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One-component Coulomb plasma (OCP)

N positive charges in the two-dimensional plane: z = (21,...,zy) € CV.
Confining potential V' : C — R U {+o0} with sufficient growth at -+oo.

Energy:
HN V Z log + N Z V
J#k
Probability measure:
1
Pyvp(dz) = o PNV BN (dz),
N,V.B

where m is the Lebesgue measure on C and Zy v 3 the partition function.

More generally, we could consider the 3d Coulomb plasma.



Potential theory
// log ——— u(dz) p(dw) + / V(z) p(dz)

Theorem (Frostman)

= Unique probability measure py minimizing Iy (equilibrium measure).
m Its support Sy = supp Wy is compact.

m Let UF(z) = [log o=l wl p(dw). Characterized by Euler-Lagrange
equatlon

U +1V=c qe inSy and
U"v + %V >c¢ q.e. in C.

B Apy = ﬁ(AV)lSV. Main difficulty is to determine support Sy .
m Example: if V = |2|? then py = %1{|Z|<1}.



N =400, V = |2|?

B —0 B=1
independent particles Ginibre ensemble

The Coulomb plasma looks much more rigid than independent particles.



Linear statistics

Let f: C — R be macroscopically smooth. How large are the fluctuations of

Zf(zj)7

For independent particles on the disk, f(z;) are
i.i.d random variables. The CLT implies

For particles in a crystalline state, on the other

hand d
z
> v [ 12~




Some motivations

Laughlin’s guess for wave functions at fractional
fillings of type ;- (fractional quantum Hall effect):

2s+1

Os(z1,. .., 2N) = H(Zl — zj)% e 2 £l

i<j

Special case: Ginibre ensemble (eigenvalues of complex
Gaussian matrix)

=1 and V(z)=|z%

More generally, for 8 = 1 eigenvalues of random
normal matrices (we will come back to it).

Major question: phase transition for g > [, ~ 1427
Understanding small discrepancy is a small step
towards such phenomena.

Alastuey and Jancovici (1980): It is very likely that the
model has a solid-fluid phase transition.




Convergence to equilibrium measure

Empirical measure i and equilibrium measure py:
o1 .
= NZ(LJ., py = argmin Iy
J

Then i — py weakly for S > 0 and reasonable V. More precise results:

# (Ben Arous—Zeitouni) LDP for /i with rate function I, at speed N2.
m Local density on macroscopic scale 1.
m (Leblé-Serfaty) LDP for certain tagged point process at speed N.

m Essentially corresponds to partition function estimate
1 ; 1
~3 log Zn,v,s = N Iv(pv) — iNlogN
1 1

+N (E - i) </,W(z)1ogw(z) dm) + FsN + o(N).

m Local density down to mesoscopic scales down to NV
point in C.
m Previous results of Sandier—Serfaty, Rougerie-Serfaty, and others.

~1/4 near any fixed

m (Lieb, unpublished) Points in minimizers of Hy y separated by c¢N -1/2,



Determinantal case § =1

For 8 =1 the correlation functions are determinantal:

P (21, s 20) = det(K (i, 2))) 2y
with Ky (z,w) = Zg:_ol Qe (2)qr(w)e ™ NV(2)/2e=NV(W)/2 " and ¢, are
orthogonal polynomials (OP) with respect to L?(e= V).
For Ginibre ensemble V = |z|? the OP are given by ¢, = z*//7k!.

Very precise results known using determinantal structure. Example:
convergence of linear statistics to Gaussian free field (Rider—Virag
V = |2|?; Ameur-Hedenmalm-Makarov V' smooth):

Zf(zg) - N/fduv N9 Normal (O, % / |V 52 dm) ,

for smooth f, where f° is the bounded harmonic extension of f|s to C.

Exercise: Fluctuations of number of particles in a domain 2 are
~ (N'/2|199[)"/? (unpublished). What if the boundary has no finite length
(unknown)?



Main result

Theorem (Bauerschmidt—B-Nikula—Yau)

Let s € (0, %), zp be in the interior of the support of uy, and f: C — R have

support in the disk of radius N ~* centred at z.

Then for any sufficiently small € > 0 and any 5 > 0, we have

N

S f(z) - N / £(2) v (d2) = O(N®) (Z levlfoc> ,
=i

=i

with probability at least 1 — e~ #N" for sufficiently large N.

= Optimal scale N~ for all s € (0, %) and applies to all 5 > 0.

» Rigidity: fluctuations are N°(Y) compared to N2~¢ for i.i.d. particles.
= The dominant fluctuation term is N°O([ [V f|?).

m Simultaneous result (Leblé): Fluctuations bounded by N i3,



Comparision with 1D

Pair interaction for particles on real line

= Coulomb interaction: >, —|z; — x|

m Logarithmic interaction: },, —log|z; — x|

Interactions are convex on simplex {z1 < zg < --- < xy}.
1D-Coulomb gas crystallizes:
(Kunz) 1-point function is nontrivially periodic for most f;

m
m (Brascamp-Lieb) 1-point function is nontrivially periodic for all S large;
m (Aizenman—Martin) translational symmetry broken for all 5.



Related results for log gas in d =1

[-ensemble has been studied extensively in d = 1. In particular:

m (Johansson) Linear statistics converge to Gaussian field with covariance
proportional to (—A)Y/? for all 5 > 0;

m (Deift et al., Bleher-Its, Pastur-Shcherbina, ...) Universality of local
correlations for g = 1, 2, 4;

# (Dumitriu-Edelman) Representation as eigenvalues of tridiagonal matrix
for V =A% and all 8 > 0;

m (Valko—Virag) Explicit characterization of the point process for V = \?
and all 5 > 0;

m (Borot—-Guionnet) 1/N expansion of the partition function;
m (B-Erdds-Yau) Rigidity and universality of local correlations for all 8 > 0;

m (Shcherbina), (Bekerman-Figalli-Guionnet) alternative proofs of the
universality for all § > 0;

The proofs do not apply in d = 2. For non-Hermitian matrices with iid
entries, similar rigidity by B-Yau-Yin.



Strategy

Step 1 Multiscale iteration to show that py provides local density on all
scales N % with s € (0, 2):

= Use mean-field bounds and potential theory in each step.
= Optimal scale but bound on order of fluctuations is not optimal.

Step 2 Use Loop Equation to obtain optimal order for smooth linear
statistics:

m The loop equation is singular in two dimensions.
m Singularity controlled using Step 1.

For f with support in B(zp, N~%):

2
£i) = [ 1) m(d2) = O 10g V) (ZN-Wfoc)
£Gi) = [ 1) nvids) = 0@=149) (ZN lsnwnoo)

(Step 1)

=]~

(Step 2)

2| =

Il MZ Il MZ



Initial estimate

Simple mean-field estimate controls scales > N~1/4,

m Let
ZNV,3 = /675HN'V(Z) m®N(dz).
m Newton’s electrostatic theorem —log > —log *p for radial probability p:
Znvg < o~ NIy (uv)+O(N log N)
m Jensen inequality:

ZN,V.ﬂ > efNQIv(uv)fo(NlogN)

= Applying this with V' — V + ﬁf gives
Env(eSs 1)) < &N [ div+ 35 (f=Af+O(N log ).

This gives control on scales > N~ 1/4.



Multiscale iteration

m Condition on particles outside a small
disk of radius ~ N~ /%,

m Conditional measure (inside small disk)
is again a Coulomb gas, but with only
~ N'/2 particles.

m If initial mean-field estimate can be
applied to conditional system would get
an estimate at scale > (N1/2)~1/4

m Difficulty: the conditional system has a
singular potential given by the external
charges.




Control of conditional measure

For the equilibrium measure of the conditioned

system with high probability:

m The support contains most of the disk
conditioned on.

m The boundary charge (which exists since
V' = 400 outside the disk) has uniformly
bounded density.

These conditions give enough regularity to repeat

the mean-field bound.

Their proof is achieved in the obstacle problem formulation of the
equilibrium measure by construction of dominating potentials.



Obstacle problem

m Potential of equilibrium measure characterized by obstacle problem:

uy (z) = sup {v(z): v subharmonic on C, v < %V on C,

lim sup (v(z) —log |z|) < oo}

|z| =00
= v subharmonic and limsup,|_, (v(2) —log |z|) < oo imply v =1c—U"

where U" is some potential of positive measure v with mass < 1.

= Coincidence set: Sy = {uy(z) = sV}

Theorem
Let wy be the equilibrium measure (minimizer of Iy/). Then (essentially)

uy (2) = c— UM (2), Sy = Sy



Obstacle problem

coincidence set Sy



Example

Assume support of equilibrium measure is unit
disk SV = D.

Perturb external potential by a single charge ¢ at
w ¢ Sy close to boundary.

Want to show that support of perturbed N
equilibrium measure contains all points zy of D
with distance > r from boundary, with r = ¢\/z.

Achieve this by exhibiting for any such zj a
subharmonic test function in obstacle problem that
matches potential at zg.

log ﬁ

(2= 2) +k



Local density

By iteration of mean-field bound we show that 1y, provides local density.

Theorem

Let s € (0, %) For any z; in the interior of the support of 1y, and for any
f € C?(C) with support in the disk of radius N ~° centred at zj, we have

1 N

3 S 1)~ [ 16 ) = 0 Qo ) (N Al + NEV 1)

J

with probability at least 1 — e~ (AN for sufficiently large N.

» RHS is N2 —7°() for smooth f on scale N ~* (similar to i.i.d. particles).
= Rigidity: RHS is actually N~ '*°(1) for such f.



Rigidity

Cumulant generating function for linear statistics:

Fnvs(f) =logEnvs(e™),

with

Xy =S 1) =N [ fduy =N [ fdpy
s | /

where )
fi = Nzaz_,. and iy = i — .
J

m Rigidity follows from estimate Fy v, 5(f) = O(BN®).
= Difficult to see using direct potential theory.
= It would suffice to bound 2 Fiy v 5(tf) since Fy,v,3(0) = 0.



Loop Equation

For any reasonable function A, we have the loop equation:

1 h(z;)
]EN,V.ﬂ 5 Z i*izk Zah ZJ NZh(ZJ)aV(Z]) =0.
Jj#k J

Proof.
By integration by parts:

Env.g (0h(z)) = BEN,v,5(h(z;)0z; H(2))

=1
= 5EN,V,5 h(Zj) Z % — 2 aF N@V(z])
k:k#j

Loop equation follows immediately by summation over j.

Loop Equation also has an interpretation as Schwinger—Dyson equation or
Conformal Ward Identity (Wiegmann—Zabrodin, Makarov et al.).



Loop Equation and Euler-Lagrange equation for equilibrium measure give
(here h = 0f/AV):

0
3tFNVﬂ(tf) Enxv- Lj/(ﬁN)ﬁ( /c‘)hdu—kﬂ/h(?fdu

+y // e :—w 1{z¢w} fiv(dz) uv(dw)>

m First two terms on RHS are linear statistics: could be estimated by
standard estimates for macroscopic f, by local density for mesoscopic f.

m Difficulty is the third term on RHS:
h(z) — h(w)

Z—Ww

= Oh(z) + dh(z) = (|2 —w|),
.
and the second term on the right-hand side is not smooth on the diagonal.
m Use multiscale decomposition and local density to control singularity. The
Fefferman/de la Llave trick: for any compactly supported ¢ : [0,00) — R
we have

M= o [T [ el ool =) () -hw) m(do)



