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Classical mechanics and Gibbs measures

A Hamiltonian system consists of the following ingredients.

• Linear phase space Γ 3 φ.

• Hamilton (or energy) function H ∈ C∞(Γ).

• Poisson bracket {· , ·} on C∞(Γ)× C∞(Γ).

(Properties: antisymmetric, bilinear, Leibnitz rule in both arguments,
Jacobi identity.)

Classical dynamics is given by Hamiltonian flow φ 7→ φt on Γ defined by the
ODE

d

dt
f(φt) = {H, f}(φt)

for any f ∈ C∞(Γ).



Standard example: classical system of n degrees of freedom.

• Phase space Γ = R2n 3 (p, q).

• Hamilton function H(p, q) =

n∑
i=1

p2
i

2mi
+ V (q).

• Poisson bracket {f, g} =

n∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
.

Hamiltonian flow reads

d

dt
pi = −∂H

∂qi
= −∂iV (q) ,

d

dt
qi =

∂H

∂pi
=

pi
mi

.

The Gibbs measure at temperature β is

P(dφ) ..=
1

Z
e−βH(φ) dφ , Z ..=

∫
e−βH(φ) dφ .

P is invariant under the flow φ 7→ φt.



Nonlinear Schrödinger equations

Let Td = Rd/Zd be the d-dimensional torus.

• Phase space Γ is some appropriate subspace of {φ .. Td → C}.

• Hamilton function

H(φ) =

∫
dx φ̄(x)(κ−∆)φ(x) +

1

2

∫
dx dy w(x− y)|φ(x)|2|φ(y)|2 ,

where κ > 0.

• Poisson bracket

{φ(x), φ̄(y)} = iδ(x− y) , {φ(x), φ(y)} = {φ̄(x), φ̄(y)} = 0 .

Hamiltonian flow given by time-dependent nonlinear Schrödinger equation

i∂tφ(x) = (κ−∆)φ(x) +

∫
dy w(x− y)|φ(y)|2φ(x) .



Time-dependent nonlinear Schrödinger equation

i∂tφ(x) = (κ−∆)φ(x) +

∫
dy w(x− y)|φ(y)|2φ(x) . (1)

Gibbs measure of nonlinear Schrödinger equation is formally

P(dφ) =
1

Z
e−H(φ)dφ .

Formally, P is invariant under the flow generated by (1).

Rigorous results: Lebowitz–Rose–Speer, Bourgain, Bourgain–Bulut, Tzvetkov,
Thomann–Tzvetkov, Nahmod–Oh–Rey-Bellet–Staffilani, Oh–Quastel,
Deng–Tzvetkov–Visciglia, Cacciafesta–de Suzzoni, Genovese–Lucá–Valeri, . . .

Important application: P-almost sure well-posedness of (1) for rough initial
data.



Rigorous construction of Gibbs measure

Spectral decomposition

κ−∆ =
∑
k∈N

λkuku
∗
k , λk > 0 , ‖uk‖L2 = 1 .

Let ω = (ωk)k∈N ∈ CN be i.i.d. NC(0, 1) random variables with joint law µ0.

Define the Gaussian free field

φω ≡ φ ..=
∑
k∈N

ωk√
λk
uk .

The sum converges in ‖φ‖Hs ..= ‖(κ−∆)s/2φ‖L2 in the sense of Lp(µ0) for all
p ∈ (1,∞), provided that ∑

k∈N
λs−1
k <∞ .

For example, Eµ0‖φ‖2Hs =
∑
k∈N

Eµ0 |ωk|2
λsk
λk

=
∑
k∈N

λs−1
k .



φ =
∑
k∈N

ωk√
λk
uk is the Gaussian free field with covariance (κ−∆)−1:∫

dµ 〈f , φ〉〈φ, g〉 = 〈f , (κ−∆)−1g〉 .

We find that
µ0(H0) =

{
1 if d = 1

0 if d > 1 .

Define the measure

µ(dω) ..=
1

Z
e−W (φω)µ0(dω) , W (φ) =

1

2

∫
dxdy w(x− y)|φ(x)|2|φ(y)|2 .

µ is well-defined for instance if:

• d = 1,

• w ∈ L∞,

• w positive definite,

since then 0 6W (φ) <∞ µ0-a.s.



Quantum many-body theory

Quantum (bosonic) n-particle system is formulated on Hilbert space

H(n) ..= L2
sym

(
(Td)n

)
consisting of wave functions Ψ(n)(x1, . . . , xn) symmetric in their arguments.

Hamilton operator

H(n) ..= H
(n)
0 + λ

∑
16i<j6n

w(xi − xj) , H
(n)
0

..=
n∑
i=1

(κ−∆xi)

Canonical thermal state at temperature τ > 0 is P
(n)
τ

..= e−H
(n)/τ .

Expectation of an observable A ∈ B(H(n)) is

ρ(n)
τ (A) ..=

Tr(AP
(n)
τ )

Tr(P
(n)
τ )

.



What happens as n→∞?

In order to obtain a nontrivial limit, we set λ = 1/n.

Theorem [Lewin-Nam-Serfaty-Solovej, 2012; Lewin-Nam-Rougerie, 2013]. For

λ = 1/n and τ fixed, the state ρ
(n)
τ (·) converges to the atomic measure δΦ in

the sense of p-particle correlation functions (see later), where Φ is the
minimizer of the energy function H.

Complete Bose-Einstein condensation for fixed τ .

In order to obtain the Gibbs measure µ, we need to let

• τ grow with n (high-temperature limit),

• n fluctuate. (n/τ will correspond to ‖φ‖22.)



High-temperature limit for d = 1

Define the Fock space

F ..=
⊕
n∈N

H(n)

and the grand canonical thermal state

Pτ
..=
⊕
n∈N

P (n)
τ = e−Hτ , Hτ

..=
1

τ

⊕
n∈N

H(n) .

Rescaled particle number operator

Nτ ..=
1

τ

⊕
n∈N

nI .

Expectation of an observable A ∈ B(F) is

ρτ (A) ..=
Tr(APτ )

Tr(Pτ )
.



Explicit computation for d = 1 and λ = 0:

lim
τ→∞

ρτ (N k
τ ) = Eµ‖φ‖2kL2 , k = 1, 2, . . . .

Number of particles is of order τ . Thus, set λ ..= τ−1 to obtain nontrivial
interacting limit.

Limit of ρτ (·) stated using p-particle correlation functions of Pτ ,

γτ,p
..=

1

Tr(Pτ )

∑
n>p

n(n− 1) · · · (n− p+ 1)

τp
Trp+1,...,n(P (n)

τ ) .

Note: in second-quantized notation we can introduce a quantum field (i.e.
operator-valued distribution) φτ satisfying the canonical commutation relations

[φτ (x), φ∗τ (y)] =
1

τ
δ(x− y) , [φτ (x), φτ (y)] = [φ∗τ (x), φ∗τ (y)] = 0 ,

such that

γτ,p(x1, . . . , xp; y1, . . . , yp)
..= ρτ

(
φ∗τ (y1) · · ·φ∗τ (yp)φτ (x1) · · ·φτ (xp)

)
.



Analogously, we define the classical p-particle correlation function

γp(x1, . . . , xp; y1, . . . , yp)
..= Eµ

(
φ̄(y1) · · · φ̄(yp)φ(x1) · · ·φ(xp)

)
.

The family (γp)p∈N completely determines all moments of the field φ.

Theorem [Lewin-Nam-Rougerie, 2015]. For d = 1 and w positive definite, for
any p ∈ N we have γτ,p → γp in trace class as τ →∞.



Higher dimensions

If d > 1 then φ has µ0-a.s. negative regularity, φ /∈ L2, since
∑
k∈N λ

−1
k =∞.

Consequences:

• W (φ) = 1
2

∫
dxdy w(x− y)|φ(x)|2|φ(y)|2 ill-defined even for w ∈ L∞.

• p-particle correlation functions γp are not in trace class, since

Tr(γ1) = Eµ‖φ‖2L2 =∞ .

• On the quantum side, rescaled number of particles Nτ is no longer
bounded. Explicit computation for noninteracting case w = 0:

ρτ (Nτ ) =
∑
k∈N

1

τ

1

eλk/τ − 1
→∞

as τ →∞. Quantum model has intrinsic cutoff at energies λk ≈ τ .

Heuristics:

Singularity of classical field ⇐⇒ Rapid growth of number of particles .



Renormalization

Renormalize interaction W by Wick ordering. Formally, take

W (φ) =
1

2

∫
dxdy w(x− y)(|φ(x)|2 −∞)(|φ(y)|2 −∞) .

Rigorously, introduce truncated field and density

φ[K]
..=

K∑
k=0

ωk√
λk
uk , %[K]

..= Eµ0 |φ[K](x)|2 .

Then

W[K]
..=

1

2

∫
dxdy w(x− y)

(
|φ[K](x)|2 − %[K]

)(
|φ[K](x)|2 − %[K]

)
has a limit in

⋂
p<∞ Lp(µ0) as K →∞, denoted by W .

Use this W in definition of µ.



Similarly, we need to renormalize quantum interaction

1

τ

∑
16i<j6n

w(xi − xj)

to

W (n)
τ

..=
1

τ

∑
16i<j6n

w(xi − xj) +

∫
w(x) dx

(
−%τn+

τ

2
%2
τ

)
I ,

where

%τ
..= ρτ |w=0(Nτ ) =

∑
k∈N

1

τ

1

eλk/τ − 1

is the quantum density. Note that %τ →∞ as τ →∞ for d > 1.

This gives the renormalized Hamilton operator

Hτ,0 +Wτ =
1

τ

⊕
n>0

H
(n)
0 +

1

τ

⊕
n>0

W (n)
τ

on Fock space F .



Main result

For technical reasons, instead of Pτ = e−Hτ,0−Wτ , we consider a family of
modified thermal quantum states

P ητ
..= e−ηHτ,0e−(1−2η)Hτ,0−Wτ e−ηHτ,0 , η ∈ [0, 1) .

Theorem [Fröhlich-K-Schlein-Sohinger, 2016]. Let d = 2, 3, w ∈ L∞ positive
definite, η > 0, and p ∈ N. Then γητ,p → γp in Hilbert-Schmidt as τ →∞.

Remarks:

• Also works on Rd instead of Td, with sufficiently confining potential v in
free Hamiltonian κ−∆ + v(x).

On Rd the relation between original and renormalized problems is
nontrivial and governed by counterterm problem, solved in [FKSS, 2016].

• Method works also for d = 1 and all η > 0: we recover result of
Lewin-Nam-Rougerie by a completely different method.



Morsel of proof

Basic approach: perturbative expansion of partition functions Eµ0e−zW and
Tr(e−Hτ,0−zWτ ) in powers of z. Well-defined for Re z > 0 but ill-defined for
Re z < 0: zero radius of convergence around z = 0.

Toy problem:
A(z) =

1√
2π

∫
R

dx e−x
2/2 e−zx

4

;

analytic for Re z > 0 but zero radius of convergence, with Taylor coefficient
am = A(m)(0)/m! ∼ m!.

However, Taylor series
∑
m>0 amz

m has Borel transform B(z) ..=
∑
m>0

am
m! z

m

with positive radius of convergence. Formally, we can recover A from

A(z) =

∫ ∞
0

dt e−tB(tz) .

Works provided we can prove good enough bounds on Taylor coefficients and
remainder term of A (Sokal, 1980).

Main work: control of the coefficients and remainder of quantum many-body
problem.


