From random interpolation nodes to complex geometry and optimal transport

Robert Berman (Chalmers U. of Tech., GU)

Optimal and random point configurations: from statistical physics to approximation theory (IHP Paris, 2016)

Outline

- ullet Optimal interpolation nodes in \mathbb{C}^n
- Statistical mechanics in and out of equilbrium
- ullet Einstein's equations for Kähler metrics on \mathbb{C}^n
- ullet Tropicalization and sticky particles in \mathbb{R}^n

A. Optimal interpolation nodes

Denote by

• $\mathcal{P}_k(\mathbb{C}^n)$ the space of all *polynomials* $p_k(z)$ on \mathbb{C}^n of total degree $\leq k$.

$$\bullet \ N_k := \dim \mathcal{P}_k(\mathbb{C}^n) = \tfrac{1}{n!} k^n + o(k^n) \quad \text{K} \quad \begin{cases} 1 & \text{for } k = 0 \\ 1 & \text{for } k = 0 \end{cases}$$

• $\phi(z)$, a given weight function on \mathbb{C}^n , i.e. ϕ is 1sc with super log growth:

$$\phi(z) \ge (1+\epsilon)\log|z|^2 + O(1), \quad |z| \to \infty$$

The <u>weighted sup norm of</u> a polynomial $p_k \in \mathcal{P}_k(\mathbb{C}^n)$ is then defined by

$$||p_k||_{k\phi} := \sup_{z \in \mathbb{C}^n} |p_k(z)| e^{-k\phi(z)} < \infty$$

The interpolation problem

A polynomial $p_k(z)$ is uniquely determined by its values at any given generic configuration $(z_1,...z_{N_k})$ of N_k points.

Problem: how to distribute the "interpolation nodes" $z_1, z_2, ..., z_N$ in order to be able to reconstruct any $p_k \in \mathcal{P}_k(\mathbb{C}^n)$ from its values at the nodes in an optimal way (wrt the weighted norm)?

Definition: A configuration of points $(z_1,..,z_{N_k})$ on \mathbb{C}^n is said to be *optimal* (wrt the weight ϕ) if it maximizes the weighted determinant of the corresponding evaluation map

i.e. $(z_1,..,z_{N_k})$ on \mathbb{C}^n is said to be *optimal* if its maximizes the weighted determinant

$$|A(z_1,...,z_N)|e^{-k\phi(z_1)}\cdots e^{-k\phi(z_{N_k})}$$

of the corresponding $N_k \times N_k$ matrix A:

$$A(z_1, z_2, ... z_{N_k}) := (e_i(z_j))_{1 \le i, j \le N_k}$$

where e_i is some fixed basis in $\mathcal{P}_k(\mathbb{C}^n)$.

For example, can take a multinomial basis:

$$e_m(z) = z^m := m \in \mathbb{Z}^n \cap k\Delta$$

Why this optimality condition?

ullet The "worst" configurations $(z_1,z_2,...z_{N_k})$ are those satisfying

$$\det A(z_1, z_2, ... z_{N_k}) = 0$$

Then the corresponding evaluation map is not even invertible, i.e. we cannot interpolate all values.

• Hence, the *optimal* configurations should be those *maximizing* the norm of $\det A(z_1, z_2, ... z_{N_k})$

This ensures that interpolation is possible and *stable* (by Cramer's rule)

The classical setting in $\mathbb C$

When n = 1 we have

$$N_k = k + 1.$$

The corresponding polynomial $\det A(z_1, z_2, ... z_k)$ factorizes in products of $(z_i - z_j)$

$$\det A(z_1, z_2, ... z_{k+1}) = \prod_{i < j} (z_i - z_j)$$

(since it vanishes for $z_i = z_j$). Hence,

$$-\frac{1}{k}\log|\det A(z_1,z_2,...z_{N_k})|_{k\phi} = -\frac{1}{(N-1)^2}\sum_{i\neq j\leq N}\log|z_i-z_j| + \sum_{i=1}^N\phi(z_i)$$

is the mean field energy of N interacting Coulomb charges $z_1,...,z_N$ in $\mathbb C$ confined by the potential ϕ .

Hence, when n=1 optimal interpolation nodes in \mathbb{C} (i.e. Fekete points) correspond to minimizers of the electrostatic energy

$$E_{\phi}(z_1, ..., z_N) = \frac{1}{N-1} \sum_{i,j} \log|z_i - z_j| + \sum_{i=1}^{N} \phi(z_i)$$

Classical results (Gauss, Fekete, Polya, Szegö, ...) then show that when $k (= N-1) \to \infty$ optimal nodes $(z_1^*, z_2^*, ... z_N^*)$ converge weakly:

$$\frac{1}{N_k} \sum_{i=1}^{N_k} \delta_{z_i^*} \to \mu_{\phi},$$

where μ_{ϕ} is the *unique* minimizer of the "continuous" logarithmic weighted energy:

$$E(\mu) := -\frac{1}{2} \int \log|z - w| \, d\mu(z) d\mu(w) + \int \phi(z) d\mu(z)$$

as μ ranges over all probability measures on $\mathbb C$

ullet The measure μ_{ϕ} is called the weighted <u>equilibrium measure</u> in potential theory

The higher dimensional setting: $n \ge 1$

Conjecture:

• (Leja, '50s) Any sequence $(z_1^*,z_2^*,...z_{N_k}^*)$ of optimal interpolation nodes has a unique limit as $k\to\infty$:

$$\underbrace{\frac{1}{N_k} \sum_{i=1}^{N_k} \delta_{z_i^*} \to \mu_{\phi}},$$

weakly, for a probability measure μ_{ϕ} .

• (Siciak '80s) The measure μ_{ϕ} should be the weighted *pluripotential equilibrium measure*

Siciak's equilibrium measure is defined in terms of pluripotential theory which is a non-linear generalization to \mathbb{C}^n of classical potential theory in \mathbb{C} :

• Replace subharmonic functions on $\mathbb C$ with *plurisubharmonic* functions $\psi(z)$ on $\mathbb C^n$:

$$\partial \bar{\partial} \psi := \left(\frac{\partial^2 \psi}{\partial z_i \partial \bar{z}_j} \right) \ge 0$$

• Replace the Laplacian on $\mathbb C$ with the complex *Monge-Ampère* operator on $\mathbb C^n$:

$$MA(\psi) := rac{i}{\pi} (\partial \bar{\partial} \psi)^{\wedge n} \sim \det \left(rac{\partial^2 \psi}{\partial z_i \partial \bar{z}_j}
ight)_{i,j \leq n}$$

Then Siciak's pluripotential equilibrium measure μ_{ϕ} wrt the weight ϕ is defined by

$$\mu_{\phi} := MA(\phi_{eq}),$$

where ϕ_{eq} is defined as an envelope with obstacle ϕ :

$$\phi_{eq}(z) = \sup\{\psi(z) : \psi \le \phi\}$$

• When ϕ is smooth with superlogarithmic growth μ_{ϕ} is compactly supported with an $L^{\infty}-$ density

The Leja-Siciak conjecture was settled ('08) in a joint work with Sebastien Boucksom (Paris) and David Witt Nyström (Chalmers)

But the solution prompts some new questions:

• What is the "physical" interpretation of optimal interpolation nodes when n > 1?

How to locate (nearly) optimal nodes dynamically

The idea is to introduce the N-particle "interaction energy"

$$E(z_1,...,z_{N_k}) := -rac{1}{k} \log |\det A(z_1,z_2,...z_{N_k})|,$$

where

$$A(z_1, z_2, ... z_{N_k}) = (e_i(z_j))_{i,j \le N_k}$$

in terms of a fixed multinomal base $e_1,..,e_{N_k}$ in $\mathcal{P}_k(\mathbb{C}^n)$

- The interaction energy is *symmetric*
- It is *repulsive*
- It is independent of the base, up to an overall additive constant

ullet It is highly non-linear in $(z_1,...,z_{N_k})$ when n>1

B. Statistical mechanics in and out of equilibrium

Consider an ensemble of N identical particles $x_1, ..., x_N$ on a Riemannian manifold X interacting by a symmetric energy function $E^{(N)}(x_1, x_2,, x_N)$.

• (Statics) At inverse temperature $\beta (= \beta_N)$ the corresponding equilibrium state is represented by the Boltzmann-Gibbs measure

$$\mu_{\beta}^{(N)} := \frac{e^{-\beta E^{(N)}}}{Z_{\beta}} dV^{\otimes N}$$

• (Dynamics) The relaxation to equilibrium, at inverse temperature β , is described by

$$dx_i(t) = -\nabla_{x_i} E^{(N)}(x_1, ..., x_N) dt + \frac{\sqrt{2}}{\sqrt{\beta}} dB_i(t),$$

(the overdamped Langevin equation)

The Boltzmann-Gibbs measure is stationary for the dynamics and arises when $t \to \infty$

Random interpolation nodes

In our setting we take

$$E^{(N)}(z_1,...,z_{N_k}) := -\frac{1}{k} \log |\det A(z_1,z_2,...z_{N_k})|_{k\phi}$$

and try to study the corresponding large N-limit

- In other words we think of random interpolation nodes as forming a statistical mechanical system.
- The problem is to show that a coherent large-scale structure emerges in the "thermodynamic" limit

• For Monte-Carlo approaches to optimal interpolation nodes the relevant case is the "zero-temperature limit":

$$\beta := \lim_{N \to \infty} \beta_N = \infty$$

(the 'liquid phase')

• But some suprising connection to complex geometry/math. physics appears at a finite inverse temperature β (the "gas phase")

In the special case when $\beta_{N_k}=2k$ the Boltzmann-Gibbs model becomes

$$\mu_{\beta}^{(N)} := \frac{e^{-\beta E^{(N)}}}{Z_{\beta}} dV^{\otimes N} = \frac{1}{Z_{\beta}} |(\det A)(z_1, z_2, ... z_{N_k})|_{k\phi}^2 dV^{\otimes N},$$

where $(\det A)(z_1, z_2, ... z_{N_k})$ is a Vandermonde determinant raised to the power (2)

- Hence $\mu_{\beta}^{(N)}$ then defines a <u>determinantal point process</u> and asymptotically $\beta_{N_k}=2k\to\beta:=\infty$
- But in the positive temperature case $\beta < \infty$ the power is $\sim 1/k$

The static case

Theorem (B. 08', '13): Given a $\beta \in]0,\infty]$ the corresponding random measure on \mathbb{C}^n

$$\frac{1}{N_k} \sum_{i=1}^{N_k} \delta_{z_i}$$

converges in law to a deterministic measure μ_{eta} on \mathbb{C}^n

• In fact, the convergence is exponential in the sense of large deviation theory

- When $\beta = \infty$ the limiting measure μ_{β} is the equilibrium measure corresponding to the weight ϕ
- ullet For a finite eta the measure μ_{eta} can be written as

$$\mu_{\beta} = MA(\psi_{\beta}),$$

where ψ_{β} is smooth with logarithmic growth and solves the PDE

$$MA(\psi_{\beta}) = e^{\beta(\psi_{\beta} - \phi)} dV$$

(Aubin, Yau,...)

Einstein's equations for Kähler-metrics on \mathbb{C}^n

The measure μ_{β} is the volume form of a certain Riemannian metric g_{β} solving Einstein's equations on the "universe" $X := \mathbb{C}^n$ (with Euclidean signature).

The point is that any smooth function spsh ψ on \mathbb{C}^n defines a Riemannian metric g_{ψ} on $\mathbb{C}^n=\mathbb{R}^n\oplus\mathbb{R}^n$

$$g = \operatorname{Re} (\partial \bar{\partial} \psi) \oplus \operatorname{Re} (\partial \bar{\partial} \psi)$$

(= a Kähler metric). By definition,

$$dV_g = MA(\psi)$$

The limiting complex MA-equation

$$MA(\psi) = e^{\beta(\psi - \phi)}dV$$

is equivalent to the (twisted) Kähler-Einstein equation

$$Ric g_{\psi} = -\beta g_{\psi} + \beta T_{\phi},$$

where T_{ϕ} is a symmetric two-tensor

Recall that Einstein's equations for a metric g on a "universe" X can be written as

$$Ric g - \Lambda g = T,$$

where Λ is the *cosmological constant* and T is the (trace-reduced) energy-momentum tensor

• Here

$$\operatorname{Ric}\,g_{\psi} = -\beta g_{\psi} + \beta T_{\phi}$$

and hence $\Lambda = -\beta$ and the weight ϕ determines $T(=\partial \bar{\partial} \phi)$

• In the standard physical setup g is a Lorentzian metric ("space-time")

• But here we are concerned with the case when g is a Riemannian metric (such solutions appear, for example, as gravitational instantons in Hawking's space-time foam)

• When X has a complex structure J one looks for Riemann metrics compatible with J, i.e. Kähler metrics

Physical interpretation?

 Hence, at positive temperature, random interpolation nodes in equilibrium yield a microscopic/statistical mechanical description of Einstein's equations (in Euclidean singature)

Quantum gravity? Emergent gravity?...

• There are some intruiging relations to the thermodynamics

of black holes

But that's a different story...

Positive cosmological constant/Negative temperature states

to get a *positive* cosmological constan Λ we would need $\beta < 0$.

• Since the Boltzmann-Gibbs density $\sim e^{-\beta E^{(N)}}$ this corresponds to keeping $\beta>0$, but switching the sign of the interaction energy $E^{(N)}$ to make it *attractive*.

• But then it turns out that there is a <u>critical</u> β_{cr} such that there are no (stable) solutions for $\beta > \overline{\beta_{cr}}$

• (phenomen of collaps, concentration...)

ullet This is related to the Yau-Tian-Donaldson conjecture concerning the existence of Kähler-Einstein metrics with positive Ricci curvature on a complex algebraic variety X

• Convergence of the Boltzmann-Gibbs measures in this attractive setting is open, in general.

The dynamic case

We now consider the time-dependent random measures

$$rac{1}{N_k}\sum_{i=1}^{N_k}\delta_{z_i(t)}, \ \ ext{on} \ \mathbb{C}^n$$

where $(z_1(t),...z_N(t))$ evolves according to the stochastic gradient flow of $E_{\phi}^{(N)}$ on $(\mathbb{C}^n)^N$ assuming that $z_1(0),...z_N(0)$ are iid with joint law μ_0 .

Conjecture (B.): As $N \to \infty$ the random measures above converge in law to a deterministic curve $\mu(t)$ of probability measures emanating from μ_0 .

In general, if a system of SDEs on X^N admits such a large N limit $\mu(t)$, then propagation of chaos is said to hold

(Boltzmann, Kac, Snitzmann...)

More precisely, in the present setting the deterministic limit $\mu(t)$ conjecturally evolves according to the following drift-diffusion equation on \mathbb{C}^n :

$$\frac{\partial \mu(t)}{\partial t} = \frac{1}{\beta} \Delta \mu(t) - \pm \nabla \cdot (\mu(t) \nabla (\psi(t) - \phi))$$

$$MA(\psi(t)) = \mu(t)$$

(assuming propagation of chaos, in a strong sense, one can show that the equation above has to hold)

• This conjecture is consistent with the static case: $\mu(t) \equiv MA(\psi) = e^{\pm \beta(\psi - \phi)}$ is a stationary solution

This conjecture seems very challenging and there are many hurdles:

- ullet Even defining the evolution equations is non-trivial due to the singularities of $E^{(N)}$
- Even the simplest case n = 1 is open!

The case n=1

- The repulsive case with $\beta = \infty$ appears in supra-conductivity where the particles are vortices (Ambrosio-Serfaty,...)
- The attractive case with $\beta \leq \beta_{cr}$ coincides with the Keller-Segel system in chemotaxis (recent progress by Fournier-Jourdain,...)

Tropicalization and a sticky particle system in \mathbb{R}^n

In the "attractive case" the stochastic gradient flows on $\mathbb{C}^d:=(\mathbb{C}^n)^N$ above have the following form

$$dz(t) = -\nabla \log |P(z)|^2 + \frac{\sqrt{2}}{\sqrt{\beta}} dB(t),$$

for a a polynomial P(z) on \mathbb{C}^d (the Vandermonde determinant).

The philosphy of Tropicalization: replace an elusive problem for polynomials in \mathbb{C}^d with a simpler one for piece-wise affine convex

function in \mathbb{R}^d :

$$\sum_{m{m} \in I} c_{m{m}} m{z}^{m{m}} \leadsto \max_{m{m} \in I} m{x} \cdot m{m}$$

Equivalently, the psh function on \mathbb{C}^d

$$\Psi(z) := \log |P(z)|$$

is replaced by a convex function on \mathbb{R}^d :

$$\varphi(x) := \lim_{k \to \infty} k^{-1} \Psi(e^{kx})$$

• Here this means that the *Vandermonde determinant on* $\mathbb{C}^d = \mathbb{C}^{nN}$.

$$\sum_{\sigma \in S_N} (-1)^{\mathsf{sign}(\sigma)} z_1^{m_{\sigma(1)}} \cdots z_{N_k}^{m_{\sigma(N)}}$$

is replaced by the tropical permanent

$$E_{trop}^{(N)}(x_1, ..., x_N) := \max_{\sigma \in S_N} \left(x_1 \cdot m_{\sigma(1)} + ... + x_N \cdot m_{\sigma(N)} \right)$$

In terms of discrete optimal transport this is minus the minimal cost to transport the N points $\{x_1, x_2,, x_N\}$ in \mathbb{R}^n to the N lattice points $\{m_1, ..., m_N\} \in k\Delta$ with respect to the quadratic cost function $c(x,y) := -x \cdot y \sim |x-y|^2/2$

Guided by the philospophy of tropicalization we replace the SDEs on \mathbb{C}^{nN} by the following SDEs on \mathbb{R}^{nN} :

$$dx(t) = -\nabla E_{trop}^{(N)}(x_1, x_2,, x_N) + \frac{\sqrt{2}}{\sqrt{\beta_N}} dB(t),$$

where

$$E_{trop}^{(N)}(x_1, ..., x_N) := \max_{\sigma \in S_N} (x_1 \cdot m_{\sigma(1)} + ... + x_N \cdot m_{\sigma(N)})$$

Thm : (B.-Önnheim '15). As $N \to \infty$ propagation of chaos holds for the SDEs above

More precisely, the deterministic limit μ_t on \mathbb{R}^n evolves according to

$$\frac{\partial \mu(t)}{\partial t} = \frac{1}{\beta} \Delta \mu(t) + \nabla \cdot (\mu(t) \nabla(\varphi(t)))$$
$$MA(\varphi(t)) = \mu(t)$$

where $\varphi(t):=\varphi(t,x)$ is convex on \mathbb{R}^n with given asymptotics as $|x|\to\infty$:

$$\varphi(t,x) = \max\{|x_1|,...,|x_n|\} + o(|x|)$$

The proof is based on a new propagation of chaos result for stochastic gradient flows of quasi-convex interaction energies.

• The key technical tool is the theory of Wasserstein gradient flows of Ambrosio et al.

A sticky particle system in \mathbb{R}^n

- In the deterministic setting $(\beta_N = \infty)$ the particles move at constant speed generically
- Indeed, the interaction energy $E_{trop}^{(N)}(x_1,...,x_N)$ is piece-wise affine
- Convexity of $E_{trop}^{(N)}(x_1,...,x_N)$ means that the system is <u>attractive</u>, which leads to "sticky" behaviour
- As a consequence, when $\beta = \infty$ the particles aggregate into a single particle $x_*(t)$ in a finite time, moving at constant speed

• Wen n=1 the deterministic system coincides with the <u>sticky</u> particle system on \mathbb{R} (originating in cosmology; the Zeldovich model).

• Adding a small noise $(\beta_N \to \infty)$ correspons to the *adhesion* model in cosmology when n=1

ullet The case n>1 is closely related to Brenier's generalization

of the Zeldovich model

Statistical mechanics of interpolation nodes $(\tau = 0)$

Kähler-Einstein metrics

Thank you!