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Good point distributions

o Lattices
o Energy minimization, polarization
e Monte-Carlo

@ Other random point processes (jittered sampling,
determinantal)

e Covering/packing problems
o Low-discrepancy sets
o Cubature formulas

@ Uniform tessellation, almost isometric embeddings
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Discrepancy

o U: a set with a natural probability measure p
(e.g., [0,1]%, S, RY, etc.)
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Discrepancy

o U: a set with a natural probability measure p
(e.g., [0,1]%, S, RY, etc.)

e A - a collection of subsets of U (“test sets”, e.g., balls,
cubes, convex sets, spherical caps)
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Discrepancy

o U: a set with a natural probability measure p
(e.g., [0,1]%, S, RY, etc.)

e A - a collection of subsets of U (“test sets”, e.g., balls,
cubes, convex sets, spherical caps)

@ Choose an N-point set in Z C U

e Discrepancy of Z with respect to A:
#(Zn4)

Da(Z) = sup N n(A)].
AcA
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Discrepancy

o U: a set with a natural probability measure p
(e.g., [0,1]%, S, RY, etc.)

e A - a collection of subsets of U (“test sets”, e.g., balls,
cubes, convex sets, spherical caps)

@ Choose an N-point set in Z C U
e Discrepancy of Z with respect to A:

Da(Z) = Sub #(ZNHA) — n(A)|.

o Optimal discrepancy wrt A:

Dy(A) = _inf Da(2).
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Discrepancy

o U: a set with a natural probability measure p
(e.g., [0,1]%, S, RY, etc.)

e A - a collection of subsets of U (“test sets”, e.g., balls,
cubes, convex sets, spherical caps)

Choose an N-point set in Z C U

Discrepancy of Z with respect to A:

Da(Z) = Sub #(ZNHA) — n(A)|.

Optimal discrepancy wrt A:

Dy(A) = _inf Da(2).

e sup — L2-average: L? discrepancy.
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Spherical cap discrepancy

For x € S%, t € [~1, 1] define spherical caps:
Cla,t) = {y €S (x,y) > t}.

For a finite set Z = {21, 22, ..., z2n} C S? define

Dcap(Z) = sup M

—o(C(x,t))].
z€Se te[—1,1] N ( ( ))

Theorem (Beck, '84)

There exists constants cq, Cq > 0 such that

CaN™373 < _inf Deap(Z) < CaN~2721/log V.
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Spherical caps: L? Stolarsky Principle

Define the spherical cap L? discrepancy

l)cap,L2 /Sd/

NI

#(Zn C #(ZnC(xt) o(C(x,1))| dtdo(x)
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Spherical caps: L? Stolarsky Principle

Define the spherical cap L? discrepancy

l)cap,L2 /Sd/

Theorem (Stolarsky invariance principle)

NI

#(Zn C #(ZnC(xt) o(C(x,1))| dtdo(x)

For any finite set Z = {21, ...,zn} C S¢
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Spherical caps: L? Stolarsky Principle

Define the spherical cap L? discrepancy

cap,L2 / /
sd

N|=

ZﬂC:ct))

D

—o(C(x,t))| dtdo(x)

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1,...,z2n} C S¢

1 )
N2 Z l2i—2;ll + Cd{DL{cap] = const

i,j=1
_ /S /S |z — yll do(x)do(y).
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Spherical caps: L? Stolarsky Principle

Define the spherical cap L? discrepancy

l)cap,L2 /Sd/

N

2
ZmC #(ZnC,1) o(C(a, )| dtdo(x)

Theorem (Stolarsky invariance principle)

For any finite set Z = {21, ...,zn} C S¢
2
Cd |:Dcap,L2 (Z)] =
= [, [ I =l do@daty e
,5=1
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Spherical caps: L? Stolarsky Principle

Define the spherical cap L? discrepancy

l)cap,L2 /Sd/

N

2
ZmC #(ZnC,1) o(C(a, )| dtdo(x)

Theorem (Stolarsky invariance principle)

For any finite set Z = {21, ...,zn} C S¢
2
Cd |:Dcap,L2 (Z)] =
= [, [ I =l do@daty e
,5=1

e Proofs: Stolarsky (’73), Brauchart, Dick ('12), DB (’16).
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Spherical caps: L? Stolarsky Principle

@ Define the spherical cap discrepancy of fixed height ¢:

(® _
DY) (2):= /S d

1/2

1 N 2
N Z Lo (2) — U(C(w, t)) do(x)
j=1
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Spherical caps: L? Stolarsky Principle

@ Define the spherical cap discrepancy of fixed height ¢:

N ) 1/2
DY (7 .= 1 do(z)
L2 cap T <d N —

Z 1C(:v,t) (Zj) - U(C(xv t))
j=1
D0(2)] = sz (5,)N Cz.1) = (o(C 1))

3,j=1
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Spherical caps: L? Stolarsky Principle

@ Define the spherical cap discrepancy of fixed height ¢:

1/2
N 2
(t) . 1
DL27cap(Z) = ( s N;]-C(:v,t)(zj) - O'(C(aj,t)) dO'(JJ))
2

D) (2 } NZZ Czi,t) N C(z,1)) — (o(Cp,1)))?.

3,j=1

e Averaging over t € [—1, 1]
1

/U(C’(m,t) NC.t)dt = 1-Clle—yl

-1

1
/(a(C(p,t)))th _ 1—Cd//H$—de0(x)da(y).
-1

Sd_sd
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Hemisphere discrepancy

e L? discrepancy for spherical cap discrepancy of fixed height

t satisfies:
N
D8 2] =52 3 0(CG 1) N CG1) — (0(C 1)
i,j=1
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Hemisphere discrepancy

e L? discrepancy for spherical cap discrepancy of fixed height
t satisfies:

D)2 = NQZ (2:1) N C(2,0) = (o(Clp.1)))°

e Taking t = 0 (i.e. hemispheres)
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Hemisphere discrepancy

e L? discrepancy for spherical cap discrepancy of fixed height
t satisfies:

D)2 = NQZ (5,1) N C(2,) = (o(Clp.1)))°

i,j=1

e Taking t = 0 (i.e. hemispheres)

Theorem (Stolarsky for hemispheres, DB ’16, Skriganov ’16)

Dmitriy Bilyk Points on a sphere



Hemisphere Stolarsky: simple corollaries
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Hemisphere Stolarsky: simple corollaries

N
1 (1 1
(D12 hem (2)) = 5l > d(zi, )

ij=1
e For any Z = {z1,...,z2y} C $¢

1 N
N2 > d(z, ) <
ij—1

N | —
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Hemisphere Stolarsky: simple corollaries

N
1 (1 1
(D12 hem (2)) = 5l > d(zi, )

ij=1
e For any Z = {z1,...,z2y} C $¢

1 N
N2 > d(z, ) <
ij—1

N | —

@ For even N:

N
1 1
N2 E d(zi,z5) = 5= Z - symmetric.
Q=1
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Hemisphere Stolarsky: simple corollaries

N
1 (1 1
(D12 hem (2)) = 5l > d(zi, )

ij=1
e For any Z = {z1,...,z2y} C $¢

1 N
N2 > d(z, ) <
ij—1

N | —

@ For even N:

N
1 1
N2 Z d(zi,z5) = 5= Z - symmetric.
ij=1
@ For odd N the maximal value is

N
1 1 1
w2 2 Az =5 - o

ij=1
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Hemisphere Stolarsky: simple corollaries

o Fejes-Toth '59: d = 1 and conjectured for d > 2.
e Sperling, '60 (even N)
e Larcher, '61 (odd N)
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Hemisphere Stolarsky for general measures

Let u be a probability measure on S?. Define the geodesic
distance energy integral

Iy(p) Z//d(:vvy) dp(x)du(y).
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Hemisphere Stolarsky for general measures

Let u be a probability measure on S?. Define the geodesic
distance energy integral

Iy(p) Z//d(:vvy) dp(x)du(y).
Sd Sd

Let H(x) = C(x,0) denote the hemisphere with center at x.
Then the following version of the Stolarsky principle holds:

/ (M(H<x>> - ;)2da<x> = (; - Ig(u)>-
&
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Hemisphere Stolarsky for general measures

Let u be a probability measure on S?. Define the geodesic
distance energy integral

Iy(p) Z//d(:vvy) dp(x)du(y).
Sd Sd

Let H(x) = C(x,0) denote the hemisphere with center at x.
Then the following version of the Stolarsky principle holds:

/ (M(H<x>> - ;)2da<x> = (; - Ig(u)>-
&

e For any probability measure p:  I(p) < %
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Hemisphere Stolarsky for general measures

Let u be a probability measure on S?. Define the geodesic
distance energy integral

Iy(p) Z//d(:vvy) dp(x)du(y).
Sd Sd

Let H(x) = C(x,0) denote the hemisphere with center at x.
Then the following version of the Stolarsky principle holds:

/ (M(H<x>> - ;)2da<x> = (; - Ig(u)>-
&

e For any probability measure p:  I(p) < %
o I,(n) = 5 (i.e. pis a maximizer) iff
p(H(z)) = 3 for o-ae. z € S
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Hemisphere Stolarsky for general measures

Let u be a probability measure on S?. Define the geodesic
distance energy integral

Iy(p) Z//d(:vvy) dp(x)du(y).
Sd Sd

Let H(x) = C(x,0) denote the hemisphere with center at x.
Then the following version of the Stolarsky principle holds:

/ (M(H<x>> - ;)2da<x> = (; - Ig(u)>-
&

e For any probability measure p:  I(p) < %
o I,(n) = 5 (i.e. pis a maximizer) iff
p(H(z)) = 3 for o-ae. z €S? iff
w is symmetric, i.e. u(E) = p(—FE).
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Distance energy integrals

Let 1 be a Borel probability measure on S
Then

Ip(y) = / / & — yll du(a)dpy)
Sd Sd

has a unique maximizer p = o (Bjorck, '56)
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Distance energy integrals

Let 1 be a Borel probability measure on S
Then

1e) = [ [ lle = vl dut@du(y)
sd sd
has a unique maximizer p = o (Bjorck, '56)
However,
) = [ [ de.y) duteyinty)
Sd sd

is maximized by any symmetric measure p.
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Euclidean distance energy integrals

Let 11 be a Borel probability measure on the sphere S¢. For
A > 0 define the energy integral

I = // | — y[ () du(y)
Sd sd
Maximizers (Bjorck "56):
e 0 < A < 2: unique maximizer is surface measure,
@ A = 2: any measure with center of mass at 0,

@ A\ > 2: mass % at two opposite poles.
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Geodesic distance energy integrals

Let u be a Borel probability measure on the sphere S¢. For
A > 0 define the energy integral

A://wmmﬂwmww
Sd sd
Maximizers (DB, F. Dai '16):
e 0 < A\ < 1: unique maximizer is o,
e )\ = 1: any symmetric measure,

@ A > 1: mass % at two opposite poles.
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Geodesic distance energy integrals

Let u be a Borel probability measure on the sphere S¢. For
A > 0 define the energy integral

A://wmmﬂwmww
Sd sd
Maximizers (DB, F. Dai '16):
e 0 < A\ < 1: unique maximizer is o,
e )\ = 1: any symmetric measure,

@ A > 1: mass % at two opposite poles.

d = 1: Brauchart, Hardin, Saff, 12
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Tessellations of spheres (joint work with Michael La

Let x, y € S¢
choose a random hyperplane z*-, z € S¢.
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Tessellations of spheres (joint work with Michael Lace;

Let x, y € S¢
choose a random hyperplane z*-, z € S¢.

Then

P(z! separates x and ¥)
— P(sign{z, ) # sign(z, 3))
= d(z,y),

where d is the normalized geodesic
distance on the sphere, i.e.

cos~ Nz
d(w,y) = =2,

™
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Hamming distance

Consider a set of vectors Z = {21, 22, ..., zy } on the sphere S?.
Define the Hamming distance as

di(z,y) = #{Zk € Z: Sign(x&zk) # sign(y - Zk>}7

i.e. the proportion of hyperplanes sz that separate x and y.
In other words,

1
du(z,y) = N l¢z(x) — oz (Y1,
where ¢z : ST — HY = {1, +1}¥ c R¥ is given by

¢z(x) = {sign(z - 2) 3Ly = sign(Zz).
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The main question

Define
Az(z,y) :=du(z,y) —d(z,y).
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The main question

Define
Az(z,y) :=du(z,y) —d(z,y).

Let K C S?. We say that Z induces a §-uniform tessellation of
K if

sup ’Az(x,y)| <.

z,yeK
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The main question

Define
Az(z,y) :=du(z,y) —d(z,y).

Let K C S?. We say that Z induces a §-uniform tessellation of
K if
sup ’Az(x,y)| <.
z,yeK
Examples of K:
o K =8¢
o K finite

@ sparse vectors
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Motivation: almost isometric embeddings

Definition
Let X, Y be metric spaces. A d-isometric embedding of X into
Y (a 0-RIP map) is a map f : X — Y such that for each
z,y € X
|dx (z,y) — dy (f(x), f(y))] < 6.
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Motivation: almost isometric embeddings

Definition
Let X, Y be metric spaces. A d-isometric embedding of X into
Y (a 6-RIP map) is a map f: X — Y such that for each
z,y € X
|dx (z,y) — dy (f(x), f(y))] < 6.

Z is a ¢-uniform tessellation of K

iff
¢z(x) = {sign(z - z) }_,sign(Zz) is a 6-RIP map from K into
the Hamming cube HY = {-1,1}.
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Motivation: almost isometric embeddings

Definition

Let X, Y be metric spaces. A d-isometric embedding of X into
Y (a 6-RIP map) is a map f: X — Y such that for each
z,y € X

Z is a ¢-uniform tessellation of K

iff
¢z(x) = {sign(z - z) }_,sign(Zz) is a 6-RIP map from K into
the Hamming cube HY = {-1,1}.

Question: Given K C S% and 6 > 0, what is the smallest value
of N so that K can be d-isometrically embedded into HY?
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Motivation: almost isometric embeddings

Definition

Let X, Y be metric spaces. A d-isometric embedding of X into
Y (a 6-RIP map) is a map f: X — Y such that for each
z,y € X

Z is a d-uniform tessellation of K

iff
¢z(x) = {sign(z - z) }_,sign(Zz) is a 6-RIP map from K into
the Hamming cube HY = {-1,1}.
Question: Given K C S% and 6 > 0, what is the smallest value
of N so that K can be d-isometrically embedded into HY?

Prior results:
Plan, Vershynin, '13: N = C6 %w(K)? random points yield a
d-uniform tessellation of K with high probability.
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Motivation: cells with small diameter

Every cell of a §-uniform tessellation
T of K by hyperplanes has diameter at
most 9.

Sn.—l

Picture from Baraniuk, Foucart, Needell, Plan,

Wooters
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Motivation: cells with small diameter

Every cell of a §-uniform tessellation

T of K by hyperplanes has diameter at
most 9.
Proof:
gn-1 if z and y are in the same cell then
Picture from Baraniuk, Foucart, Needell, Plan, d(.’]}', y) = ’d(l’, y) — dH((L’, ’y) ‘ S (5
‘Wooters —0
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Motivation: one-bit compressed sensing

o Let x € K C S™ ! C R” represent a signal.

e (x,z) are linear measurements, k = 1,...,m, m < n.
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Motivation: one-bit compressed sensing

o Let x € K C S™ ! C R” represent a signal.
e (x,z) are linear measurements, k = 1,...,m, m < n.

e sign(x, z;) are quantized linear measurements.
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Motivation: one-bit compressed sensing

o Let x € K C S™ ! C R” represent a signal.
e (x,z) are linear measurements, k = 1,...,m, m < n.
e sign(x, z;) are quantized linear measurements.

e Can one reconstruct/approximate = from these
measurements?
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Motivation: one-bit compressed sensing

Let € K C S"~! C R” represent a signal.
(x, z1) are linear measurements, k = 1,...,m, m < n.

sign(zx, zx) are quantized linear measurements.

e 6 o o

Can one reconstruct/approximate x from these
measurements?

s-parse signals: Ky = {x € S"~! : |supp(z)| < s}.
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Motivation: one-bit compressed sensing

e 6 o o

Let € K C S"~! C R” represent a signal.
(x, z1) are linear measurements, k = 1,...,m, m < n.
sign(zx, zx) are quantized linear measurements.

Can one reconstruct/approximate x from these
measurements?

s-parse signals: Ky = {x € S"~! : |supp(z)| < s}.
Jaques, Laska, Boufounos, Baraniuk:
embeddings to Hamming cube through ¢, (z) = sign(Zx).
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Mean Gaussian width and “hemisphere” width

o Let v be the standard Gaussian vector in R4, The
Gaussian mean width of K is defined as

w(K)=E sup |(v,z—y)|.
z,yeK
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Mean Gaussian width and “hemisphere” width

o Let v be the standard Gaussian vector in R4, The
Gaussian mean width of K is defined as

w(K)=E sup |(v,z—y)|.
z,yeK

o “Hemisphere” process: mean zero Gaussian process with
EG? = i with increments

1/2
(BIG: = Gy = Law) = Lul = V@),
where H(z) is the hemisphere H(z) = {z € S%: z -z > 0}.
Hemisphere mean width

H(K) =E sup |G, —G,|.
z,ye K
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Mean Gaussian width and “hemisphere” width

o Let v be the standard Gaussian vector in R4, The
Gaussian mean width of K is defined as

w(K)=E sup |(v,z—y)|.
z,yeK

o “Hemisphere” process: mean zero Gaussian process with
EG? = i with increments

1/2
(BIG: = Gy = Law) = Lul = V@),
where H(z) is the hemisphere H(z) = {z € S%: z -z > 0}.
Hemisphere mean width

H(K) =E sup |G, —G,|.
z,ye K

e Sudakov’s inequality:

VIog N(K, ) < {51“’([()

§~12H(K)

Dmitriy Bilyk Points on a sphere



Main results (DB, Lacey, '15-16)

e Small cells: If m > 6 !log N(K,c§), then w.h.p. m
random vectors induce a tessellation with §-small cells.
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Main results (DB, Lacey, '15-16)

e Small cells: If m > 6 !log N(K,c§), then w.h.p. m
random vectors induce a tessellation with §-small cells.

o Uniform tessellation: If m > §~2H(K)?, then there
exists a d-isometry ¢ : S% — H™, i.e.
Supx,yEK |d($, y) - dH (gb(ﬂf), Qb(y))‘ <d.
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Main results (DB, Lacey, '15-16)

e Small cells: If m > 6 !log N(K,c§), then w.h.p. m
random vectors induce a tessellation with §-small cells.

o Uniform tessellation: If m > §~2H(K)?, then there
exists a d-isometry ¢ : S% — H™, i.e.
Supx,yEK |d($, y) - dH (gb(ﬂf), Qb(y))‘ <d.

e Sparse case: Let K, be the set of s-sparse vectors in S¢. If
m 2 6‘2510gJr %, then for a random set Z of m points in S¢

d(z,y) — du (62(x), 62(»))| < 6.

w.h.p. we have sup, ,cx,
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Main

results (DB, Lacey, '15-16)

Small cells: If m > §~'log N(K,cd), then w.h.p. m
random vectors induce a tessellation with J-small cells.
Uniform tessellation: If m > §~2H(K)?, then there
exists a d-isometry ¢ : S% — H™, i.e.

Supx,yEK |d($, y) - dH (gb(ﬂf), Qb(y))‘ <d.

Sparse case: Let K be the set of s-sparse vectors in S¢. If
m 2 6‘2510gJr %, then for a random set Z of m points in S¢
w.h.p. we have sup, ¢, d(z,y) —dy (qbz(x), qﬁz(y))} < 4.
One-bit Johnson-Lindenstrauss lemma: If K is finite
and m 2> 6~ 2log(#K), then there exists a d-isometry
between K C S? and the Hamming cube H™.
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Tessellations and discrepancy

H,={z : (z,z) >0}

Wy = HoAH,
= {z € S¢ : sign(z, x) # sign(z,y)}
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Tessellations and discrepancy

Dmitriy Bilyk

H,={z : (z,z) >0}

Wy = HoAH,
= {z € S¢ : sign(z, x) # sign(z,y)}

P(sign(z, x) # sign(z,y))
=0 (Way) = d(z,y)
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Tessellations and discrepancy

H,={z : (z,z) >0}

Wy = HoAH,
= {z € S¢ : sign(z, x) # sign(z,y)}

P(sign(z, x) # sign(z,y))
=0 (Way) = d(z,y)

As(e,y) = dn(a,y) — diay) = TEETD oy,
Dua(2) = [82t.0). = s [FECT) —
x,yeSd
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Tessellation/“Wedge” discrepancy

There exists an N-point set Z C S* with

Dwedge(Z) < CdN_%_i VIog N.
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Tessellation/“Wedge” discrepancy

There exists an N-point set Z C S* with

Dwedge(Z) < CdN_%_i VIog N.

This implies that for § > 0 there exists a d-uniform tessellation
of S* by N hyperplanes with

N < C&(S_Hﬁ . (log 7>?.
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Tessellation/“Wedge” discrepancy

Lemma (Bliimlinger, 1991)

For any N-point set Z C S¢
_1_1
Dslice(Z)zN 2 g

where Dgjice 15 the spherical discrepancy with respect to “slices”
Sey={2€8%: (z,z) >0 & (z,9) > 0}.
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Tessellation/“Wedge” discrepancy

Lemma (Bliimlinger, 1991)

For any N-point set Z C S¢
_1_1
Dslice(Z)zN 2 g

where Dgjice 15 the spherical discrepancy with respect to “slices”
Sey={2€8%: (z,z) >0 & (z,9) > 0}.

e Symmetrization can adapt this result to wedges W,
i.e. t0 Dyedge(Z).
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Tessellation/“Wedge” discrepancy

Lemma (Bliimlinger, 1991)
For any N-point set Z C S¢

Dslice(Z) 2 N_%_;TI7

where Dgjice 15 the spherical discrepancy with respect to “slices”
Sey={2€8%: (z,z) >0 & (z,9) > 0}.

e Symmetrization can adapt this result to wedges W,
i.e. t0 Dyedge(Z).

This implies that for any 6 > 0, if there exists a d-uniform
tessellation of ST by N hyperplanes, then

2
N > ¢ 6 2Fa,
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Summary

@ There exist constants ¢4, Cy, such that the following
discrepancy bounds hold:

1 1 1 1
N7 2724 < inf A(Z) < Cy4N 27 2d+/log N.
€d B ZCSdI:I;%Z:N (7) < Ca o8

Inverting this we find that the optimal value of N satisfies

4
5@ <N < 52 @ <log (15> dH.
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Stolarsky principle for wedge discrepancy

Define the L? discrepancy for wedges

N 2
[‘DLQ,Wedge(Z)]2 = // (;7 Z 1Wzy (Zk) - ‘7<ny)> dO’(.CC) dO’(y)
k=1

Sd sd
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Stolarsky principle for wedge discrepancy

Define the L? discrepancy for wedges

2
[DLQ,wedge(Z)]2 //( Z]'Wzy Zk (ny)> da(x)da(y)

Sd sd

Theorem (Stolarsky for wedges, DB, Lacey, '15)

For any finite set Z = {z1,...,zy} C S%
[l)LQ,wedge(Z)]2 =
1 X (1
N?Z(Z_ zl,z]> //(—dxy>da()da()
5,J=1 Sd sd
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Frame potential

o Z={z1,...,2n} CS%is a frame in R? iff there exist
¢,C > 0 such that for any 2 € R4*!

clel® <l z)? < Ollz)?.
k
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Frame potential

o Z={z1,...,2n} CS%is a frame in R? iff there exist
¢,C > 0 such that for any 2 € R4*!

clel® <l z)? < Ollz)?.
k

o Z=1{z,...,2y} CS?%is a tight frame iff there exists
A > 0 such that for any z € R%H!

>l z)l? = Alle|?.
k
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Frame potential

o Z={z1,...,2n} CS%is a frame in R? iff there exist
¢,C > 0 such that for any 2 € R4*!

clel® <l z)? < Ollz)?.
k

o Z=1{z,...,2y} CS?%is a tight frame iff there exists
A > 0 such that for any z € R%H!

>l z)l? = Alle|?.
k

Theorem (Benedetto, Fickus)

A set Z ={z,...,2n} CS? is a tight frame in RT if and
only if Z is a local minimizer of the frame potential:

N
F(Z)= ) [z 2zl

1,7=1
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Stolarsky principle for slices

Define the L? discrepancy for slices
Sey={2€8%: (z,2) >0 & (z,9) > 0}
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Stolarsky principle for slices

Define the L? discrepancy for slices
Sey={2€8%: (z,2) >0 & (z,9) > 0}

N 2
D12 el Z / / < S, z;a—a(szy)) do(x) do(y)
k=1

S¢ sd

Theorem (Stolarsky for slices, DB, '16)

For any finite set Z = {z1,...,z2y} C S¢
4[DL2 slice(Z)]2 =
2 2
N2 Z d(zi, z;)) —//(1 — d(z,y)) do(z) do(y).
t,j=1 sd sd
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