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A. Optimal interpolation nodes

Denote by

e P.(C™) the space of all polynomials pi(z) on C"™ of total

degree < k.
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&) -
o N}, :=dimPR(C?) = L™ +o(k™) K ’ S 7
——
k_/\—\k_,—\/
e ¢(z), a given weight function on C", i.e. ¢ is Isc with super

log growth:

$(z) > (14 ¢€)log|z|? + O(1), |z| =



The weighted sup norm of a polynomial p, € PL(C") is then
defined by

1PElleg == sup pp(2)|e H9() < oo
zZ



The interpolation problem

A polynomial pi(z) is uniquely determined by its values at any
given generic configuration (zl,...sz) of N points.

Problem: how to distribute the “interpolation nodes” z1, 20, .., 2N
in order to be able to reconstruct any p; € P(C™) from its values

at the nodes in an optimal way (wrt the weighted norm)?
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Definition: A configuration of points (z1,..,zy,) on C" is said

to be optimal (wrt the weight ¢) if it maximizes the weighted
determinant of the corresponding evalutation map

A
Pp(C™) = (C)NE, p = (p(21), - p(2N,)),
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i.e. (21,.,2n,) on C" is said to be optimal if its maximizes the
weighted determinant

@17 oz |eTRolE) L e%

of the corresponding Ni x N matrix A:

A(z1, 22, --2n,) = (€i(2))1<i j<N,

where e; is some fixed basis in P (C").

e For example, can take a multinomial basis:

em(z) =2" ' =meZ"NkA



Why this optimality condition?

e The “worst” configurations (z1, 22, ...z, ) are those satisfying

det A(z1, 2o, ZN@

Then the corresponding evaluation map is not even invertible,
il.e. we cannot interpolate all values.

e Hence, the optimal configurations should be those maximiz-
. —_—
ing the norm of det A(21, 22, ...2N,)

This ensures that interpolation is possible and stable (by Cramer’s
rule)



T he classical setting in C
When n = 1 we have

The corresponding polynomial det A(zq, 2o, ...z ) factorizes in prod-
ucts of (z; — z;

;)
det A(z1,22,...2zp4+1) = |] (2 — 25)
i<j

(since it vanishes for z; = z;). Hence,

1 1 1 Al
% log | det A(z1, 22, ---ZNk)|kqb = — N _1)0 Z log |Zi_zj|+ Z ¢(z;)
(N=1)2, 02N i=1

is the mean field energy of N interacting Coulomb charges z1, ..., zn
in C confined by the potential ¢.




Hence, when n = 1 optimal interpolation nodes in C (i.e. Fekete
points) correspond to minimizers of the electrostatic energy

1 N
Ey(21, . 2N) = Y log |z — zj| + > #(z)
J =1

N — 1=
i



Classical results (Gauss, Fekete, Polya, Szegd, ...) then show
that when k(= N —1) — oo optimal nodes (27, 23, ...23) converge
weakly:

where uy is the unique minimizer of the “continuous” logarithmic
weighted energy:

@ = / 0g |2 — w|dp(=)du(w) + | $(x)du(z)

as u ranges over all probability measures on C

e [ he measure o IS called the weighted equilibrium measure
in potential theory




The higher dimensional setting: n>1

Conjecture:

e (Leja, '50s) Any sequence (z{,z;...z}k\,k) of optimal interpo-
lation nodes has a unique limit as k£ — oo :

weakly, for a probability measure ug

e (Siciak '80s) The measure pe should be the weighted pluripo-
tential equilibrium measure
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Siciak’s equilibrium measure is defined in terms of pluripoten-
tial theory which is a non-linear generalization to C" of classical
potential theory in C:

e Replace subharmonic functions on C with plurisubharmonic
functions ¥(z) on C" :

2
¢ o= () 20
\

e Replace the Laplacian on C with the complex Monge-Ampeére
operator on C" :

924 )
02;0z ) ; i<n

MA(®) = %'(a&b)m ~ det (
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Then Siciak’s pluripotential equilibrium measure p4 wrt the weight
¢ is defined by

e = MA(peq),

where ¢eq is defined as an envelope with obstacle ¢ :

¢eq(z) =sup{y(z) : ¥ < ¢}

e When ¢ is smooth with superlogarithmic growth P IS com-
pactly supported with an L°°—density ‘]0

Supp (Me)




The Leja-Siciak conjecture was settled ('08) in a joint work with
Sebastien Boucksom (Paris) and David Witt Nystrom (Chalmers)

But the solution prompts some new questions:

e \What is the “physical” interpretation of optimal interpolation
nodes when n > 17 Y/

; /,f ) f \ \
e How to locate (nearly) optimal nodes dynamically
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The idea is to introduce the N—particle “interaction energy”

1
@Nk) = % log | det A(z1, ZQ’ZD
N
@2, ~zn) = (€(25))ij<n,

in terms of a fixed multinomal base ey, ..,en, in Pp(C")

where

e T he interaction energy is symmetric

e ——

e It is repulsive
— T~

e It is independent of the base, up to an overall additive con-

stant
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e It is highly non-linear in (z1,...,2n,) when n > 1



B. Statistical mechanics in and out of equilibrium

Consider an ensemble of N identical particles zq,...,zx On a Rie-
mannian manifiold X interacting by a symmetric energy function
E(N)($1,332, ey TN ).

e (Statics) At inverse temperature (= By) the correspond-
ing equilibrium state is represented by the Boltzmann-Gibbs
measure




e (Dynamics) The relaxation to equllbrium, at inverse temper-
ature (3, is described by

\7"% = B\
“J

(the overdamped Langevin equation) i LA

The Boltzmann-Gibbs measure is stationary for the dynamics
and arises when t — oo



Random interpolation nodes

In our setting we take

1
E(N)(Zl, s sz) — Z log | det A(z1, 22, ZNk)lkgb

and try to study the corresponding large N—Iimit

e In other words we think of random interpolation nodes as
forming a statistical mechanical system.

e [ he problem is to show that a coherent large-scale structure
emerges in the “thermodynamic’” limit




e For Monte-Carlo approaches to optimal interpolation nodes
the relevant case is the "zero-temperature limit'’:

o gmn =

(the “liquid phase”)

=)

e But some suprising connection to complex geometry/math.
physics appears at a finite inverse temperature 3 (the ‘gas
phase’)
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In the special case whethe Boltzmann-Gibbs model

becomes —
G_BE(N)

1
. QN __ 2 QN
= Z; dV = —Zﬁ|(detA)(zl,22,...sz)|k¢dV :

where (det A)(z1, 2o, ...zN;,) is @ Vandermonde determinant raised
to the power@

e Hence uéN) then defines a determinantal point process and

asymptotically fy, =2k — 1= o0

e But in the positive temperature case 8 < oo the power is
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The static case

Theorem (B. 08" , '13): Given a 8 €]0,c0] the corresponding
random measure on C»

converges in law to a deterministic measure pg on C"

/_\ _—

e In fact, the convergence is exponential in the sense of large
deviation theory
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e When g = oo the limiting measure o Is the equilibrium mea-
F_/_- »
sure corresponding to the weight ¢

e For a finite 5 the measure pg can be written as

QM A@

where ¢5 IS smooth with logarithmic growth and solves the
PDE

MA(ypg) = P Ws=9)qy

(Aubin, Yau,...)
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Einstein’s equations for Kdhler-metrics on C"

The measure ug is the volume form of a certain Riemannian

—

metric 93 solving Einstein’'s equations on the “universe” X = C"

—————————

(with Euclidean signature).
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The point is that any smooth function spsh @ on C" defines a
Riemannian metric g, on C" =R" & R"

@w@@

(= a Kd&hler metric). By definition,

vy = AW

The limiting complex MA-equation

MA(Y) = BW—=9) 11/

is equivalent to the (twisted) Kahler-Einstein equation

Ric gy = —Bgy + BTy,

where T¢ IS a symmetric two-tensor
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Recall that Einstein’s equations for a metric g on a “universe’” X
can be written as

where A is the cosmological constant and T is the (trace-reduced)
energy-momentum tensor

———

e Here
Ric g, = —6@

and hence A = —f and the weight ¢ determines T'(= 00¢)
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e In the standard physical setup g is a Lorentzian metric (‘‘space-
time") o

e But here we are concerned with the case when g is a Rie-
mannian metric (such solutions appear, for example, as grav-
itational instantons in Hawking’'s space-time foam) 2>

* "4
.
e When X has a complex structure J one looks for Riemant 4
metrics compatible with J, i.e. Kahler metrics

24



Physical interpretation?

e Hence, at positive temperature, random interpolation nodes
in equilibrium yield a microscopic/statistical mechanical de-
scription of Einstein’s equations (in Euclidean singature)

e Quantum gravity? Emergent gravity?...

e [ here are some intruiging relations to the thermodynamics
of black holes

But that’s a different story...




Positive cosmological constant/Negative temperature states

Since

to get a positive cosmological constan A we would need 5 < 0.

e Since the Boltzmann-Gibbs density ~ e‘ﬁE(N) this corre-
sponds to keeping 8 > 0O, but switching the sign of the inter-

action energy EW) to makeit/attm%
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But then it turns out that there is a critical B such that
there are no (stable) solutions for 8 > Ber o

\ -
‘):,‘,‘kﬁ ]

N

®
(phenomen of collaps, concentration...) ‘>3

This is related to the Yau-Tian-Donaldson conjecture con-
cerning the existence of Kahler-Einstein metrics with positive
Ricci curvature on a complex algebraic variety X

Convergence of the Boltzmann-Gibbs measures in this at-
tractive setting is open, in general.
~R=
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The dynamic case

We now consider the time-dependent random measures

where (z1(t),...zxy(t)) evolves according to the stochastic gradi-
ent flow of E((bN) on (C™)Y assuming that z1(0),...zx5(0) are iid
with joint law pugp.

~C

Conjecture (B.): As N — oo the random measures above con-
verge in law to a deterministic curve u(t) of probability measures
emanating from pugp.

28



In general, if a system of SDEs on XV admits such a large N
limit u(t), then propagation of chaos is said to hold

T

(Boltzmann, Kac, Snitzmann...)
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More precisely, in the present setting the deterministic limit u(t)
conjecturally evolves according to the following drift-diffusion
equation on C" : J—

5 BA u(t) — £V - (@) V() — ¢)) ,@,

MA($(t)) = p(t)

(assuming propagation of chaosin a strong sense, one can show
that the equation above has to hold)

e This conjecture is consistent with the static case: u(t) =
MA() = eEP¥—9) is a stationary solution

30



This conjecture seems very challenging and there are many hur-
dles:

e Even defining the evolution equations is non-trivial due to
the singularities of EMV)

e Even the simplest case n =1 is open!
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The casen =1

e T he repulsive case with 8 = oo appears in SW}/_
where the particles are vortices (Ambrosio-Serfaty,...)

e T he attractive case with 8 < B coincides with the Keller-

Segel system in chemotaxis (recent progress by Fournier-
Jourdain,..)
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Tropicalization and a sticky particle system in R"”

In the “attractive case” the stochastic gradient flows on Cd =
(C™)N above have the following form

EZZ(t) = —Vlog|P(2)* + @

for a a polynomial P(z) on C¢ (the Vandermonde determinant).
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The philosphy of Tropicalization: replace an elusive problem for
polynomials in C9 with a simpler one for piece-wise affine convex

function in R? - —— o

Equivalently, the psh function on C
WV(z) :=log|P(z)|
IS replaced by a convex function on RY :

o(x) 1= lim k1w ()
k— 00
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e Here this means that the Vandermonde determinant on C¢ =
(CnN’

—_———

Z (_1)Sign(a)z71n<7(1) ey
oESN

IS replaced by the tropical permanent

In terms of discrete optimal transport this is minus the minimal
cost to transport the N points {x1,zo,.....,zx} in R™ to the N

lattice points {m1,....,my} € KA with respect to the quadratic

cost function c(z,y) := —z -y~ |z —y|?/2 » "
, o
X, °
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Guided by the philospophy of tropicalization we replace the SDEs
on C"N by the following SDEs on RV :

2
dz(t) = —VEGu) (21,22, ... en) + %;N@

—<

Et(fl:]\o[gz(wla L TN) = rean (371 Mg(1) + o T $@

36



Thm : (B.-Onnheim '15). As N — oo propagdation of chaos
holds for the SDEs above
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More precisely, the deterministic limit u; on R™ evolves according

———

ap{;it) _ %Au(t) + V- (u(t)V(e(t))

MA(p(t)) = p(t)
where ¢(t) := ¢o(t,x) is convex on R™ with given asymptotics as

x| — oo :

to

p(t, z) = max{[zi], ..., [zn|} + o(|z|)
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The proof is based on a new propagation of chaos result for
stochastic gradient flows of quasi-convex interaction energies.

—

e The key technical tool is the theory of Wasserstein gradient
flows of Ambrosio et al.
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A sticky particle system in R"

e In the deterministic setting (8 = oo) the particles move at
constant speed generically

——

e Indeed, the interaction energy E(N)(azl,...,:vN) iS piece-wise

. trop
affine
Pk

—_—

e Convexity of Et(,,:zgg(xl,...,xN) means that the system is at-

tractive, which leads tO“’S’EiEK_BC behaviour

e As a consequence, when g = oo the particles aggregate into
a single particle x«(t) in a finite time, moving at constant
speed
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e \WWen n = 1 the deterministic system coincides with the sticky

particle system on R (originating in cosmology; the Zeldovich
model).

e Adding a small noise (B — oo) correspons to the adhesion
//-\
model in cosmology when n =1

e The casen > 1 is closely related to Brenier's generalization
of the Zeldovich model i
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Statistical mechanics of interpolation nodes (T--o’)

/\/t/> Kahler-Einstein metrics
e /\/\/\> Sticky particle systems

T hank you!
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