Determinantal Point Processes and Products of Random Matrices

Arno Kuijlaars (KU Leuven, Belgium)

Optimal and Random Point Configurations IHP Paris, 29 June 2016

Biorthogonal Ensembles

Determinantal point processes on $\mathbb R$

Orthogonal Polynomial Ensemble

 \subset

Polynomial Ensemble

 \subset

Biorthogonal Ensemble

 \equiv

Determinantal Point Process on \mathbb{R}

Determinantal point process

DPP: random point configuration with correlation kernel K(x, y)

Correlation functions are determinantanl

$$\rho_k(x_1,\ldots,x_k) = \det \left[K(x_i,x_j)\right]_{i,j=1}^k$$

• K is not unique:

$$\frac{h(x)}{h(y)}K(x,y)$$

is correlation kernel for same DPP

Orthogonal ensembles

Orthonormal functions φ_k , k = 0, 1, ...,

$$\int \varphi_k(x)\varphi_j(x)dx = \delta_{j,k}$$

• n th reproducing kernel

$$K_n(x,y) = \sum_{k=0}^{n-1} \varphi_k(x) \varphi_k(y)$$

Probability density

$$\frac{1}{n!} \det \left[K_n(x_i, x_j) \right]_{i,j=1}^n = \frac{1}{n!} \left(\det \left[\varphi_{k-1}(x_j) \right]_{j,k=1}^n \right)^2$$

OP ensembles

Orthogonal polynomials w.r.t. weight w on \mathbb{R} ,

$$\int_{-\infty}^{\infty} p_k(x) p_j(x) w(x) dx = \delta_{j,k}$$

• $\varphi_k(x) = \sqrt{w(x)}p_k(x)$, k = 0, 1, ..., are orthonormal functions and kernel is

$$K_n(x,y) = \sqrt{w(x)}\sqrt{w(y)}\sum_{k=0}^{n-1}p_k(x)p_k(y)$$

OP ensembles

Orthogonal polynomials w.r.t. weight w on \mathbb{R} ,

$$\int_{-\infty}^{\infty} p_k(x) p_j(x) w(x) dx = \delta_{j,k}$$

• $\varphi_k(x) = \sqrt{w(x)}p_k(x)$, k = 0, 1, ..., are orthonormal functions and kernel is

$$K_n(x,y) = \sqrt{w(x)}\sqrt{w(y)}\sum_{k=0}^{n-1}p_k(x)p_k(y)$$

Proposition

$$\frac{1}{n!} \det \left[K_n(x_i, x_j) \right]_{i,j=1}^n = \frac{1}{Z_n} \prod_{1 \le i \le j \le n} (x_j - x_i)^2 \prod_{i=1}^n w(x_j)$$

Biorthogonal ensemble

Two sequences of functions φ_k , ψ_k , $k=0,1,\ldots$ are biorthogonal if

$$\int_{-\infty}^{\infty} \varphi_k(x) \psi_j(x) dx = \delta_{j,k}$$

nth reproducing kernel

$$K_n(x,y) = \sum_{k=0}^{n-1} \varphi_k(x) \psi_k(y)$$

• K_n is correlation kernel for DPP iff

$$\det \left[K_n(x_i, x_j) \right]_{i,j=1}^n = \det \left[\varphi_{k-1}(x_j) \right]_{j,k=1}^n \cdot \det \left[\psi_{k-1}(x_j) \right]_{j,k=1}^n \ge 0$$

for all x_1, \ldots, x_n .

Biorthogonal ensemble, 2

Assume probability density function on \mathbb{R}^n of the form

$$\frac{1}{Z_n} \det [f_{k-1}(x_j)]_{j,k=1}^n \cdot \det [g_{k-1}(x_j)]_{j,k=1}^n$$

Then we biorthogonalize the functions

$$\begin{array}{cccc}
f_0, \dots, f_{n-1} & \mapsto & \varphi_0, \dots, \varphi_{n-1}, \\
g_0, \dots, g_{n-1} & \mapsto & \psi_0, \dots, \psi_{n-1},
\end{array} \qquad \int_{-\infty}^{\infty} \varphi_k(x) \psi_j(x) dx = \delta_{j,k}$$

Corollary

This is biorthogonal ensemble with correlation kernel

$$K_n(x,y) = \sum_{k=0}^{n-1} \varphi_k(x) \psi_k(y).$$

Example: Nonintersecting path ensembles

Theorem (Karlin McGregor (1959))

Let X_1, \ldots, X_n be independent copies of a one-dimensional strong Markov process with continuous sample paths, conditioned such that

$$X_j(0) = a_j,$$
 for given $a_1 < \cdots < a_n$
 $X_j(T) = b_j,$ for given $b_1 < \cdots < b_n$

and conditioned not to intersect for any 0 < t < T. Then the random positions $X_1(t), \ldots, X_n(t)$ have joint density

$$\frac{1}{Z_n} \det [p_t(a_k, x_j)]_{j,k=1}^n \cdot \det [p_{T-t}(x_j, b_k)]_{j,k=1}^n$$

where $p_t(x, y)$ is the transition probability density

Non-intersecting path ensembles

$$\frac{1}{Z_n} \det [p_t(a_k, x_j)]_{j,k=1}^n \cdot \det [p_{T-t}(x_j, b_k)]_{j,k=1}^n$$

Biorthogonal ensemble with functions

$$f_k(x) = p_t(a_k, x), \qquad g_k(x) = p_{T-t}(x, b_k)$$

Main example

Brownian motion has transition densities

$$p_t(x,y) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x-y)^2}{2t}}$$

Confluent case

- Brownian motion in the limit $a_j \to 0$, $b_j \to 0$.
- This leads to same p.d.f. (after scaling) as for the eigenvalues of GUE.

Two starting points

• Brownian motion in the limit $a_j \to \pm a$, $b_j \to 0$.

Two starting points

• Brownian motion in the limit $a_i \to \pm a$, $b_i \to 0$.

Two starting points

• Brownian motion in the limit $a_i \to \pm a$, $b_i \to 0$.

Polynomial Ensembles

Polynomial ensemble

Polynomial ensemble is

$$\frac{1}{Z_n}\Delta_n(x)\cdot\det\left[w_{k-1}(x_j)\right]_{j,k=1}^n$$

with Vandermonde determinant

$$\Delta_n(x) = \det \left[x_j^{k-1} \right]_{j,k=1}^n = \prod_{i < j} (x_j - x_i)$$

Polynomial ensemble

Polynomial ensemble is

$$\frac{1}{Z_n}\Delta_n(x)\cdot\det\left[w_{k-1}(x_j)\right]_{j,k=1}^n$$

with Vandermonde determinant

$$\Delta_n(x) = \det \left[x_j^{k-1} \right]_{j,k=1}^n = \prod_{i < j} (x_j - x_i)$$

After biorthogonalization

$$1, x, \dots, x^{n-1} \mapsto P_0, \dots, P_{n-1}$$
 polynomials $w_0, \dots, w_{n-1} \mapsto Q_0, \dots, Q_{n-1}$

• P_j is a monic polynomial of degree j such that

$$\int_{-\infty}^{\infty} P_j(x) w_k(x) dx = 0, \quad \text{for } k = 0, \dots, j-1$$

Average characteristic polynomial

 P_n is such that

$$\int_{-\infty}^{\infty} P_n(x) w_k(x) dx = 0 \qquad \text{for } k = 0, 1, \dots, n-1$$

Lemma

 P_n is the average characteristic polynomial

$$P_n(x) = \mathbb{E}\left[\prod_{j=1}^n (x - x_j)\right]$$

$$= \frac{1}{Z_n} \int_{\mathbb{R}^n} \prod_{j=1}^n (x - x_j) \cdot \Delta_n(x) \det[w_{k-1}(x_j)] \prod_j dx_j$$

Example 1

Random matrices

• Hermitian $n \times n$ matrices with probability measure

$$\frac{1}{Z_n}e^{-\operatorname{Tr} V(M)}dM$$

Eigenvalue density

$$\frac{1}{Z_n}\Delta_n(x)^2\prod_{j=1}^n e^{-V(x_j)}$$

is OP ensemble

• Also polynomial ensemble with $w_k(x) = x^k e^{-V(x)}$

Example 2

Random matrix with external source

• Hermitian $n \times n$ matrices with probability measure

$$\frac{1}{Z_n}e^{-\operatorname{Tr}(V(M)-AM)}dM$$

A is a fixed Hermitian matrix with eigenvalues a_1, \ldots, a_n .

Polynomial ensemble with

$$w_k(x) = e^{-V(x)+a_kx}, \qquad k = 1, \ldots, n$$

in case all a_k are distinct

Example 3

Biorthogonal ensemble

$$\frac{1}{Z_n}\prod_{j< k}(x_k-x_j)\cdot\prod_{j< k}(x_k^{\theta}-x_j^{\theta})\cdot\prod_{j=1}^n e^{-V(x_j)}$$

defined on $[0,\infty)^n$ with some $\theta>0$

Polynomial ensemble with

$$w_k(x) = x^{\theta k} e^{-V(x)}, \qquad k = 0, \dots, n-1.$$

Muttalib (1995), Borodin (1998)

Multiplication with complex Ginibre

Complex Ginibre matrix

G is size $(n + \nu) \times n$ with Gaussian distribution

$$\frac{1}{Z_n}e^{-\operatorname{Tr} G^*G}dG$$

- Entries are independent standard complex Gaussians
- Eigenvalues of G*G have joint density

$$\frac{1}{Z_n}\Delta_n(x)^2\prod_{j=1}^n x_j^{\nu}e^{-x_j} \qquad \text{ all } x_j>0.$$

• This is Laguerre ensemble.

Products of complex Ginibre

Product of Ginibre matrices

$$Y = G_r \cdots G_2 G_1$$

 Both eigenvalues and singular values of Y have determinantal structure

Eigenvalues Akemann, Burda (2013)

Adhikari, Reddy, Reddy, Saha (2016)

Singular values Akemann, Kieburg, Wei (2013)

Akemann, Ipsen, Kieburg (2013)

Eigenvalues

Product of complex Ginibre matrices

$$Y = G_r \cdots G_2 G_1$$

 G_j has size $(n+\nu_j)\times(n+\nu_{j-1})$ with all $\nu_j\geq 0$, $\nu_0=\nu_r=0$

Joint density for eigenvalues of Y

$$\frac{1}{Z_n} \prod_{j < k} |z_k - z_j|^2 \prod_{j=1}^n w(|z_j|^2)$$

with a Meijer G-function

$$w(x) = G_{0,r}^{r,0} \begin{pmatrix} - \\ \nu_1, \cdots, \nu_r \end{pmatrix} x$$
$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \prod_{j=1}^{r} \Gamma(\nu_j + s) x^{-s} ds$$

Squared singular values

Product of complex Ginibre matrices

$$Y = G_r \cdots G_2 G_1$$

 G_j has size $(n + \nu_j) \times (n + \nu_{j-1})$ with all $\nu_j \geq 0$, $\nu_0 = 0$

Joint density for eigenvalues of Y*Y

$$\frac{1}{Z_n}\Delta_n(x) \det \left[w_{k-1}(x_j)\right]_{j,k=1}^n$$

is a polynomial ensemble

• Weight w_0 is same Meijer G-function

$$w_0(x) = G_{0,r}^{r,0} \begin{pmatrix} - \\ \nu_1, \cdots, \nu_r \end{pmatrix} x$$

$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \prod_{j=1}^r \Gamma(\nu_j + s) x^{-s} ds$$

Multiplication with Ginibre

Theorem (Kuijlaars-Stivigny (2014))

Suppose G is $(n + \nu) \times n$ complex Ginibre matrix and X is independent random matrix with squared singular value density

$$\frac{1}{Z_n}\Delta_n(x)\det\left[f_k(x_j)\right]_{j,k=1}^n$$

Then squared singular values of Y = GX have density

$$\frac{1}{\tilde{Z}_n}\Delta_n(y)\det\left[g_k(y_j)\right]_{j,k=1}^n$$

with g_k the Mellin convolution of f_k with $x^{\nu}e^{-x}$

$$g_k(y) = \int_0^\infty x^{\nu} e^{-x} f_k\left(\frac{y}{x}\right) \frac{dx}{x}$$

Ingredients in the proof

Harish-Chandra/Itzykson-Zuber formula

$$\int_{U \in U(n)} e^{-\operatorname{Tr}(U^*AUB)} dU = c_n \frac{\det \left[e^{-a_j b_k}\right]_{j,k=1}^n}{\Delta_n(a)\Delta_n(b)}$$

where A and B are Hermitian matrices with respective eigenvalues a_1, \ldots, a_n and b_1, \ldots, b_n

Ingredients in the proof

Harish-Chandra/Itzykson-Zuber formula

$$\int_{U \in U(n)} e^{-\operatorname{Tr}(U^*AUB)} dU = c_n \frac{\det \left[e^{-a_j b_k}\right]_{j,k=1}^n}{\Delta_n(a)\Delta_n(b)}$$

where A and B are Hermitian matrices with respective eigenvalues a_1, \ldots, a_n and b_1, \ldots, b_n

Andreief identity (a.k.a. generalized Cauchy-Binet)

$$\int_{[0,\infty)^n} \det \left[\varphi_k(x_j) \right]_{j,k=1}^n \det \left[\psi_k(x_j) \right]_{j,k=1}^n dx_1 \cdots dx_n$$

$$= n! \det \left[\int_0^\infty \varphi_j(x) \psi_k(x) dx \right]_{j,k=1}^n$$

Ingredients 2

Singular value decomposition of Y of size $(n + \nu) \times n$:

$$Y = V\Sigma U, \qquad \Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$$

U is unitary and $V^*V = I$

Mapping

$$Y \mapsto (U, V, y_1, \dots, y_n), \qquad y_j = \sigma_j^2$$

is a change of variable with

$$dY = \left(\prod_{j=1}^n y_j^{\nu}\right) \Delta_n(y)^2 dy_1 \cdots dy_n dU dV$$

Proof of Theorem, step 1

First consider fixed X

Step 1: Complex Ginibre matrix *G* has distribution

$$\propto e^{-\operatorname{Tr} G^* G} dG$$

Change of variables $G \mapsto Y = GX$

- has Jacobian $\det(X^*X)^{-n-\nu} = \prod_j x_j^{-n-\nu}$
- Then $G = YX^{-1}$ and

$$e^{-\operatorname{Tr}(G^*G)}dG = \left(\prod_{j=1}^n x_j^{-n-\nu}\right)e^{-\operatorname{Tr}(Y^*Y(X^*X)^{-1})}dY$$

Proof of Theorem, steps 2 and 3

Step 2: Singular value decomposition $Y = V\Sigma U$

Then

$$e^{-\operatorname{Tr}(G^*G)}dG \propto \\ \left(\prod_{k=1}^n x_k^{-n-\nu}\right)\underbrace{\left(\prod_{k=1}^n y_k^{\nu}\right) \Delta_n(y)^2}_{\text{Jacobian of SVD}} dy_1 \cdots dy_n \\ e^{-\operatorname{Tr}(U^*\Sigma^2 U(X^*X)^{-1})} dU \, dV$$

Proof of Theorem, steps 2 and 3

Step 2: Singular value decomposition $Y = V\Sigma U$ • Then

$$\begin{array}{c} e^{-\operatorname{Tr}(G^*G)}dG \propto \\ \left(\prod_{k=1}^n x_k^{-n-\nu}\right)\underbrace{\left(\prod_{k=1}^n y_k^{\nu}\right) \Delta_n(y)^2}_{\text{Jacobian of SVD}} dy_1 \cdots dy_n \\ e^{-\operatorname{Tr}(U^*\Sigma^2 U(X^*X)^{-1})} dU \, dV \end{array}$$

Step 3: Recall Harish-Chandra/Itzykson-Zuber formula

$$\int_{U \in U(n)} e^{-\operatorname{Tr}(U^*AUB)} \, dU = c_n \, \frac{\det \left[e^{-a_j b_k} \right]_{j,k=1}^n}{\Delta_n(a) \Delta_n(b)}$$

Proof of Theorem, steps 3 and 4

Step 3: Intregate out U and V

• Density for y_1, \ldots, y_n , after averaging over U and V

$$\propto \left(\prod_{j=1}^n x_j^{-n-\nu} \right) \left(\prod_{k=1}^n y_k^{\nu} \right) \Delta_n(y)^2$$

$$\times \underbrace{\frac{1}{\Delta_n(y)\Delta_n(x^{-1})} \det \left[e^{-\frac{y_k}{x_j}} \right]_{j,k=1}^n }_{\text{result of HCIZ}}$$

Step 4: Clean up the formula

• Use $\Delta_n(x^{-1}) = \pm \left(\prod_j x_j^{-n+1}\right) \Delta_n(x)$ and bring factors into the determinant:

$$\propto rac{\Delta_n(y)}{\Delta_n(x)} \det \left[rac{y_k^{
u}}{x_j^{
u+1}} e^{-rac{y_k}{x_j}}
ight]_{j,k=1}^n$$

Proof of Theorem, step 5

Step 5: Density for fixed matrix X is

$$\propto rac{\Delta_n(y)}{\Delta_n(x)} \det \left[rac{y_k^
u}{x_j^{
u+1}} \mathrm{e}^{-rac{y_k}{x_j}}
ight]_{j,k=1}^n$$

- Average over $\frac{1}{Z_n} \Delta_n(x) \det [f_k(x_j)]_{j,k=1}^n$
- By Andreief identity

$$\propto \Delta_n(y) \det [g_k(y_j)]_{j,k=1}^n$$

with

$$g_k(y) = \int_0^\infty \frac{y^{\nu}}{x^{\nu+1}} e^{-\frac{y}{x}} f_k(x) dx = \int_0^\infty x^{\nu} e^{-x} f_j\left(\frac{y}{x}\right) \frac{dx}{x}$$

Multiplication with truncated unitary matrix

Other products

- Products with inverses of complex Ginibre matrices
 Forrester (2014)
- Products with truncations of unitary matrices
 Kieburg-Kuijlaars-Stivigny (2016)

Truncated unitary matrix

- Unitary matrix U has size $m \times m$
- Truncation T has size $(n+\nu) \times n$ with $n \le n+\nu \le m$

Transformation of polynomial ensemble

T is $(n + \nu) \times n$ truncation of Haar distributed $m \times m$ unitary matrix

Theorem (Kieburg-Kuijlaars-Stivigny (2016))

If squared singular values of X have joint density

$$\frac{1}{Z_n} \Delta_n(x) \det \left[f_k(x_j) \right]_{j,k=1}^n \quad \text{all } x_j > 0$$

then squared singular values of Y = TX have density

$$\frac{1}{\tilde{Z}_n} \Delta_n(y) \det [g_k(y_j)]_{j,k=1}^n \quad \text{all } y_j > 0$$

with
$$g_k(y) = \int_0^1 x^{\nu} (1-x)^{m-n-\nu-1} f_k\left(\frac{y}{x}\right) \frac{dx}{x}$$

Mellin convolution with Beta density.

Proofs

We have 4 proofs of this theorem.

Proofs

We have 4 proofs of this theorem.

First proof mimics the proof for products of complex Ginibre matrices.
 It works only if m ≥ 2n + ν since then there is a density for T

$$\propto \det(I-T^*T)^{m-2n-\nu} \mathbb{1}_{\{T^*T\leq I\}} dT$$

- Second proof uses more involved matrix integrals
- Third proof uses interlacing of eigenvalues of restricted matrices
 Kuijlaars (2016)
- Fourth proof uses spherical functions

Kieburg-Kösters (arXiv 2016)

Ingredient in first proof

Analogue of HCIZ integral

$$\int\limits_{U\in U(n)} \det_{+}\left(A-UBU^{*}\right)^{p}dU = c_{n,p}\frac{\det\left[\left(a_{j}-b_{k}\right)_{+}^{p+n-1}\right]_{j,k=1}^{n}}{\Delta_{n}(a)\Delta_{n}(b)}$$

where A and B are Hermitian matrices with eigenvalues a_1, \ldots, a_n , and b_1, \ldots, b_n , and

$$\begin{split} \det_+(X) &= \begin{cases} \det(X) & \text{if } X \geq 0 \\ 0 & \text{otherwise} \end{cases} \\ x_+ &= \begin{cases} x & \text{if } x \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad c_{n,p} = \prod_{j=0}^{n-1} \binom{p+n-1}{j}^{-1} \end{split}$$

Ingredient in first proof

Analogue of HCIZ integral

$$\int\limits_{U\in U(n)} \det_+ \left(A-UBU^*\right)^p dU = c_{n,p} \frac{\det\left[\left(a_j-b_k\right)_+^{p+n-1}\right]_{j,k=1}^n}{\Delta_n(a)\Delta_n(b)}$$

where A and B are Hermitian matrices with eigenvalues a_1, \ldots, a_n , and b_1, \ldots, b_n , and

$$\begin{split} \det_+(X) &= \begin{cases} \det(X) & \text{if } X \geq 0 \\ 0 & \text{otherwise} \end{cases} \\ x_+ &= \begin{cases} x & \text{if } x \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad c_{n,p} = \prod_{j=0}^{n-1} \binom{p+n-1}{j}^{-1} \end{split}$$

Known formula without _

Third proof

Observation: suppose $U = \begin{pmatrix} T & * \\ * & * \end{pmatrix}$ then

$$U\begin{pmatrix} XX^* & 0\\ 0 & 0 \end{pmatrix}U^* = \begin{pmatrix} TXX^*T^* & *\\ * & * \end{pmatrix}$$

 Squared singular values of TX are non-zero eigenvalues of leading principal submatrix of UAU* where

$$A = \begin{pmatrix} XX^* & 0 \\ 0 & 0 \end{pmatrix}$$

• A is a semi positive-definite matrix whose non-zero eigenvalues are the squared singular values of X.

Known result

Baryshnikov (2001)

Suppose A is $(n+1) \times (n+1)$ Hermitian matrix with eigenvalues

$$a_0 < a_1 < \cdots < a_n$$

B is the $n \times n$ principal submatrix of UAU^* where U is Haar distributed unitary matrix

• Eigenvalues of B almost surely interlace

$$a_0 < b_1 < a_1 < b_2 < \cdots < a_{n-1} < b_n < a_n$$

Joint density of eigenvalues

$$n! \frac{\Delta_n(b)}{\Delta_{n+1}(a)}$$

subject to the interlacing condition.

Variation on this theme

Forrester-Rains (2005)

Suppose A is $(n+p) \times (n+p)$ positive semidefinite with eigenvalues

$$0 < a_1 < \cdots < a_n$$
, 0 has multiplicity $p \ge 1$.

B is
$$(n+p-1)\times(n+p-1)$$
 principal submatrix of UAU^*

• B has p-1 eigenvalues at 0 and remaining n eigenvalues almost surely interlace

$$0 < b_1 < a_1 < b_2 < \cdots < a_{n-1} < b_n < a_n$$

Joint density

$$\propto \frac{\prod_{k=1}^n b_k^{p-1}}{\prod_{k=1}^n a_k^p} \frac{\Delta_n(b)}{\Delta_n(a)}$$

subject to the interlacing condition.

Transformation of polynomial ensemble

Suppose A is $(n+p) \times (n+p)$ positive semidefinite with eigenvalues

$$0 < a_1 < \cdots < a_n$$
, 0 has multiplicity $p \ge 1$,

whose non-zero eigenvalues are polynomial ensemble

$$\frac{1}{Z_n} \Delta_n(a) \det [f_k(a_j)]_{j,k=1}^n$$

B is
$$(n+p-1)\times(n+p-1)$$
 principal submatrix of UAU^*

Then non-zero eigenvalues of B have density

$$\frac{1}{\tilde{Z}_n}\Delta_n(b) \det [g_k(b_j)]_{j,k=1}^n$$

where

$$g_k(b) = \int_0^1 x^{p-1} f_k\left(\frac{b}{x}\right) \frac{dx}{x}$$

Repeat the transformation

Suppose A is $(n+p) \times (n+p)$ is positive semidefinite $0 < a_1 < \cdots < a_n$, 0 has multiplicity $p \ge 1$,

whose non-zero eigenvalues are polynomial ensemble

$$\frac{1}{Z_n} \Delta_n(a) \det [f_k(a_j)]_{j,k=1}^n$$

B is $(n+q) \times (n+q)$ principal submatrix of UAU^* with $0 \le q < p$

Then non-zero eigenvalues of B have density

$$\frac{1}{\tilde{Z}_n} \Delta_n(b) \det [g_k(b_j)]_{j,k=1}^n$$

where

$$g_k(b) = \int_0^1 x^q (1-x)^{p-q-1} f_k\left(\frac{b}{x}\right) \frac{dx}{x}$$

Fourth proof (sketch)

Kieburg-Kösters (arXiv 2016) Group theoretic point of view

$$G = GL(n, \mathbb{C})$$
 complex Lie group
 $K = U(n)$ maximal compact subgroup

• A function $f: G \to \mathbb{C}$ is K-biinvariant if

$$f(UAV)$$
 for all $A \in G$, $U, V \in K$.

 Then f depends only on the squared singular values of A

$$f(A) = f_{ssv}(x_1, \ldots, x_n)$$

Convolution

Suppose f and g are probability densities of independent random matrices X and Y that are both K-biinvariant.

Then

$$(g*f)(A) = \int_G g(B)f(AB^{-1})\frac{dB}{\det(B^*B)}$$

is density for YX.

- $\frac{dB}{\det(B^*B)}$ is Haar measure on $G = GL(n, \mathbb{C})$
- Convolution is commutative for biinvariant functions (Gelfand pair)

Spherical function

 $\varphi: \mathcal{G} \to \mathbb{C}$ is a spherical function if $\varphi(\mathcal{A}) = 1$ and

$$\int_{K} \varphi(AUB)dU = \varphi(A)\varphi(B)$$

• φ is K-biinvariant.

Spherical transform $f \mapsto \widehat{f}$

$$\widehat{f}(\varphi) = \int_{G} f(A)\varphi(A) \frac{dA}{\det A^*A}$$

has property

$$\widehat{f * g} = \widehat{f} \cdot \widehat{g}$$

Spherical functions

Spherical functions for $(G, K) = (GL(n, \mathbb{C}), U(n))$ are labeled by $s = (s_1, \dots, s_n) \in \mathbb{C}^n$:

$$\varphi_s(A) = \left(\prod_{j=1}^{n-1} j!\right) \frac{\det\left[x_j^{s_k}\right]_{j,k=1}^n}{\Delta_n(x)\Delta_n(s)}$$

where x_1, \ldots, x_n are eigenvalues of A^*A .

Spherical transform

Spherical transform can be calculated for

$$\widehat{f}(s) = \int_{G} f(A)\varphi_{s}(A) \frac{dA}{\det(A^*A)}$$

Gaussian density

$$\widehat{g}_1(s) = \prod_{j=1}^n \Gamma(s_j + \nu)$$

Truncated unitary matrix density

$$\widehat{g}_2(s) = \prod_{i=1}^n B(s_j + \nu, m - n - \nu)$$

• Polynomial ensemble $f(A) \propto \Delta_n(x) \det [f_k(x_j)]$

$$\widehat{f}(s) \propto \frac{1}{\Delta_n(s)} \det \left[\int_0^\infty x^{s_j} f_k(x) \frac{dx}{x} \right]$$

Spherical transform

Thus

$$\widehat{g_2 * f}(s) \propto \frac{\prod_{j=1}^n B(s_j + \nu, m - n - \nu)}{\Delta_n(s)} \det \left[\int_0^\infty x^{s_j} f_k(x) \frac{dx}{x} \right]$$

$$= \frac{1}{\Delta_n(s)} \det \left[B(s_j + \nu, m - n - \nu) \int_0^\infty x^{s_j} f_k(x) \frac{dx}{x} \right]$$

Spherical transform

Thus

$$\widehat{g_2 * f}(s) \propto \frac{\prod_{j=1}^n B(s_j + \nu, m - n - \nu)}{\Delta_n(s)} \det \left[\int_0^\infty x^{s_j} f_k(x) \frac{dx}{x} \right] \\
= \frac{1}{\Delta_n(s)} \det \left[B(s_j + \nu, m - n - \nu) \int_0^\infty x^{s_j} f_k(x) \frac{dx}{x} \right]$$

Note

$$B(s_j + \nu, m - n - \nu) = \int_0^\infty x^{s_j} x^{\nu} (1 - x)^{m - n - \nu - 1} \frac{dx}{x}$$

is Mellin transform of $x^{\nu}(1-x)^{m-n-\nu-1}$

 Product of Mellin transforms is transform of the Mellin convolution

$$B(s_j + \nu, m - n - \nu) \int_0^\infty x^{s_j} f_k(x) \frac{dx}{x} = \int_0^\infty x^{s_j} g_k(x) \frac{dx}{x}$$

Proucts of Ginibre matrices

Multiplication with Ginibre

Theorem (Kuijlaars-Stivigny (2014))

Suppose G is $(n + \nu) \times n$ complex Ginibre matrix and X is independent random matrix with squared singular value density

$$\frac{1}{Z_n}\Delta_n(x)\det\left[f_k(x_j)\right]_{j,k=1}^n$$

Then squared singular values of Y = GX have density

$$\frac{1}{\tilde{Z}_n} \Delta_n(y) \det \left[g_k(y_j) \right]_{j,k=1}^n$$

with

$$g_k(y) = \int_0^\infty x^{\nu} e^{-x} f_k\left(\frac{y}{x}\right) \frac{dx}{x}$$

Transformation of polynomial ensemble

Multiplication by complex Ginibre matrix transforms polynomial ensembles

From

$$\frac{1}{Z_n} \Delta_n(x) \det [f_k(x_j)]_{j,k=1}^n$$

to

$$\frac{1}{\tilde{Z}_n} \Delta_n(y) \det \left[g_k(y_j) \right]_{j,k=1}^n$$

where
$$g_k(y) = \int_0^\infty x^{\nu} e^{-x} f_k\left(\frac{y}{x}\right) \frac{dx}{x}$$

• g_k is Mellin convolution of f_k with $x^{\nu}e^{-x}$

Mellin transform

Mellin transform

$$\widehat{f}(s) = \int_0^\infty x^{s-1} f(x) \, dx$$

• If g is the Mellin convolution of f_1 and f_2 , then

$$\widehat{g}(s) = \widehat{f}_1(s) \cdot \widehat{f}_2(s)$$

• Since g_k is the Mellin convolution of $x^{\nu}e^{-x}$ with f_k

$$\widehat{g}_k(s) = \Gamma(s+\nu) \cdot \widehat{f}_k(s)$$

Mellin transform

Mellin transform

$$\widehat{f}(s) = \int_0^\infty x^{s-1} f(x) \, dx$$

• If g is the Mellin convolution of f_1 and f_2 , then

$$\widehat{g}(s) = \widehat{f}_1(s) \cdot \widehat{f}_2(s)$$

• Since g_k is the Mellin convolution of $x^{\nu}e^{-x}$ with f_k

$$\widehat{g}_k(s) = \Gamma(s+\nu) \cdot \widehat{f}_k(s)$$

Inverse Mellin transform

$$f(x) = \frac{1}{2\pi i} \int_{\Gamma} \widehat{f}(s) x^{-s} ds$$

with suitable contour L in the complex plane $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Products of Ginibre matrices

Suppose G_i has size $(n + \nu_i) \times (n + \nu_{i-1})$ with all $\nu_i \geq 0$ and $\nu_0 = 0$. Make product

$$Y = G_r \cdots G_2 G_1$$
 of size $(n + \nu_r) \times n$

• Eigenvalues of Y^*Y are polynomial ensemble

$$\frac{1}{Z_n}\Delta_n(x) \det [w_{k-1}(x_j)]_{j,k=1}^n$$

where

$$\int_0^\infty x^{s-1} w_k(x) dx = s^k \prod_{j=1}^r \Gamma(s + \nu_j)$$

Akemann-Kieburg-Wei (2013) Akemann-Ipsen-Kieburg (2013)

Meijer G-functions

By inverse Mellin transform

$$w_k(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} s^k \prod_{j=1}^r \Gamma(s+\nu_j) x^{-s} ds, \qquad x > 0$$

Such functions are known as Meijer G-functions

Beals-Szmigielski, Notices AMS, 2013

Correlation kernel

Correlation kernel is

$$K_n(x,y) = \sum_{k=0}^{n-1} P_k(x) Q_k(y)$$

- P_k is a polynomial of degree k
- Q_k is a linear combination of w_0, \ldots, w_{n-1} with biorthogonality

$$\int_0^\infty P_k(x)Q_j(x)dx=\delta_{j,k}.$$

Integral representation

Theorem

$$P_k(x) = \frac{\gamma_k}{2\pi i} \oint_{\Sigma} \frac{\Gamma(t-k)}{\prod_{j=0}^r \Gamma(t+\nu_j+1)} x^t dt$$

were Σ is a closed contour around the interval [0, k].

$$Q_k(x) = \frac{1}{\gamma_k} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} (s-k)_k \prod_{j=1}^r \Gamma(s+\nu_j) x^{-s} ds$$

Proof.

Residue calculus + properties of Mellin transform

Integral representation

Theorem

$$P_k(x) = \frac{\gamma_k}{2\pi i} \oint_{\Sigma} \frac{\Gamma(t-k)}{\prod_{j=0}^r \Gamma(t+\nu_j+1)} x^t dt$$

were Σ is a closed contour around the interval [0, n].

Corollary: P_k is a hypergeometric polynomial

$$P_k(x) = \gamma_{k-1}F_r\left(\begin{array}{c} -k \\ 1 + \nu_1, \dots, 1 + \nu_r \end{array} \middle| x\right)$$

Double integral representation

Theorem

The polynomial ensemble has correlation kernel

$$K_{n}(x,y) = \frac{1}{(2\pi i)^{2}} \int_{-\frac{1}{2}-i\infty}^{-\frac{1}{2}+i\infty} ds \oint_{\Sigma} dt$$

$$\left(\prod_{j=0}^{r} \frac{\Gamma(s+\nu_{j}+1)}{\Gamma(t+\nu_{j}+1)}\right) \frac{\Gamma(t-n+1)}{\Gamma(s-n+1)} \frac{x^{t}y^{-s-1}}{s-t}$$

Proof.

Combine integral representations of P_k and Q_k Telescoping sum

Large *n* limit: global regime

Global limit

- Let $n \to \infty$ with $\nu_1, \nu_2, \dots, \nu_r$ fixed.
- Largest eigenvalue of Y^*Y grows like n^r .

Global limit

- Let $n \to \infty$ with $\nu_1, \nu_2, \dots, \nu_r$ fixed.
- Largest eigenvalue of Y^*Y grows like n^r .
- The limit

$$\rho_r(x) = \lim_{n \to \infty} n^{r-1} K_n(n^r x, n^r x)$$

is the density of Fuss-Catalan distribution and does not depend on ν_1, \ldots, ν_r .

• It is the *r*-fold multiplicative free convolution of the Marchenko-Pastur distribution.

Equilibrium problem

Forrester, Liu, Zinn-Justin (2015)

The DPP looks like a biorthogonal ensemble

$$\frac{1}{Z_n} \prod_{j < k} (x_k - x_j) \prod_{j < k} (x_k^{1/r} - x_j^{1/r}) \prod_{j=1}^n x_j^{\frac{r-1}{2}} e^{-rx_j^{1/r}}$$

in the global regime as $n \to \infty$

• After rescaling $x_j \mapsto n^r x_j$

$$\frac{1}{\widehat{Z}_n} \prod_{j < k} (x_k - x_j) \prod_{j < k} (x_k^{1/r} - x_j^{1/r}) \prod_{j=1}^n x_j^{\frac{r-1}{2}} e^{-rnx_j^{1/r}}$$

• It leads to an equilibrium problem

Equilibrium problem

• Equilibrium problem Minimize over μ on $[0,\infty)$,

$$\begin{split} &\frac{1}{2} \iint \log \frac{1}{|x-y|} d\mu(x) d\mu(y) \\ &+ \frac{1}{2} \iint \log \frac{1}{|x^{1/r} - y^{1/r}|} d\mu(x) d\mu(y) + r \int x^{1/r} d\mu(x) d\mu(y) \end{split}$$

Equilibrium problem

• Equilibrium problem Minimize over μ on $[0,\infty)$,

$$\begin{split} &\frac{1}{2} \iint \log \frac{1}{|x-y|} d\mu(x) d\mu(y) \\ &+ \frac{1}{2} \iint \log \frac{1}{|x^{1/r} - y^{1/r}|} d\mu(x) d\mu(y) + r \int x^{1/r} d\mu(x) d\mu(y) \end{split}$$

- Fuss-Catalan distribution $\rho_r(x)dx$ has compact support $[0, x^*]$ with $x^* = \frac{(r+1)^{r+1}}{r^r}$
- Density blows up at hard edge

$$\rho_r(x) \sim x^{-r/(r+1)}$$
 as $x \to 0+$

Square root decay at soft edge x*

Burda-Jarosz-Livan-Nowak-Swiech (2011)
Penson-Zyzckowski (2011), Neuschel (2014)
Forrester-Liu (2015)

Vector equilibrium problem

Notation

$$I(\mu,\nu) = \iint \log \frac{1}{|x-y|} d\mu(x) d\nu(y), \quad I(\mu) = I(\mu,\mu)$$

Minimize

$$\sum_{j=0}^{r-1} I(\mu_j) - \sum_{j=0}^{r-2} I(\mu_j, \mu_{j+1}) + \int V(x) d\mu_0(x)$$

- ullet μ_j is on $(-1)^j[0,\infty)$ with total mass $1-rac{j}{r}$
- Unique minimizing vector of measures $(\mu_0, \dots, \mu_{r-1})$
 - μ_0 is compactly supported (if V grows faster than logarithm)
 - Other measures have full support $(-\infty,0]$ or $[0,\infty)$.

Vector equilibrium problem

Proposition (arXiv 2016)

 μ_0 is the minimizer for

$$\frac{1}{2}I(\mu) + \frac{1}{2}I_{1/r}(\mu) + \int V(x)d\mu(x)$$

among probability measures on $[0, \infty)$.

$$I_{1/r}(\mu) = \iint \log \frac{1}{|x^{1/r} - y^{1/r}|} d\mu(x) d\mu(y)$$

Large *n* limit: local regime

Local scaling limits

Sequence of correlation kernels K_n

Scale points around a

$$x_j \mapsto cn^{\gamma}(x_j - a)$$

New kernel

$$\frac{1}{cn^{\gamma}}K_n\left(a+\frac{x}{cn^{\gamma}},a+\frac{y}{cn^{\gamma}}\right)$$

Is there a limit

$$\lim_{n\to\infty}\frac{1}{cn^{\gamma}}K_n\left(a+\frac{x}{cn^{\gamma}},a+\frac{y}{cn^{\gamma}}\right)=??$$

Known limits

- Sine kernel in the bulk $\frac{\sin \pi(x-y)}{\pi(x-y)}$
- Airy kernel at soft edge

$$\frac{\operatorname{Ai}(x)\operatorname{Ai}'(y)-\operatorname{Ai}'(x)\operatorname{Ai}(y)}{x-y}$$

Bessel kernels at hard edge

$$\frac{J_{\nu}(\sqrt{x})\sqrt{y}J_{\nu}'(\sqrt{y})-\sqrt{x}J_{\nu}'(\sqrt{x})J_{\nu}(\sqrt{y})}{2(x-y)}$$

GUE scaling limits

- Sine kernel in the bulk
- Airy kernel at the edge

$$\frac{\sin\pi(x-y)}{\pi(x-y)}$$

Airy function

The Airy equation

$$y''(z) = zy(z)$$

has special solution Ai(z) that decays as $z \to +\infty$

$$\mathsf{Ai}(z) = \frac{1}{2\sqrt{\pi}z^{1/4}}e^{-\frac{2}{3}z^{3/2}}\left(1 + \mathcal{O}(z^{-3/2})\right)$$

and oscillates on negative real axis

Plot

Plot of Ai (red) and its derivative Ai' (blue)

Cusp point

- Again sine kernel in the bulk, and Airy kernel at the edge.
- New limiting kernels at cusp point

Pearcey kernels

 New family of limiting kernels built out of solutions of third order Pearcey ODEs

$$p'''(x) = xp(x) - sp'(x)$$
 and $q'''(y) = yq(y) + sq'(y)$

Double scaling limit are the Pearcey kernels

$$\frac{p(x)q''(y) - p'(x)q'(y) + p''(x)q(y) - sp(x)q(y)}{x - y}$$

Brézin-Hikami (1998), Tracy-Widom (2006) Bleher-Kuijlaars (2007)

Local scaling limits

What are scaling limits of

$$K_n(x,y) = \frac{1}{(2\pi i)^2} \int_{-\frac{1}{2} - i\infty}^{-\frac{1}{2} + i\infty} ds \oint_{\Sigma} dt$$

$$\left(\prod_{j=0}^{r} \frac{\Gamma(s + \nu_j + 1)}{\Gamma(t + \nu_j + 1)}\right) \frac{\Gamma(t - n + 1)}{\Gamma(s - n + 1)} \frac{x^t y^{-s - 1}}{s - t}$$

as $n \to \infty$ with ν_1, \ldots, ν_r fixed?

- Sine kernel in the bulk and Airy kernel at the soft right edge
 Liu-Wang-Zhang (2016)
- Bessel kernel at the hard edge if r = 1.
- something new at the hard edge if $r \ge 2$.

Hard edge scaling limit

Theorem (Kuijlaars-Zhang (2014))

$$\lim_{n\to\infty}\frac{1}{n}K_n\left(\frac{x}{n},\frac{y}{n}\right)=K_{\nu_1,\dots,\nu_r}(x,y), \qquad x,y>0,$$

exists with limiting kernel

$$\begin{split} &\mathcal{K}_{\nu_1,\dots,\nu_r}(x,y) = \\ &\frac{1}{(2\pi i)^2} \int_{-\frac{1}{2}-i\infty}^{-\frac{1}{2}+i\infty} ds \int_{\Sigma} dt \left(\prod_{j=0}^r \frac{\Gamma(s+\nu_j+1)}{\Gamma(t+\nu_j+1)} \right) \frac{\sin \pi s}{\sin \pi t} \frac{x^t y^{-s-1}}{s-t} \end{split}$$

Meijer G-kernel

Alternative expression in terms of Meijer G-functions

$$K_{\nu_{1},...,\nu_{r}}(x,y) = \int_{0}^{1} G_{0,r+1}^{1,0} \begin{pmatrix} - \\ 0,-\nu_{1},...,-\nu_{r} \end{pmatrix} ux G_{0,r+1}^{r,0} \begin{pmatrix} - \\ \nu_{1},...,\nu_{r},0 \end{pmatrix} uy du$$

Universality?

Meijer G-kernels appear as scaling limits in

Cauchy multi matrix model:

Bertola-Gekhtman-Szmigielski (2013)

Bertola-Bothner (2015)

Biorthogonal ensemble

$$\frac{1}{Z_n} \prod_{j < k} (x_k - x_j) \prod_{j < k} (x_k^{\theta} - x_j^{\theta}) \prod_{j = 1}^n x_j^{\nu} e^{-x_j}$$

if
$$\theta = 1/r$$

Kuijlaars-Stivigny (2014)

Products of Ginibre + inverse Ginibre

Forrester (2014)

Products with truncated unitary matrices
 Kieburg-Kuijlaars-Stivigny (2016)

That's all

Thank you