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Determinantal point process

DPP: random point configuration with correlation
kernel K(x,y)

@ Correlation functions are determinantanl
k
pr(x1, ..., xx) = det [K(Xi7)<j)],'J:1
@ K is not unique:

h(x)
WK(X,)/)

is correlation kernel for same DPP



Orthogonal ensembles

Orthonormal functions ¢, k=0,1,...,
[ eueitxde =
e n th reproducing kernel
n—1
Kn(x,y) = Y eu(x)e(y)
k=0

o Probability density

1 n 1 o \?
= det [Kn(x;, )7 1=y = o <det [(pkfl(xj)]ﬁk:l)



OP ensembles

Orthogonal polynomials w.r.t. weight w on R,

/ T P (W (x)dx = 5

o0

® ¢i(x) = +/w(x)pk(x), k=0,1,..., are orthonormal
functions and kernel is

Kol v) = VGV S pe(0mely)



OP ensembles

Orthogonal polynomials w.r.t. weight w on R,

/ T P (W (x)dx = 5

o0

o vi(x) = /w(x)pk(x), k=0,1,..., are orthonormal
functlons and kernel is

= Vw(x)v/w(y) i pr(x)p(y)

Proposition

el = 5 T] Gs=x[[wi)

1<i<j<n j=1




Biorthogonal ensemble

Two sequences of functions ¢, ¥y, k=0,1,... are
biorthogonal if

| ertutaae =

o

e nth reproducing kernel

Kolxr) = 3 orl)in(y)

e K, is correlation kernel for DPP iff
det [Kn(xi7)<j)]7,j:1 = det [SOk—l(’Q)]j,ik:l'det Wk—l(xj)]jn,kzl >0

for all xqi, ..., x,.



Biorthogonal ensemble, 2

Assume probability density function on R” of the form

1 n n
7 det [fkfl(xj)]j,kﬂ - det [gk—l(xj)]j,kﬂ

n

Then we biorthogonalize the functions

fo, .. fac1 = ©o,- -y On_1, o0
0 L o : / or(xX)Us(x)dx = 0

80;5---38n—1 7 wOP"a,’vZ}n—l?

o0

This is biorthogonal ensemble with correlation kernel

n—1

Kn(x,y) = > o) t(y)-

k=0




Example: Nonintersecting path ensembles

Theorem (Karlin McGregor (1959))

Let Xi,..., X, be independent copies of a
one-dimensional strong Markov process with continuous
sample paths, conditioned such that

Xi(0) = aj, for given a; < --- < a,
Xi(T) = b;, for given b; < --- < b,
and conditioned not to intersect for any 0 <t < T.

Then the random positions X;(t),..., X,(t) have joint
density

1 n N
z det [p¢(ax, Xj)]j,kzl - det [pr—+(x;, bk)]j,kzl

where p:(x, y) is the transition probability density




Non-intersecting path ensembles

1 n n
7 det [p¢(ax, Xj)]j,k:l - det [pr—«(x;, bk)]j,k:l

e Biorthogonal ensemble with functions
fk(X) = pt(akax)v gk(X) = pT—t(Xa bk)

Main example

@ Brownian motion has transition densities

1 (x=y)?

Pt(Xa)/) = \/ﬁ B

e 2



Confluent case

e Brownian motion in the limit a; = 0, b; — 0.

e This leads to same p.d.f. (after scaling) as for the
eigenvalues of GUE.
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Two starting points

@ Brownian motion in the limit a; — +a, b; — 0.
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Two starting points

@ Brownian motion in the limit a; — +a, b; — 0.
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b,'—>0.

@ Brownian motion in the limit a; — +a,
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Polynomial Ensembles



Polynomial ensemble

Polynomial ensemble is
1 n
?An(x) - det [kal(xj)]j,kzl
with Vandermonde determinant
k=110 _
A, (x) = det [XJ- L;k:l = H(XJ - X;)

i<j



Polynomial ensemble

Polynomial ensemble is
1 n
ZAn(X) - det [wie—1 ()]} -y

with Vandermonde determinant

Ap(x) = det [Xjk_l}jn,kzl - H(XJ =)

i<j

o After biorthogonalization
Lx,...,x" ' — Py,...,P,_1 polynomials
Wo,...,Wh1 — Qo,...,Qn_1

@ P; is a monic polynomial of degree j such that

/ P;(x)wk(x)dx = 0, for k=0,...,j—1

oo



Average characteristic polynomial
P, is such that

/ Pn(x)wk(x)dx =0 for k=0,1,...,n—-1

(e o]

Lemma

P, is the average characteristic polynomial
H(X - Xj)]
:—/H A, (x) det [wy_ 1X_,]HdXJ

Rrn J=1 J

P.,(x)=E




Example 1

Random matrices

e Hermitian n x n matrices with probability measure

1
Ze— Tr V(M) dM

e Eigenvalue density

is OP ensemble

e Also polynomial ensemble with w;(x) = xke=V()



Example 2

Random matrix with external source

e Hermitian n x n matrices with probability measure

1
= o= TH(V(M)—=AM) ypq

Z,

A'is a fixed Hermitian matrix with eigenvalues
di,...,dp.
@ Polynomial ensemble with

wi(x) = e=ViFae, k=1,...,n

in case all a; are distinct



Biorthogonal ensemble

S TT0s ) TI64 <) [T e

" i<k j<k j=1
defined on [0, c0)” with some 6 > 0

@ Polynomial ensemble with

wi(x) = xPke= V), k=0,...,n—1.

Muttalib (1995), Borodin (1998)



Multiplication with complex Ginibre



Complex Ginibre matrix

G is size (n+ v) x n with Gaussian distribution

1 .
ZefTrG GdG

@ Entries are independent standard complex
Gaussians

e Eigenvalues of G*G have joint density
1 2 & vV —X;
?An(x) ij e all x; > 0.
n =1

@ This is Laguerre ensemble.



Products of complex Ginibre

Product of Ginibre matrices

Y:Gr"'G2G]_

e Both eigenvalues and singular values of Y have
determinantal structure

Eigenvalues Akemann, Burda (2013)
Adhikari, Reddy, Reddy, Saha (2016)

Singular values Akemann, Kieburg, Wei (2013)
Akemann, Ipsen, Kieburg (2013)



Eigenvalues

Product of complex Ginibre matrices
Y =G, GG

G; has size (n+v;) x (n+v;_1) with all v; >0, 1y, =1, =0
e Joint density for eigenvalues of Y

> iz 2 erzj|
j<k
w(x) = G§° B X
RN PR 72
c+ioco

=5 /Hryj—i-s —*d.

c—ioco J_

with a Meijer G-function




Squared singular values

Product of complex Ginibre matrices
Y=G, GG
G; has size (n+v;) X (n+vj_1) with all ; >0, 11, =0

e Joint density for eigenvalues of Y*Y

1 n
ZA,,(x) det [wi—1(x)]; —y

is a polynomial ensemble
e Weight w; is same Meijer G-function

70 -
wo(x) = Gor,r ( b, X)
7 )

c+ioco
=5 / Hr vi+s)x"°dk

r
CIOOJ




Multiplication with Ginibre

Theorem (Kuijlaars-Stivigny (2014))

Suppose G is (n+ v) x n complex Ginibre matrix and X
is independent random matrix with squared singular
value density

1 n
?An(x) det [fk(Xj)]j,kzl

Then squared singular values of Y = GX have density

1 n
?An(Y) det [gk()/j)]j,k:1
with g, the Mellin convolution of f, with x"e™

aly) = /0“ xes, (L) &

X X




Ingredients in the proof

Harish-Chandra/Itzykson-Zuber formula

det [e*‘?jbk};k:1

e~ Tr(U*AUB) y1j — c,
/UGU(n) An(a)An(b)

where A and B are Hermitian matrices with respective
eigenvalues a;,...,a, and by,..., b,




Ingredients in the proof

Harish-Chandra/Itzykson-Zuber formula

det [e*‘?jbk};k:1

e~ Tr(U*AUB) y1j — c,
/UGU(n) An(a)An(b)

where A and B are Hermitian matrices with respective
eigenvalues a;,...,a, and by,..., b,

Andreief identity (a.k.a. generalized Cauchy-Binet)

/[0 ) det [@k()g)]j,kzl det [wk(Xj)]Jr",k:l dx - - dx,

— nldet l /0 h goj(x)zﬁk(x)dx}

j)k:]‘



Ingredients 2

Singular value decomposition of Y of size (n+v) x n
Y = VXU, Y = diag(o1,...,0n)
U is unitary and V*V =/
e Mapping

Yo (U Vaoyim), y=0

is a change of variable with

dy = (Hyj> )2 dyy - - - dy, dU dV



Proof of Theorem, step 1

First consider fixed X
Step 1: Complex Ginibre matrix G has distribution

o e—TrG GdG

Change of variables G — Y = GX
@ has Jacobian det(X*X) ™"V = ijf”*”
J

@ Then G = YX ! and

e~ (66 yG = (ij—n—u> o~ TH (Y Y(X*X)™Y) gy

j=1



Proof of Theorem, steps 2 and 3

Step 2: Singular value decomposition Y = V¥ U
@ Then

e~ Tr(G*G)dG o

(ka"”> (Hn”) An(y)? dyr- - dy,

N J/

-
Jacobian of SVD
_ *§2 * —1
e Tr(U*Z2U(X* X) )dU dv



Proof of Theorem, steps 2 and 3

Step 2: Singular value decomposition Y = V¥ U
@ Then

e~ Tr(G*G)dG o

<Hx" > (Hyk> n(y)? dyi - dy,

J/

Jacoblan of SVD
_ * 2
e Tr(U*Z?2U(X*X) ™ dU dv

Step 3: Recall Harish-Chandra/ltzykson-Zuber formula

det [e_ajbk];kzl

e~ THUAUB) qu — 7
/UeU(n) An(a)An(b)




Proof of Theorem, steps 3 and 4

Step 3: Intregate out U and V
e Density for yy,...,y,, after averaging over U and V

(i) )

_ Yk
s
8 An(y)An(x71) bl A PP

[\

-~

result of HCIZ
Step 4: Clean up the formula

o Use A,(x1) =+ (HJ —"+1) (%)
and bring factors into the determinant:

An(y) [ a— "
det %j
XX An(X) [)(Jl/—l—l J ]

Jik=1




Proof of Theorem, step 5

Step 5: Density for fixed matrix X is

Ay) [ ]
X B0 * Lwe

J

Jj,k=1

1
e Average over Z Ap(x) det [fk(&')]}’,kﬂ

e By Andreief identity

x A,(y) det [gk(yj)]j,kzl

with

_ - yz/ L _ OO vV —X Yy dx
gk(y)_/o XVHe xfk(x)dx—/o x"e ;5<_)_




Multiplication with truncated unitary
matrix



Other products

@ Products with inverses of complex Ginibre matrices
Forrester (2014)

@ Products with truncations of unitary matrices
Kieburg-Kuijlaars-Stivigny (2016)



Truncated unitary matrix

@ Unitary matrix U has size m x m
@ Truncation T has size (n+v)xnwithn<n+v <m

n

n+v T




Transformation of polynomial ensemble

T is (n+ v) x n truncation of Haar distributed m x m
unitary matrix

Theorem (Kieburg-Kuijlaars-Stivigny (2016))

If squared singular values of X have joint density

1 n
= Do) det [fi)]] ey all x; > 0

n

then squared singular values of Y = TX have density

I n
2 An(y) det [gk(yJ')]Lk:l all y; >0

n

. ! dx
with gk(y) = / X/(1=x)" " (Z) —
0

X X

Mellin convolution with Beta density.



We have 4 proofs of this theorem.



We have 4 proofs of this theorem.

@ First proof mimics the proof for products of
complex Ginibre matrices.
It works only if m > 2n + v since then there is a
density for T

X det(l - T T)m72n71/ ]1{7'* T<I} dT

@ Second proof uses more involved matrix integrals

e Third proof uses interlacing of eigenvalues of
restricted matrices Kuijlaars (2016)

e Fourth proof uses spherical functions
Kieburg-Kosters (arXiv 2016)



Ingredient in first proof

e Analogue of HCIZ integral

det [(aj - bk)p+"_1} ’

+ k=1

An(a)An(b)

/ det, (A— UBU")P dU = c,,
UeU(n)

where A and B are Hermitian matrices with

eigenvalues a;,...,a,, and by,..., b,, and
det(X if X>0

det, (x) = § 410 X2
0 otherwise

. 1 -1
x ifx>0 B p+n—1
. {O otherwise Crp = H ( J )



Ingredient in first proof

e Analogue of HCIZ integral

n

det [(aj - bk)p+"_1}

+ .
A — UBU*)? =c, Jok=1
/ det ( UBU*)" dU = ¢, AL (2D (b)
UeU(n)
where A and B are Hermitian matrices with
eigenvalues a;,...,a,, and by,..., b,, and
det(X if X >0
det. (x) — ¢ 4ot X2
0 otherwise
. n—1 -1
x ifx>0 p+n—1
g Cn frg .
. {O otherwise P 111 ( J )

e Known formula without Gross-Richards (1989)



Third proof

Observation: suppose U = (T *)

Xk
U (XX O) Ut — <TXX T *)
0 O * *

@ Squared singular values of TX are non-zero
eigenvalues of leading principal submatrix of UAU*

where
XX* 0
A=
e Ais a semi positive-definite matrix whose non-zero
eigenvalues are the squared singular values of X.

then



Known result

Baryshnikov (2001)
Suppose A is (n+ 1) x (n+ 1) Hermitian matrix with
eigenvalues

< a<---<a,

B is the n x n principal submatrix of UAU* where U is
Haar distributed unitary matrix

e Eigenvalues of B almost surely interlace
ap<b<a<b<---<a, <b,<a,

e Joint density of eigenvalues

An(b)
An—&—l(‘:")

subject to the interlacing condition.

n!



Variation on this theme

Forrester-Rains (2005)
Suppose A is (n+ p) x (n+ p) positive semidefinite with
eigenvalues

O0<a; << ap, 0 has multiplicity p > 1.

Bis (n4+p—1) x (n+ p—1) principal submatrix of UAU*
@ B has p — 1 eigenvalues at 0 and remaining n
eigenvalues almost surely interlace

O<bh<ai<b<---<a,_1<b,<a,

e Joint density

I Au(b)
JREANE)

subject to the interlacing condition.



Transformation of polynomial ensemble

Suppose A is (n+ p) x (n+ p) positive semidefinite with
eigenvalues

O0<a << a,y, 0 has multiplicity p > 1,

whose non-zero eigenvalues are polynomial ensemble

1 n
A An(a) det[fi(3))]} s

Bis (n4+p—1) x (n+ p—1) principal submatrix of UAU*

Then non-zero eigenvalues of B have density

ZiAn(b) det [g(b))]} 4

n

1
gk(b):/ xP=f, (l—))%
0 x/) x

where



Repeat the transformation

Suppose A is (n+ p) x (n+ p) is positive semidefinite
O<a < - <ap, 0 has multiplicity p > 1,

whose non-zero eigenvalues are polynomial ensemble

1 n

Z An(a) det [fk(aj)]j,kzl

B is (n+ q) x (n+ q) principal submatrix of UAU* with
0<g<p

Then non-zero eigenvalues of B have density

Zi A (b) det [gk(bj)];",kzl

n

aon- [[eaar (3

where



Fourth proof (sketch)

Kieburg-Kosters (arXiv 2016)
Group theoretic point of view

G = GL(n,C) complex Lie group
K = U(n) maximal compact subgroup

@ A function f : G — C is K-biinvariant if
f(UAV) forall Ac G, U,V e K.

@ Then f depends only on the squared singular values
of A

f(A) = fe (X1, - -, Xn)



Convolution

Suppose f and g are probability densities of
independent random matrices X and Y that are both
K-biinvariant.

@ Then

(=N = [ &(B)AE ) s

G

is density for YX.
dB
° e —
det(B*B)
@ Convolution is commutative for biinvariant
functions (Gelfand pair)

is Haar measure on G = GL(n,C)



Spherical function

¢ : G — C is a spherical function if ¢(A) =1 and

/K S(AUB)AU = p(A)o(B)

@ ¢ is K-biinvariant.

Spherical transform f — f

has property



Spherical functions

Spherical functions for (G, K) = (GL(n,C), U(n)) are
labeled by s = (s;,...,s,) € C™

r1\ det [x]”
— J,k=1
SOS(A) - (HJI> An(X An(s

Jj=1

where xi, ..., x, are eigenvalues of A*A.



Spherical transform

Spherical transform  7(s) = /G f(A)cps(A)ﬁ
can be calculated for
e Gaussian density

n

gi(s) = H (s +v)

j=1

@ Truncated unitary matrix density

&(s)=[[B(s+v.m—n—v)

Jj=1

e Polynomial ensemble f(A) < A,(x) det [fi(x;)]

) g det ) <60




Spherical transform

@ Thus
— [[-,B(sj+v,m—n—v) > dx
f J= S J—
g *x f(s) x D) det {/0 xIf(x) . }

1 < dx
= N det |:B(Sj +v,m—n— 1/)/0 X% fk(x)y}



Spherical transform

@ Thus
— " B(si+v,m—n—v 00 d
g * f(s) o L1 B(s A )det { /0 xsffk(x)%]
1 > d
= N det [B(sj +v,m—n— I/)/O xsf'fk(x)yx}
o Note

= Ldx
Bls+vm—n—v)= [ xix(1— sy X
0 X
is Mellin transform of x”(1 — x)m—"—V—l
@ Product of Mellin transforms is transform of the

Mellin convolution

o d o d
B(s; +v,m— n—y)/ xsffk(x)—x :/ xsfgk(x)—x
0 0

X X



Proucts of Ginibre matrices



Multiplication with Ginibre

Theorem (Kuijlaars-Stivigny (2014))

Suppose G is (n+ v) x n complex Ginibre matrix and
X is independent random matrix with squared singular
value density

1 n
ZAn(x) det [ ()] —

Then squared singular values of Y = GX have density

Zi An(y) det [ ()]s

n

with




Transformation of polynomial ensemble

Multiplication by complex Ginibre matrix transforms
polynomial ensembles

o From 1
va A, (x) det [fk(xj)]j,kzl
to
1

= B(y) detlge )y

n

o d
where gi(y) :/ x"e > f, (Z) =
0

X X

e gi is Mellin convolution of f, with x"e™



Mellin transform

Mellin transform

F(s) = / 1 (x) dx
0
o If g is the Mellin convolution of f; and f;, then
g(s) = fi(s) - h(s)
e Since g, is the Mellin convolution of x”e ™ with f,

8c(s) =T(s+v) - fils)



Mellin transform

Mellin transform

F(s) = / 1 (x) dx
0
o If g is the Mellin convolution of f; and f;, then
g(s) = fi(s) - h(s)
e Since g, is the Mellin convolution of x”e ™ with f,

8c(s) =T(s+v) - fils)
Inverse Mellin transform

f(x) = %/Lf(s)x_sds

with suitable contour L in the complex plane



Products of Ginibre matrices

Suppose G; has size (n+ v;) x (n+ v;_1) with all v; >0
and vy = 0. Make product

Y=G,- GG of size (n+v,) X n

e Eigenvalues of Y*Y are polynomial ensemble

1
> An(x) det [y (x)]

n

n
j k=1

where
/ X wi(x)dx = s H M(s+v)

Akemann-Kieburg-Wei (2013)
Akemann-lpsen-Kieburg (2013)



Meijer G-functions

By inverse Mellin transform

1 c+ioco r
wi(x) = 2—7“/ ' s H M(s+vj)x °ds, x>0
c—ioo =1

@ Such functions are known as Meijer G-functions

Beals-Szmigielski, Notices AMS, 2013



Correlation kernel

Correlation kernel is

n—1

Kn(x,¥) = D Pu(x)Qu(y)

k=0

e Py is a polynomial of degree k
@ @ is a linear combination of wy, ..., w,_;

with biorthogonality

/0 " Pu(x)Qi(x)dx = 6.



Integral representation

B ]{ r(t—k) o dt
~ 2mi [[ooM(t+v+1)

were ¥ is a closed contour around the interval [0, ].

1 1 c+ioco

Qu(x) = —— (s— K [ (s + 1) x*ds
j=1

Yk 27 c—ioo

Residue calculus + properties of Mellin transform []




Integral representation

B (t —k)
27”]41_[1 oF(t+v+1)

were ¥ is a closed contour around the interval [0, n].

xtdt

Corollary: Py is a hypergeometric polynomial
.y ;
14uv,...,14v,

Pu(x) = % 1y (




Double integral representation

The polynomial ensemble has correlation kernel

K RN Ui o
n(X’Y)* (27TI)2 /_é_ioo S%Z t

(ﬁ M(s+v;+ 1)) M(t—n+1)xty—=s!

Mt+v,+1) ) T(s—n+1) s—t

j=0

Combine integral representations of P, and Q,
Telescoping sum []




Large n limit: global regime



Global limit

e Let n — oo with vy, 1, ..., v, fixed.

e Largest eigenvalue of Y*Y grows like n".



Global limit

e Let n — oo with vy, 1, ..., v, fixed.
e Largest eigenvalue of Y*Y grows like n".
@ The limit

pr(x) = lim n"'K,(n"x, n"x)
n—oo

is the density of Fuss-Catalan distribution and does
not depend on vy, ..., v,.

o It is the r-fold multiplicative free convolution of the
Marchenko-Pastur distribution.



Equilibrium problem

Forrester, Liu, Zinn-Justin (2015)
The DPP looks like a biorthogonal ensemble

_ka_XJH 1/r_ l/r HX j

j<k j<k

in the global regime as n — oo
o After rescaling x; — n"x;

1 1/r 1/r =t 1/r

—rnx.
Tll(Xk_Xj)ll(Xk - x"") ”ije j
Zn ik j<k j=1

o It leads to an equilibrium problem



Equilibrium problem

e Equilibrium problem Minimize over p on [0, ),

/ / log (x)du(y)
3 / / 'ogmdu(X)du(y) +r / XM dpu(x)




Equilibrium problem

e Equilibrium problem Minimize over . on [0, o),

%// log |Xiy,du(><)du(y)

+% / / log ,Xl%du(X)du(y) +r / xM"dp(x)

yir|

e Fuss-Catalan distribution p,(x)dx has compact
(r + 1)I’+1

r

support [0, x*] with x* =
@ Density blows up at hard edge
pr(x) ~ x=r/r+D) as x — 0+
@ Square root decay at soft edge x*

Burda-Jarosz-Livan-Nowak-Swiech (2011)
Penson-Zyzckowski (2011), Neuschel (2014)
Forrester-Liu (2015)



Vector equilibrium problem

Notation

I(p, V)Z// log |Xiy‘du(X)dV(y), () = 1(p, 1)

Minimize
r—1 r—2
Jj=0 j=0

o 11; is on (—1)[0,00) with total mass 1 — £
Unique minimizing vector of measures (uo, ..., ft,_1)

@ 1o is compactly supported (if V grows faster than
logarithm)

@ Other measures have full support (—oo,0] or [0, c0).



Vector equilibrium problem

Proposition (arXiv 2016)

1o is the minimizer for

%/(,LH%/U,(MH/V(x)du(X)

among probability measures on [0, ).

1

/1/,(,u) = // log mdﬂ(x)dﬂ(}/)



Large n limit: local regime



Local scaling limits

Sequence of correlation kernels K,

@ Scale points around a
, V(x —
x; — cn’(x; — a)

@ New kernel

@ Is there a limit

1 X
lim —K, <a—|— X ay L) — 77
n—oo chY cn” cn?



Known limits

sinm(x — y)

@ Sine kernel in the bulk
m(x —y)

o Airy kernel at soft edge

Ai(x) Ai'(y) — Ai'(x) Ai(y)
X—y

o Bessel kernels at hard edge

J(VX)YI(Y) = VX (VX)L (/Y)
2(x —y)




GUE scaling limits

sinm(x — y)

@ Sine kernel in the bulk
m(x —y)

@ Airy kernel at the edge



@ The Airy equation

y'(2) = zy(2)
has special solution Ai(z) that decays as z — +o0

Ai(z) -322 (1 + (9(2*3/2))

1
- 2ﬁzl/4e

and oscillates on negative real axis



ﬂ
/\/\(MQ\S
/ e

i \
[V

e Plot of Ai (red) and its derivative Ai' (blue)




Cusp point

15

0.5

-051

-15
0

@ Again sine kernel in the bulk, and Airy kernel at
the edge.

e New limiting kernels at cusp point



Pearcey kernels

e New family of limiting kernels built out of solutions
of third order Pearcey ODEs

p"(x) =xp(x) —sp'(x) and ¢"(y) = yaly) + sq'(y)
@ Double scaling limit are the Pearcey kernels
p(x)q"(y) = P'(x)d'(y) + P"(x)aly) — sp(x)a(y)
X—=Yy

Brézin-Hikami (1998), Tracy-Widom (2006)
Bleher-Kuijlaars (2007)




Local scaling limits

What are scaling limits of

K Ll
n(x’y)_(QW"V /_;_;oo SJ{ '

(ﬁ M(s+v+ 1)) M(t—n+1)xty—=s!

o Mt+v,+1) ) T(s—n+1) s—t

as n — oo with vq,..., v, fixed?

e Sine kernel in the bulk and Airy kernel at the soft
right edge Liu-Wang-Zhang (2016)

o Bessel kernel at the hard edge if r = 1.

e something new at the hard edge if r > 2.



Hard edge scaling limit

Theorem (Kuijlaars-Zhang (2014))

1
lim _Kn (£7X> = Kl/l V,(Xa_y)a X,y > Oa

n—scon \n n/ 77

Kyl ..... V,(X7y) =
1 /‘5*"00 y / " T M(s+v+1)) sinmsxty 1
s
(2mi)? J 1 i s o M(t+v;+1) ) sintt s—t
1 -
) + IR
, -
2 1 !} 1 2
Y




Meijer G-kernel

Alternative expression in terms of Meijer G-functions

Kul,...,l/, (X> .y) =

1
1,0 -
Gy’
0,r+1
/0 0, -, -,

>G0r+l(]/1’ Vr,O ’Uy)



Universality?

Meijer G-kernels appear as scaling limits in

e Cauchy multi matrix model:
Bertola-Gekhtman-Szmigielski (2013)
Bertola-Bothner (2015)

e Biorthogonal ensemble

Z H Xk — Xj) H(xk—x Hx e
j<k j<k
if 0=1/r Kuijlaars-Stivigny (2014)
@ Products of Ginibre + inverse Ginibre
Forrester (2014)

@ Products with truncated unitary matrices
Kieburg-Kuijlaars-Stivigny (2016)



That’s all

Thank you



