

∇ · FCoulomb = c1ρ , ∇ · Fshadow = −c2ρ , with 0 < c2 < c1

→ standard approximation: replace c1 by CCoulomb = c1 − c2.



Part 2: First model = dissipative non neutral plasma

• Effective 2-body Coulomb force + external trapping potential +
linear friction + velocity diffusion (no magnetic force).

• In typical MOTs, interaction can be ”strong” (with respect to
temperature) for large clouds, but correlations remain weak

→ Basic equation = Vlasov-Poisson-Fokker-Planck, for the one
particle density f (x, v, t)

∂t f + v · ∇x f − (∇xΦext +∇xΦCoulomb) · ∇v f = ∇v · (vf + θ∇v f )

∆xΦCoulomb = −CCoulombρ, ρ(t, x) =

∫
f (t, x, v) dv

• Lyapunov functional, dF/dt ≤ 0

F [f ] = θ

∫
f ln fdxdv+

∫
v2

2
fdxdv+

∫
f Φextdxdv+

1

2

∫
f ΦCoulombdxdv



Cloud’s shape

Stationary solution of VFP equation separable:

fstat(x, v) = ρstat(x) (2πθ)−d/2 e−
v2

2θ

Equilibrium density ρstat(x), normalized as
∫
ρstat(x)dx = 1, given

by the minimization problem:

min

{
θ

∫
ρ ln ρdx +

∫
Φext(x)ρ(x)dx +

1

2

∫
ΦCoulomb(x)ρ(x)dx

}
with ∆ΦCoulomb = −CCoulombρ, and CCoulomb ∝ N.

Small N → negligible interactions ρstat ∝ e−
Φext(x)

2θ

Large N → strong interactions; classical problem...



Cloud’s shape - strong interaction regime
• Leading order: balance interaction / external potential

min

{∫
Φext(x)ρ(x)dx +

1

2

∫
ΦCoulomb(x)ρ(x)dx

}
Typically: the optimal ρstat has compact support K; on K,
ρstat = ∆Φext. K is not always easy to find...

• + boundary layers where θ (temperature) is important to match
high and low density regions.

ρ
stat

= ΔΦ
ext

=0

boundary layer for small ϴ



Cloud’s shape - harmonic Φext

Φext =
1

2

(
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1

L2
1

+
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3
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3

)
; ∆Φext = cst.

Small miracle: an ellipsoid with constant charge density creates a
quadratic Coulomb potential inside the ellipsoid:

E =

{
x2

1

a1
1

+
x2

2

a2
2

+
x2

3

a2
3

≤ 1

}
; ∆Γ = −δ

Then (Γ ? IE)(x) is quadratic inside E (non trivial coefficients).

→ exact ”step-like” solution for all harmonic Φext

density = constant on a certain ellipsoid, almost zero outside.



Experimental measurements

The ”Coulomb model” explains qualitatively some experimental
observations

Cloud’s size as a function of N (number of atoms). Dashed line =

”Coulomb theory”. Experiment Camara et al. (INLN, Nice).

• Orders of magnitude (Rb experiments at INLN, U. of Nice):
Number of atoms∼ 106 − 1011. Cloud’s size∼ 0.2-10mm.
Temperature∼1mK



Cloud’s shape - pancake traps
• Take a ”pancake-shaped” trap

Φext =
1

2

(
x2

1

L2
1

+
x2

2

L2
2

+
x2

3

L2
3

)
with L1 = L2 > L3.
• Small interaction limit → cloud = gaussian shape, same aspect
ratio as the trap.
• Strong interaction limit → cloud = homogeneous ellipsoid with
axes a1 = a2 > a3.

ext
= Cteφ

Supp( n  )
e

Side view: some level sets of Φext (blue) and the support of ρstat (red).



Cloud’s shape - pancake traps

• Take a ”pancake-shaped” trap

Φext =
1

2

(
x2

1

L2
1
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3
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)
with L1 = L2 > L3.
• Small interaction limit → cloud = gaussian shape, same aspect
ratio as the trap.
• Strong interaction limit → cloud = homogeneous ellipsoid with
axes a1 = a2 > a3.
Explicit computations:

a1

a3
∼ π

4

(
L1

L3

)2

, when (L1/L3)→∞.

→ strongly enhanced anisotropy!



Cloud’s shape - cigar traps

• Take a ”cigar-shaped” trap

Φext =
1

2
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x2
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+
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2

+
x2

3

L2
3

)
with L1 > L2 = L3.
• Small interaction limit → cloud = gaussian shape, same aspect
ratio as the trap.
• Strong interaction limit → cloud = homogeneous ellipsoid with
axes a1 > a2 = a3. Explicit computations:

a1

a3
∼
√

2
L1

L3

√
ln

L1

L3
, when (L1/L3)→∞.

→ anisotropy only very weakly enhanced.



Beyond the one-particle density: dynamics

• Experiments: sometimes with external forces, or instabilities →
dynamical questions

Particles simulation
→ calls for a fluid description inside the domain K.



Beyond the one-particle density: dynamics

• Experiments: sometimes with external forces, or instabilities →
dynamical questions

Particles simulation
Theorem (B., Chiron, Goudon, Masmoudi): solutions of VP-FP
tends in the strong interaction-small temperature limit towards
solution of the incompressible Euler equation.



Beyond the one-particle density: correlations

I Strong Coulomb forces: liquid, or even crystal structure.

I Typical Magneto Optical Traps regimes: ”weak” interactions,
far from liquid or solid.

I Can one see the correlations anyway? Is there something like
a”Debye length” in MOTs?
→ more stringent test for the ”Coulomb picture”.
Current experiments at Institut Non Linéaire de Nice (G.
Labeyrie, D. Métivier).



Part 3: Taking really into account the shadow effect
• The ”shadow” force Fshadow(x) =

∫
K(x− y)ρ(y)dy

Laser

K1(x− y) = −c2

6
sgn(x1 − y1)δ(x2 − y2)δ(x3 − y3)

K2(x− y) = −c2

6
sgn(x2 − y2)δ(x1 − y1)δ(x3 − y3)

K3(x− y) = −c2

6
sgn(x3 − y3)δ(x2 − y2)δ(x1 − y1)



With the shadow effect. What do we loose?

What do we keep?

I Write a Vlasov-Fokker-Planck equation: still OK, at least
formally.

I Properties that depend only on the divergence ∇ · Fshadow.

What do we loose? not a reversible process any more.

I Back to particles: no explicit expression for the N-particles
stationary distribution (cf Gibbs distribution ∝ exp(−βHN)
with potential forces)

I No obvious Lyapunov functional for the Vlasov Fokker-Planck
equation → variational structure lost.

I Stationary solution of Vlasov-Fokker-Planck: never separable
in space/velocity. No easy way to compute them!



Somewhat simpler: large friction limit

• Overdamped limit: usually rather reasonable for experiments.
→ Write an equation for ρ alone:

∂tρ+∇ · J = 0 , J = (−∇Φext −∇ΦCoulomb + Fshadow)ρ−D∇ρ.

J = particles current.

• No stationary solution with J = 0 → presence of stationary
currents.
Existence, uniqueness, shape of stationary solutions not easy.

• Even simpler: investigate a small temperature regime, where
D∇ρ ”negligible”.



Small temperature regime

• At leading order, look for force balance:

−∇Φext −∇ΦCoulomb + Fshadow = 0

• Further small miracle: for some harmonic external potentials, one
can still construct a solution (Sesko et al. 90, Verkerk et al. 2013)
Assume a constant density on an ellipsoid K (axes x , y , z); then
Fshadow is linear inside K!
→ all forces are linear, one can find a solution ρstat=constant on
K, ρstat = 0 outside.

• Boundary layer where temperature matters: structure not clear...



Anisotropic traps: the shadow force can win
Hand waving argument:

Cleaner argument: from the exact solution. Take

∇·FCoulomb = c1ρ , ∇·Fshadow = −c2ρ = −γc1ρ , with 0 < γ < 1.

Then:

→ very different from the pure Coulomb gas!



Anisotropic traps: the shadow force can win
Hand waving argument:

Cleaner argument: from the exact solution. Take

∇·FCoulomb = c1ρ , ∇·Fshadow = −c2ρ = −γc1ρ , with 0 < γ < 1.

Then:

Pancake trap, "crèpe" (from Brittany) cloud



Numerical illustration 1



Numerical illustration 2

Pancake trap, "crèpe" (from Brittany) cloud



Pseudo self-gravitating regime

Use a very anisotropic (cigar or pancake) trap.
• Weak interaction (small N) → gaussian anisotropic cloud
• Strong interaction (large N) → step-like ∼ ”potato” cloud,
Coulomb dominated
• In between: regime with negligible repulsive interaction and
strong attraction

→ pseudo (Brownian) self gravitating systems in the lab!

Experimentally: set-up very anisotropic traps is not very easy, but
possible.

”Cigar” ∼ 1D gravity: explicitly solvable; no phase transition
”Pancake” ∼ 2D gravity: finite time singularity for diffusion D
small enough; but what happens with the shadow force?



Pseudo self-gravitating regime, 2

I Cigar traps: experiments (M. Chalony and D. Wilkowski)
qualitatively confirm the analysis; difficult to get quantitative
agreement...

I Pancake traps: work in progress
Simplest model (2D; integrated over the thin direction)

∂tρ+∇ · J = 0 , J = (−∇Φext + Fshadow)ρ− D∇ρ.

I Global existence for D large enough: OK (math. work in
progress with T. Goudon and D. Crisan)

I Finite-time singularity for D small enough??



Simulations in the pseudo self gravitating regime (2D)

• ”Large” D, D = 0.2

• ”Small” D, D = 0.1



Conclusion and open questions

I Standard traps, dominated by repulsion: plasma analogy. How
far can this be pushed? Can one observe a ”Debye length”?
→ this would characterize correlations in the cloud
Work and current experiments by D. Métivier, G. Labeyrie
and R. Kaiser.

I Traps dominated by the attraction (very anisotropic for
instance). Can one see experimental signatures of the non
potential force?
PhD thesis of V. Mancois, NTU Singapour and Université
Pierre et Marie Curie.

I Many mathematical challenges related to the non conservative
forces!



Cigar-shaped traps - experiments
• Experiment: Maryvonne Chalony, David Wilkowski (Institut Non
Linéaire de Nice)
• Strontium. Size ∼ 500µm; temperature ∼ 2µK ; number of
atoms ∼ 105.

Oven Slower 
Zeeman

Sr 
Beam



Experimental signatures

Theory, in the self gravitating limit (trap=negligible): L ∝ 1/N
L = cloud’s size; N = number of atoms
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N vs 1/L. Red: T ' 1.5µK , Blue: T ' 2.1µK ; the theory includes the trap.

Other experimental signatures: density profile; oscillation modes →
qualitative agreement; difficult to be more precise...



Dynamics: incompressible Euler limit (1)

Starting point = scaled Vlasov-Poisson-Fokker-Planck equation.
ε→ 0: strong interaction, strong external force; θ → 0: small
temperature.

∂t fε + v · ∇xfε −
(

1

ε
∇xΦext +∇xΦε

)
· ∇vfε = ∇v · (vfε + θ∇vfε) , (1)

∆xΦ = −1

ε
ρε, ρε(t, x) =

∫
fε(t, x , v) dv

Question: Solution of (1) → incompressible fluid dynamics?
More precisely: Take the first moment Jε(x, t) =

∫
fεdv.

Question: ρε(x , t)→ ρstat(x), Jε(x , t)→ ρstat(x)V(x , t)?{
∂tV +∇x · (V ⊗ V) +∇xp = −V on K + no flux on ∂K
∇x · (ρstatV) = 0,

(2)



Dynamics: incompressible Euler limit (2)

Statement of the Theorem (simplified!):
Main hypothesis:
Well prepared initial conditions: initial density and velocity
compatible with the limit equation; small potential energy, initial
velocity distribution close to a Dirac
→ fast ”sound wave” oscillations are ruled out.

Conclusions:
i) Density ρε → ρstat
ii) First velocity moment Jε → ρstatV

Method: The monokinetic approximation propagates in time.

Consequences: A simpler model to study the dynamics in certain
regimes.


