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Systems

N point particles Xy = (x1,...,xy) in RY
e Pairwise interaction g(x; — x;)
o External field/potential V/(x;)

Energy in the state Xn

N
Hu(Xn) =D glxi—x)+ N> V(x)
i) i=1

Typical example: d = 1,2, g(x) = —log x|, V(x) = |x|?.



Choice of g and V

Interaction potential g:

Coulomb interactions, Riesz interactions

External field V: continuous and “strongly confining”.



A random point configuration

Canonical Gibbs measure at (inverse) temperature /3

_ 1 B . .
dPy s(Xn) = o exp <—’§/\/ S/dHN(XN)> dXy

with Zy g (the partition function)

ZNﬁ = / exp <5N_S/d/HN()_<'N)> d)?/\/.
(RI)N 2

Questions

Asymptotic behavior of the system (N — oc0)? Fluctuations?
Dependency on 37 Dependency on V (universality)?



Motivations

Statistical physics

o Toy model with singular, long-range interactions in R9.

o "Real-life” implementations (vortex systems, electrostatics,
Calogero-Sutherland model)

Random matrix theory (RMT)

d = 1,2, logarithmic interactions

For some classical models (Gaussian ensembles in d = 1, Ginibre
ensemble in d = 2) the law of N random eigenvalues coincide with
PNyB

Also approximation theory, etc.



Global behavior

Empirical measure

Encodes the global/macroscopic behavior

N

1
= Zldxi — [leq,v equilibrium measure”

where fieq,v is the unique minimizer on P(RY) of
Iv(p) = // g(x = y)du(x)du(y) + / V(x)du(x).
Its support 2y, is compact.

Heq,v depends on V. d but not on 3. Examples: semi-circle,
circular law...



Splitting formula

= Nlog N - -
Hn(Xn) = NIy (tieq,v) — dg + Y (Xn) + 2NCn (Xn)

o lv(fteq) first-order energy

@ (n confining term

o Fp " interaction energy of the new system

A= [ sl ) )y
X

Vy = Zl{vz:l Op1/dy, and Néq,v(Nl/dX) = fleq,v(x)



Splitting formula

Hn(Xn) = NIy (preq,v) + NI FeY (Xn) + 2N¢w (Xn)

o ly(peq) first-order energy
@ (n confining term

o F)*Y interaction energy of the new system

A= [ sl ) )y
X

Vi = 211 Spnjey, and ugq’V(Nl/dx) = teqv(X)



Questions

Fluctuations
In what sense does jin ~ fleq,v?

o At small scales (O(1) — O(N~Y/d+£))?
@ Deviations bounds?

@ Central limit theorem?

Microscopic behavior
Zoom into the system by N¥/9 — point configuration. What does
it look like?



Fluctuations of linear statistics

Given ¢ € CO(RY), a scale N"Y9 <« ¢y <1, xo € RY, we let

en(x) =¢ (XZNXO>

and the “fluctuation of @y

Flucty[on] = N/goN (dpn — diteq,v)

N
= Z@N(X,') — N/@Ndﬂeq,v-
i=1

a) What is the order of magnitude of Flucty[en]?
b) Is there a limit as N — oco?



@ a) is very well understood in d = 1, log-gas case
(Bourgade-Erdos-Yau). Rigidity estimates...

e Now also in 2d (Bauerschmidt-Bourgade-Nikula-Yau).

@ In general for fpy =1
[Flucty[en]| < eN with proba 1 — exp(—N?).
@ Can be pushed to

|[Flucty[en]] = O <N1/2) with proba 1 — exp(—N).

@ Also for ¢ close to 1 (up to N‘ﬁ)

[Flucty[on]| < NES, with proba 1 — exp(—N).



Central Limit Theorem - |

d = 2, logarithmic interaction (2d Coulomb gas).
Ve C* AV >0on Xy (+ some regularity on L)

Theorem (L. - Serfaty)

Assume ¢ € C*(R?). Then Flucty[p] converges in law to a
Gaussian random variable with mean (if{y =1)

Mean(p) = % (; - 1) /RQ Ay (12\/ + (IogAV)):V>

and variance
Var(p =5 5/ |V |2,

f=v denotes the harmonic extension of f outside X/



Central Limit Theorem - |

d = 2, logarithmic interaction (2d Coulomb gas).
Ve C* AV >0on Xy (+ some regularity on L)

Theorem (L. - Serfaty)

Assume o € C*(R?). Then Flucty[p] converges in law to a
Gaussian random variable with mean (if {y < 1)

Mean(p) =0

Var(g) = o B/ VTV

f=v denotes the harmonic extension of f outside X/

and variance



Central Limit Theorem - Il

— normalization (“there must be

Remarkable feature: no
very effective cancellation in the sum").
Convergence of N(dpn — dfieq,v) to a Gaussian Free Field.

CLT known in the 1d log-gas case for any value of 5
(Johansson, Shcherbina, Borot-Guionnet).

Mesoscopic CLT in 1d Bekerman-Lodhia.

Only for 5 = 2 in the 2d Coulomb case (Rider-Virag in the
Ginibre (V/(x) = |x|?) case, Ameur-Hedenmalm-Makarov in
the analytic case).

“Correct” assumption should be ¢ € H!, or at most in C2...



CLT 1

@ Extends to a fixed number of test functions
(Fluctpn[o™M], ... ,Fluct/\/[gosvm)]) — some Gaussian vector
(Rider-Virag for the Ginibre case)

@ Moderate deviations bounds. For any 1 < ry < Nf3, we have

C
IPNﬁ (\FluctN[gN]\ > CrN) < exp <_§ 2) 7

as in BBNY.



CLT IV - Overview of the method

@ Computing the Laplace transform of the fluctuations

Ep, 5 [exp(tNFluctn[en])],

amounts to computing the ratio of two partition functions: the
original one and that of a new gas with potential V — %Ag@,\,.

e Finding a transport map from e v to the new equilibrium
measure feq v ¢ is always possible (but finding a nice one can
be more delicate).

e Comparing the energies before/after transport allows to
estimate the ratio of partition functions.

Idea of transport already present in Bekerman-Figalli-Guionnet,
Shcherbina.



Assume £y = 1, ¢ € C*(R?) compactly supported inside L. In
particular the harmonic extension is ¢ itself.

Kn,(pt) Nztz/ 2
E tNFluct = _NAE)
Py s [&XP(tNFluct y[on])] Ko (o) &P a5 Rzlvwl ,

Partition function

eXp( B (Fﬂt( +2NZ< XN )) d)_eN,
2)N

e is the equilibrium measure associated to V — %A(p,

Kn,s(pe) == /

(R



Reachability

Construct a diffeomorphism ®; : R? — R? which transports /g on
e and
®; = Id + tW + O(t19) in CVL(R?).

Comparing K g(1¢) and Ky g(f0) amounts to comparing
Fhi(®:(Xn)) and Fr0(Xn)
“Taylor expanding the energy”, one finds
1N
FrH(De(Xn)) — Fh(Xn) = tAni(Xy) + 5 > " log | det Db(x;)|

i=1
+ error terms



Fle(®:(Xn)) — Fli(Xn) = tAni(Xy) + Zlog\detDCD (xi)]

Z,"V:1 log | det D®¢(x;)| is also the Jacobian.

N
D log|det Dd(x;)| ~ N/Iog|det Do (x)d o

i=1
~ N (/uologuo—/utlogut>

“Trick” needed to show that Ani(Xy) is negligible.



K
Know how to compute wo(1e)

— = up to order exp(o(N)), for t of
Kn,6(10) (o(N))

order 1.
There is no Ani term !
Thus
Ep, , [exp(tAni)] = exp(o(N)).

+ Holder's inequality, implies for t of order 1/N

Esy [exp (;IAni)] — exp(o(1)).

We may then prove that Ep,, , [tFlucty[¢n]] converges to the
Laplace transform of a Gaussian random variable.



Microscopic behavior |

Figure: g =400



Microscopic behavior |

Figure: 3 =5



Microscopic behavior |l

Non-averaged point process
Let z € ¥ be fixed.

N
CN,Z . )?N — Z 5N1/d(x,-fz)'
i=1

Values in X, the space of point configurations.

Empirical field
Let Q C X be fixed.

— 1
CN,Q = fz“/Qchyde

Values in P(X).
o  of size independent of N: macroscopic average.

. _1 .
o Q of size N~ mesoscopic average.



Microscopic behavior - |l

Assumptions: ¥ is a C! compact set, and lteq has Holder density.
Take Q = B(x, ¢) and for simplicity, assume fieq(x) = m on Q.
Theorem (L. - Serfaty)

There exists a functional F' on the space P(X) such that:

The law of the empirical field éNQ concentrates on minimizers of
Fg as N — oo, with proba 1 — exp(—N/|<2]).

For d = 2, g(x) = —log |x|, true for mesoscopic average (i.e.
Q = B(x,¢) with ¢ = N~1/2+9),



Rate function

For m > 0, define Fg’ by
FF(P) := BW;°(P) + ent[P|N"]

Welee(P) is an energy functional, ent[P|[1™] is a relative entropy
functional, "™ = Poisson point process.

Minimizers of .7-"5’ depend on m only through a scaling. In the
logarithmic cases, the dependency on m “decouples” and the
microscopic behavior is thus largely independent of V' (and we may
restrict to study m = 1).



Some known facts

Fs(P) := BWC(P) + ent[P|M']

@ The Sineg point processes of Valko-Virag are minimizers of
Fp for B> 0inthe d =1, g(x) = —log |x| case

@ The Ginibre point process minimizes Fz for 3 = 2 in the
d =2,g(x) = —log|x| case.

@ Minimizers of F3 tend (in entropy sense) to a Poisson point
process as 5 — 0.

@ In dimension 1 minimizers of Fj3 converge to Pz as [ — oo.



Relative specific entropy

P stationary,
ent[P|M'] = lim iEnt[PRm}?].
R—oo RY

Pr, Mg = restrictions to [-R/2, R/2]9.
Hard to compute explicitely.



Energy functional |

Welee is defined using the “electric approach” of Sandier-Serfaty
(& Rougerie, & Petrache). An alternative, more explicit
formulation: define W"t(P) as

o1
liminf =5 Ep [//CRXcR\A g(x —y) (dC(x) — dx) (dC(y) — dy)

Inspired by Borodin-Serfaty.



Energy functional Il

If P stationary and has intensity 1, let p> p be its pair correlation
function.

Wt(P) = lim inf /[—R,R]d g(v) (p2,p — 1)ﬁ < - ;’> ’

i=1

where v = (vi,...,vy).
For "decorrelating” systems (po p — 1 — 0 fast enough)

WP) = [ g() (e = 1)



Some properties and questions

e For d =1 and g(x) = —log|x| or |x|~° (g convex...), Pz is
the unique minimizer.

e What about d > 2? Can we minimize Wele¢ or Wyint?

o If Welee(P) is finite then the number variance scales as RI+*.
In the d = 1, g(x) = — log |x| case, We'¢(P) < 400 implies
hyperuniformity, but Poisson always has finite Riesz energy.

e What about the d = 2, g(x) = — log |x| case?
@ There is a minimizing sequence of “decorrelating” Pk.

@ Disordered system with minimal energy?



Other settings

@ Hypersingular Riesz gases g(x) = |x|™%, s > d. No
equilibrium measure from potential theory (depends on f3),
microscopic behavior determined by a similar free energy
functional (Hardin - L. - Saff - Serfaty).

@ Two-component plasma: +1 charges, d = 2, logarithmic
interactions. No equilibrium measure from potential theory,
microscopic behavior determined by a similar free energy
functional (L.-Serfaty-Zeitouni + Wu).

@ Other RMT ensembles? Zeroes of random polynomials?
Other physically relevant interactions?



Thank you for your attention!



