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Outlook of the results

Take the tiling uniformly at ran-
dom in a 0. Consider a vertical
line in the middle of the tiling:
it meets either horizontal tiles
or the border of a tile in one of
the two other directions. Let
l1,...,0n be the positions of
the horizontal tiles.

> & SN F(Li/N) J f(x)dpu(x) a.s for all f continuous.

> Assume the number of horizontal tiles in each connected
component is given. Take f analytic.
vazl(f(f,-/N) — E[f(¢;/N)]) converges towards a centered
Gaussian, with covariance as given by random matrix
analogue.




Previous results

Petrov (2012) general-
izes this result to a fam-
ily of polygons (Gelfand-
Tsetlin patterns), which
includes the hexagon.
Facets are allowed.

Kenyon (2004). Assume that
there is no facets (0 < % <1
[for the hexagon, the boundary
is taken to be the limiting arctic
circle (to avoid facets)]. Then,
the fluctuations of the surface
is given up to isomorphism by
the Gaussian Free Field.
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Tiling distribution
Let E,’-’, 1 < i < Ny, be the positions of the horizontal tiles in the
h — th connected component.

N
=5 11 11 =P mie)

h<h 1<i<Ny
1SN, i<

where EI’-’ > 6;’_1 + 1.

For some w, this is the distribution of the N horizontal lozenges in
a vertical line of a uniformly distributed tiling:




Let N; be the number of
horizontal tiles in the /-th
connected component starting
from bottom. The distribution
of the N = Ny + N, + N3 hor-
izontal lozenges in the central
vertical line of a uniformly dis-
tributed tiling of the 6 is

OES | 0 ) MR | 0

h<h' 1<i<N, 1<i<N
1SN i< h

where 0y y =2if h=H or h=1," =2, 0y =1if hor K" =3.



More examples

Let N;be the number of horizontal tiles in the j-th connected
component starting from bottom. The geometry dictates:
N1 + N2 =3 and N3 + N4 = 2. With eh,h’ = (1h—h’§1 + 1)/2

Py (l) = leH I @ —ennr

hh <IN,
1<j<N,y i

< [T TI (e —oyer —8)(er —2)(e? +1)

h=1,2 1<i<N,,

< [T II -9t -8yt -2

h=3,41<i<N,,



Results

Consider for éﬂl > Ef’ +1, ¢h € [ap, bp], apy1 > by +cN, ¢ >0,
the probability measure:

kN
P (f) = — IT II 1e=e'PIIT]waeh
Zn h<h 1<i<N, h=1i=1

1< <Ny i<

Theorem (Saff-Totic 97, ...)
Assume Np/N — e,
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Consider for éﬂl > Ef’ +1, ¢h € [ap, bp], apy1 > by +cN, ¢ >0,
the probability measure:

PR
Pul)= 5 [T TI 1t —'P TT T wate)
N p<w 1<i<n, h=1i=1

1< <Ny i<

Theorem (Saff-Totic 97, ...)
Assume Np/N — ep wh(x) ~ e~ NVh(x/N)+O(log N) "/, smooth
enough, and

lim Vi(x)/log |x|ep > 1.

[x]—00

Then

Np,
lim E Son iy — pl
m — h L a.s
N—oo N 4 ] /N He
=
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~wp(x) = e~ NVa(x/N)+O(logN) "\/, continuous, ...

{0 < dd—‘f(g < 1} connected, off critical (dd—’j; ~/(x — an)(Bn — x))




Results

k Np
ST0 T 1 ¢RI
hgh’ 1<i<Ng h=1i=1

1<j<Nh/ i<j

Theorem (Breuer-Duits 13', Borodin-Gorin-G 15")

Assume -Np /N +— e,

-wh(x) ~ e~ NVa(x/N)+0(og N) "\, continuous, ...

{0 < dﬁh < 1} connected off critical (ddﬁj: ~ /(x —ap)(Bh—x))

(x) n £, 1+ 1
Ty = ¢g’:( ; ¢Nh analytic, ¢Nh O + NP1t o()-

Then

Np
(Z(fh(ﬁ,’-’/N) - E[fh(ﬁf’/N)])> = N(0,X(f)) VT real analytic.
h

i=1



Discrete and Continuous covariance
Take V smooth going to infinity fast enough and

1 _ .
dPl .= ﬁH I\ = Aj[PPe NV TT dA;
Vi<
Then,



Discrete and Continuous covariance
Take V smooth going to infinity fast enough and
dpPl) = NH|>\ — AP NEVOITT dA;
V i<j
Then,
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If v has a connected support (Johansson 97")
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Discrete and Continuous covariance
Take V smooth going to infinity fast enough and
dpPl) = NH|>\ — AP NEVOITT dA;
V i<j
Then,

/\/Zf — uy(f)  as.

If v has a connected support (Johansson 97")
N

> _(FO) = EIF(A)]) = N(0,=(F,F)).

i=1
The covariance is the same than in the discrete case if the support
of the equilibrium measures are the same:

Y((z - .)_1, (w— .)_1) =
1 (1_ ZW—%(O&1+51)(Z+W)+04151 )
(z —w)? V(z—a1)(z=B)/(w—a))(w—51) )




Results: Discrete 5-ensembles (5 = 260)
€?+1 — gf’ — 9/,7;, € N.

1 Fee —eh - 0)r(e — o0 4 6p4)
P, f) = J/ i : J i ) Eh
0=z 11 11 F(er — Y (E — 00+ 1~ O ) [Twnce?)

h<h 1<i<Ny
1SN, i<




Results: Discrete 5-ensembles (5 = 260)

€7+1 gf’ — thh € N.

My — 08 + N — 00 + O )
W Z H H F(er — e —eh+1—9 HWh(g?)
N p<h 1<izw, (j i) (j i h,h/

].<j<N/ i<j

Theorem (Borodin-Gorin-G 15" Borot-Gorin-G 16")
Assume Np/N — ep, wp(x) ~ e~ NVa(x/N) (Onw)hw >0, 0h,>0
Then N,

Nll_r>noo N Zégh/,v — ol as,
Assume {0 < duz 0,1} connected. w is off critical.
wh(x) ¢N h %X

1
(1) = N , analytic, ¢N7h = th N¢1 p+o(y)

Np,
(Z(fh(ﬂ,’-’/’V) - E[fh(ff’//V)])> = N(0,X(f)).
h

i=1



Work in progress[ Borot-Gorin-G 16']

n h h h
PW(@) _ i H H F(fj, - E,‘ + 1),r(£J - Z,' + eh,h/) H Wh(éh)
Zy T — (Y — 1 — Oy ) '

1SN i<

being the distribution of the vertical line Dy in the tiling of a
region Qu, +Qy (resp. 4 Dy) converging to Q (resp.D). Q planar.

Then, X(f) is the covariance of the linear statistics of f under the
Gaussian Free field in Q (with metric dictated by local densities),
with Dirichlet conditions at the boundary of the liquid region.



Work in progress[ Borot-Gorin-G 16'] : Discrete
[-ensembles

H h h h
" Zn F(er — e =t +1—0pp)

h<h’ 1<i<Ny
L<j<NG i<

Same hypotheses as before and ¢7; = Zf:o ﬁqﬁf + o(N—K).
Then
1 K
22w = > N e+ o(NTK)
k=0
ck are defined recursively. The expansion is different from its
continuous analogue.



Work in progress[ Borot-Gorin-G 16'] : Discrete
[-ensembles

F(eh — e+ 1)r(er — 00 + 04 1)
IPJw(e) X H H r gjh/ gh r gh/ Jgh 0 H Wh(g?)
h<h 1<i<N, (6 =T =6 +1—bhp)

1SN i<

Same hypotheses as before but {0 < dd—‘)‘: < 6,1} is not connected
or Nj random. Assume qbﬁ = Zi:o ﬁgﬁf + o(N=2). Then

Np

> (el /N) = E[fu(€]/N)])

i=1
converges only under subsequences in general. For instance, if the
liquid region has two connected subsets S1, S», the number of
horizontal tiles in Sy is equivalent to a discrete Gaussian centered
at N5 (S1) — | Np5(S1)] (c.f Kriecherbauer-Shcherbina 10',
Borot-G 13')



Classical proof of CLT : Stein's method

Let P, be a family of distribution and L, some operator on a set F
of functions so that

P(Lof) =0 VfeF.

Assume P, is tight and L, goes to L. Assume moreover there
exists a unique P so that

P(LF)=0 VfeF.

Then P, converges towards P.



Classical proof of CLT : Stein's method

Let P, be a family of distribution and L, some operator on a set F
of functions so that

P(Lof) =0 VfeF.

Assume P, is tight and L, goes to L. Assume moreover there
exists a unique P so that

P(LF)=0 VfeF.

Then P, converges towards P. If L, =L+ %Ll + %Lz ---,and L
invertible, one can hope that

Polf) = P(N) + - P(LL M)+



General strategy to study the fluctuations of
Mu(f) = 2L, F(N)
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deviations or saddle point analysis or Stein’s method.
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General strategy to study the fluctuations of
Mu(f) = 2L, F(N)

» Prove almost sure convergence of N~ My(f) by large
deviations or saddle point analysis or Stein’s method.

» Obtain the asymptotics of
A
InE[e*VN()] — / Eee [My(F)]dt
0

where Ef[g] = E[getMn ()] /E[etMn(F)],
» Get the large N expansion of E[Mp(g)] by Stein's ideas:

» deriving a system of equations (the Schwinger-Dyson
equations) for My(g), for g in a good set of test functions,

» getting rid of small terms (e.g. by concentration of measure
theory) to get approximately closed equations,

> linearizing the equations around the limit and solve the linear
equation.



Example: Convergence for S-ensembles
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Example: Convergence for S-ensembles

dPy\/( H\)\ — AP exp{— NﬂZVA)}HdA

BV i<y

Theorem

L,\{ = % >0y, converges ng—almost surely towards the unique
minimizer py of

=5 | [ (Ve Vi) = g x - ) dx)dnty).

dPY, ()
d\y

Proof.

~ e ANA(I(Ln)=inf I(1) |



Fluctuations for S-ensembles : The Schwinger-Dyson
equations [Johansson 97|

dPy\, () = o H|)\—>\|’8exp{ NﬁZV)\)}Hd)\

/BVI<J

The empirical measure Ly = & "V 5, satisfies the
Schwinger-Dyson equations

/ ( // =M a1y ) - / v’(x)f(x)dLN(x)> drY,,
2 3 //f/ )dLn(x)dPY .

(this is integration by parts)



Fluctuations for S-ensembles : Linearization

If V is analytic, taking f(x) = (z — x)~!, we find that
Wi(z) = [ (z - x) dLu(x), Wi (2) =
[(z = x)"tdpv(x), AWy = Wy — Wy, satisfy

KE[AWA)(2) = 37 (5 — 5)0E[Wa(2)] ~ E[AWa(=))
with o 1 y
KF(2) =20y (2)F(2) ~ 5~ VIOF(©).



Fluctuations for S-ensembles : Linearization

If V is analytic, taking f(x) = (z — x)~!, we find that
Wi(z) = [(z —x)"tdLn(x), Wy(2) =
f(Z — X)_lduv(x),AWN = Wy — Wy satisfy

KE[AWA)(2) = 37 (5 — 5)0E[Wa(2)] ~ E[AWa(=))
with
de 1
Kf(z) = 2Wy(2)f(2) — § oo 2 VI(O)(E).

By concentration, NE[AWy(z)?] is small, hence if K is invertible

Jim NEIAWN(z) = ~( — 5K 10.Wo(z) = Wi(2)



Central limit theorem

For f analytic, we deduce that
A
InEy[MO)] = / Ey_« [Mu(F)]dt
0
A
= N[y gl
0
] bemyAnwenee
0 c 2iT V_%f N
)\2
= ANpy(f) + EQv(f: f)+ ALy (f)+ o(1)
with

Qu(f,g) = —Dvluv(g)][f]
Lv(g) g(E)Wy(€)d¢

2iT e



Generalization to the discrete setting

1 (6 — 0 + )T (4 — €+ 6) 15

P(l) = — w(?
(©) ZN1§i<j§Nr(€J (¢ —E +1-46 1;[1

e The convergence is similar, but the discrete setting imposes
% < % (c.f. Feral 08) .



Generalization to the discrete setting

N

1 M — 4+ —¢i+0)
P(l) = — w(?
(©) Zn 1§i1<_j[,§N F(¢; — )¢ —E +1-46 1;[1

e The convergence is similar, but the discrete setting imposes

% < % (c.f. Feral 08) .

e Analogues of Schwinger—Dyson equation was given by Nekrasov:
If W‘z;(f)l) d)"’( with ¢N(§) holomorphic in a domain My C C,

¢y (%)
(%) (i)

i=1

Pn(€) - Ep + (&) - Ep

is holomorphic in My (check residues vanish).



Nekrasov equation analysis
Assume ¢ (NE) =~ ¢*(6) + 761 (€) + o() and {0 < % < 3} =[a, b].

Nekrasov equation asymptotically becomes with
AWn(z) = § (2 = 6/ N)™H = W(2), W(z) = [(z—x) " du(x),
QUEIAWN(E)] = F(E) + Ru(€) + ol 1)

with Q(€) = ¢ (€)e= W) — ¢F(2)e®W(&), f known and Ry
analytic.
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Nekrasov equation analysis
Assume ¢ (NE) =~ ¢*(6) + 761 (€) + o() and {0 < % < 3} =[a, b].

Nekrasov equation asymptotically becomes with
AWn(z) = § (2 = 6/ N)™H = W(2), W(z) = [(z—x) " du(x),

QUEIAWN(E)] = F(E) + Ru(€) + ol 1)

with Q(€) = ¢ (€)e= W) — ¢F(2)e®W(&), f known and Ry
analytic.

Assume off criticality : Q(&) = H(&)\/(§ — a)(b — &) with H

analytic, non vanishing.Integrating over a contour around the
support of the measure gives

V4 -1 V4
VE= G- OEawn(©] = o [ 2 Eaz o).



Conclusion

> The case where the interaction is given by [[,,; |[(; — 1°,
0 # 1,2 is open.

> In the continuous setting, similar analysis allows to build
approximate transport and prove universality for local

fluctuations. In the discrete setting, Local fluctuations are
unknown for 6 #£ 2.

» Nekrasov equations include more general models, cf quivers.



