Log-, Coulomb and Riesz gases: Fluctuations and microscopic behavior

Thomas Leblé (LJLL, Paris 6)

"Optimal and random point configurations", IHP 30 Juin 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Systems

N point particles $\vec{X}_N = (x_1, \dots, x_N)$ in \mathbb{R}^d

- Pairwise interaction $g(x_i x_j)$
- External field/potential $V(x_i)$

Energy in the state \vec{X}_N

$$\mathcal{H}_N(\vec{X}_N) := \sum_{i \neq j} g(x_i - x_j) + N \sum_{i=1}^N V(x_i)$$

Typical example: $d = 1, 2, g(x) = -\log |x|, V(x) = |x|^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Choice of g and V

Interaction potential g:

$$g(x) = \begin{cases} -\log |x| & (d = 1) \\ -\log |x| & (d = 2) \\ |x|^{-(d-2)} & (d \ge 3) \\ |x|^{-s} & (\max(d-2,0) < s < d) \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Coulomb interactions, Riesz interactions

External field V: continuous and "strongly confining".

A random point configuration

Canonical Gibbs measure at (inverse) temperature β

$$d\mathbb{P}_{N,\beta}(\vec{X}_N) := \frac{1}{Z_{N,\beta}} \exp\left(-\frac{\beta}{2} N^{-s/d} \mathcal{H}_N(\vec{X}_N)\right) d\vec{X}_N$$

with $Z_{N,\beta}$ (the partition function)

$$Z_{N,\beta} := \int_{(\mathbb{R}^d)^N} \exp\left(-\frac{\beta}{2} N^{-s/d} \mathcal{H}_N(\vec{X}_N)\right) d\vec{X}_N.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Questions

Asymptotic behavior of the system $(N \rightarrow \infty)$? Fluctuations? Dependency on β ? Dependency on V (universality)?

Motivations

Statistical physics

- Toy model with singular, long-range interactions in \mathbb{R}^d .
- "Real-life" implementations (vortex systems, electrostatics, Calogero-Sutherland model)

Random matrix theory (RMT)

d = 1, 2, logarithmic interactions

For some classical models (Gaussian ensembles in d = 1, Ginibre ensemble in d = 2) the law of N random eigenvalues coincide with $\mathbb{P}_{N,\beta}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Also approximation theory, etc.

Global behavior

Empirical measure

Encodes the global/macroscopic behavior

$$\mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{x_i} \longrightarrow \mu_{\mathrm{eq},V}$$
 "equilibrium measure"

where $\mu_{\mathrm{eq},V}$ is the unique minimizer on $\mathcal{P}(\mathbb{R}^d)$ of

$$I_V(\mu) := \iint g(x-y)d\mu(x)d\mu(y) + \int V(x)d\mu(x).$$

Its support Σ_V is compact.

 $\mu_{\mathrm{eq},V}$ depends on V,d but not on $\beta.$ Examples: semi-circle, circular law...

Splitting formula

$$\mathcal{H}_N(\vec{X}_N) = N^2 I_V(\mu_{\mathrm{eq},V}) - \frac{N \log N}{d} + F_N^{\mu_{\mathrm{eq},V}}(\vec{X}_N) + 2N\zeta_N(\vec{X}_N)$$

- $I_V(\mu_{
 m eq})$ first-order energy
- ζ_N confining term
- $F_N^{\mu_{\rm eq},V}$ interaction energy of the new system

$$\mathcal{F}_{\mathcal{N}}^{\mu_{\mathrm{eq},V}}(\vec{X}_{\mathcal{N}}) = \iint_{(\mathbb{R}^d imes \mathbb{R}^d) \setminus \bigtriangleup} g(x-y) (d
u'_{\mathcal{N}} - d \mu'_{\mathrm{eq},V})^{\otimes 2}(x,y)$$

$$u_N' = \sum_{i=1}^N \delta_{N^{1/d}x_i} \text{ and } \mu_{\mathrm{eq},V}'(N^{1/d}x) = \mu_{\mathrm{eq},V}(x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Splitting formula

$$\mathcal{H}_{N}(\vec{X}_{N}) = N^{2}I_{V}(\mu_{\mathrm{eq},V}) + N^{s/d}F_{N}^{\mu_{\mathrm{eq},V}}(\vec{X}_{N}) + 2N\zeta_{N}(\vec{X}_{N})$$

- $I_V(\mu_{
 m eq})$ first-order energy
- ζ_N confining term
- $F_N^{\mu_{\rm eq}, v}$ interaction energy of the new system

 $F_N^{\mu_{\rm eq},v}(\vec{X}_N) = \iint_{(\mathbb{R}^d \times \mathbb{R}^d) \setminus \bigtriangleup} g(x-y) (d\nu'_N - d\mu'_{\rm eq},v)^{\otimes 2}(x,y)$

$$u_N' = \sum_{i=1}^N \delta_{N^{1/d}x_i} \text{ and } \mu_{\mathrm{eq},V}'(N^{1/d}x) = \mu_{\mathrm{eq},V}(x)$$

Questions

Fluctuations

In what sense does $\mu_N \approx \mu_{eq,V}$?

- At small scales $(O(1) \rightarrow O(N^{-1/d+\varepsilon}))$?
- Deviations bounds?
- Central limit theorem?

Microscopic behavior

Zoom into the system by $N^{1/d} \rightarrow$ point configuration. What does it look like?

Fluctuations of linear statistics

Given
$$\varphi \in C_c^0(\mathbb{R}^d)$$
, a scale $N^{-1/d} \ll \ell_N \le 1$, $x_0 \in \mathbb{R}^d$, we let
 $\varphi_N(x) := \varphi\left(\frac{x - x_0}{\ell_N}\right)$

and the "fluctuation of φ_N ":

$$\begin{split} \operatorname{Fluct}_{N}[\varphi_{N}] &:= N \int \varphi_{N} \left(d\mu_{N} - d\mu_{\operatorname{eq},V} \right) \\ &= \sum_{i=1}^{N} \varphi_{N}(x_{i}) - N \int \varphi_{N} d\mu_{\operatorname{eq},V}. \end{split}$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

a) What is the order of magnitude of $\operatorname{Fluct}_{N}[\varphi_{N}]$? b) Is there a limit as $N \to \infty$?

- a) is very well understood in d = 1, log-gas case (Bourgade-Erdös-Yau). Rigidity estimates...
- Now also in 2d (Bauerschmidt-Bourgade-Nikula-Yau).
- In general for $\ell_N = 1$

 $|\operatorname{Fluct}_{N}[\varphi_{N}]| \leq \varepsilon N$ with proba $1 - \exp(-N^{2})$.

Can be pushed to

 $|\operatorname{Fluct}_{N}[\varphi_{N}]| = O\left(N^{1/2}\right)$ with proba $1 - \exp(-N)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Also for ℓ_N close to 1 (up to $N^{-\frac{1}{2d}}$) $|\operatorname{Fluct}_N[\varphi_N]| \ll N \ell_N^d$ with proba $1 - \exp(-N)$.

Central Limit Theorem - I

d = 2, logarithmic interaction (2d Coulomb gas). $V \in C^4$, $\Delta V > 0$ on Σ_V (+ some regularity on Σ_V)

Theorem (L. - Serfaty)

Assume $\varphi \in C^4(\mathbb{R}^2)$. Then $\operatorname{Fluct}_N[\varphi]$ converges in law to a Gaussian random variable with mean (if $\ell_N = 1$)

$$\operatorname{Mean}(\varphi) = \frac{1}{2\pi} \left(\frac{1}{\beta} - \frac{1}{4} \right) \int_{\mathbb{R}^2} \Delta \varphi \left(\mathbf{1}_{\Sigma_V} + (\log \Delta V)^{\Sigma_V} \right)$$

and variance

$$\operatorname{Var}(\varphi) = rac{1}{2\pi\beta} \int_{\mathbb{R}^2} |\nabla \varphi^{\Sigma_V}|^2.$$

 f^{Σ_V} denotes the harmonic extension of f outside Σ_V

Central Limit Theorem - I

d = 2, logarithmic interaction (2d Coulomb gas). $V \in C^4$, $\Delta V > 0$ on Σ_V (+ some regularity on Σ_V)

Theorem (L. - Serfaty)

Assume $\varphi \in C^4(\mathbb{R}^2)$. Then $\operatorname{Fluct}_N[\varphi]$ converges in law to a Gaussian random variable with mean (if $\ell_N \ll 1$)

 $Mean(\varphi) = 0$

and variance

$$\operatorname{Var}(\varphi) = rac{1}{2\pi\beta} \int_{\mathbb{R}^2} |\nabla \varphi^{\Sigma_V}|^2.$$

 f^{Σ_V} denotes the harmonic extension of f outside Σ_V

Central Limit Theorem - II

- Remarkable feature: no $\frac{1}{\sqrt{N}}$ normalization ("there must be very effective cancellation in the sum").
- Convergence of $N(d\mu_N d\mu_{eq,V})$ to a Gaussian Free Field.
- CLT known in the 1d log-gas case for any value of β (Johansson, Shcherbina, Borot-Guionnet).
- Mesoscopic CLT in 1d Bekerman-Lodhia.
- Only for β = 2 in the 2d Coulomb case (Rider-Virag in the Ginibre (V(x) = |x|²) case, Ameur-Hedenmalm-Makarov in the analytic case).
- "Correct" assumption should be $\varphi \in H^1$, or at most in C^2 ...

(日)((1))

CLT III

- Extends to a fixed number of test functions $(\operatorname{Fluct}_N[\varphi^{(1)}], \ldots, \operatorname{Fluct}_N[\varphi^{(m)}_N]) \rightarrow \text{ some Gaussian vector}$ (Rider-Virag for the Ginibre case)
- Moderate deviations bounds. For any $1 \ll r_N \ll N \ell_N^2$ we have

$$\mathbb{P}_{N,\beta}\left(|\operatorname{Fluct}_{N}[\xi_{N}]| \geq cr_{N}\right) \leq \exp\left(-\frac{c}{2}r_{N}^{2}\right),$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

as in BBNY.

CLT IV - Overview of the method

• Computing the Laplace transform of the fluctuations

 $\mathbf{E}_{\mathbb{P}_{N,\beta}}\left[\exp(tN\mathrm{Fluct}_{N}[\varphi_{N}])\right],$

amounts to computing the ratio of two partition functions: the original one and that of a new gas with potential $V - \frac{2t}{\beta}\Delta\varphi_N$.

- Finding a transport map from $\mu_{eq,V}$ to the new equilibrium measure $\mu_{eq,V,t}$ is always possible (but finding a nice one can be more delicate).
- Comparing the energies before/after transport allows to estimate the ratio of partition functions.

Idea of transport already present in Bekerman-Figalli-Guionnet, Shcherbina.

(日)((1))

Assume $\ell_N = 1$, $\varphi \in C^4(\mathbb{R}^2)$ compactly supported inside Σ_V . In particular the harmonic extension is φ itself.

$$\mathbf{E}_{\mathbb{P}_{N,\beta}}\left[\exp(tN\mathrm{Fluct}_{N}[\varphi_{N}])\right] = \frac{K_{N,\beta}(\mu_{t})}{K_{N,\beta}(\mu_{0})}\exp\left(\frac{N^{2}t^{2}}{4\pi\beta}\int_{\mathbb{R}^{2}}|\nabla\varphi|^{2}\right),$$

Partition function

$$\mathcal{K}_{N,\beta}(\mu_t) := \int_{(\mathbb{R}^2)^N} \exp\left(-\frac{\beta}{2}\left(\mathcal{F}_N^{\mu_t}(\vec{X}_N) + 2N\sum_{i=1}^N \zeta(\vec{X}_N)\right)\right) d\vec{X}_N,$$

 μ_t is the equilibrium measure associated to $V - rac{2t}{eta} \Delta arphi$,

$$\mu_t = \frac{1}{4\pi} \left(V - \frac{2t}{\beta} \Delta \varphi \right) \mathbf{1}_{\Sigma_V}.$$

Reachability

Construct a diffeomorphism $\Phi_t : \mathbb{R}^2 \to \mathbb{R}^2$ which transports μ_0 on μ_t and

$$\Phi_t = \mathsf{Id} + t\Psi + O(t^{1+\sigma}) \text{ in } C^{1,1}(\mathbb{R}^2).$$

Comparing $K_{N,\beta}(\mu_t)$ and $K_{N,\beta}(\mu_0)$ amounts to comparing

 $F_N^{\mu_t}(\Phi_t(\vec{X}_N))$ and $F_N^{\mu_0}(\vec{X}_N)$

"Taylor expanding the energy", one finds

 $F_{N}^{\mu_{t}}(\Phi_{t}(\vec{X}_{N})) - F_{N}^{\mu}(\vec{X}_{N}) = t \operatorname{Ani}(\vec{X}_{N}) + \frac{1}{2} \sum_{i=1}^{N} \log |\det D\Phi_{t}(x_{i})|$

+ error terms

$$F_N^{\mu_t}(\Phi_t(ec{X}_N)) - F_N^{\mu}(ec{X}_N) = t \operatorname{Ani}(ec{X}_N) + rac{1}{2} \sum_{i=1}^N \log |\det D\Phi_t(x_i)|$$

 $\sum_{i=1}^{N} \log |\det D\Phi_t(x_i)|$ is also the Jacobian.

$$\sum_{i=1}^{N} \log |\det D\Phi_t(x_i)| \approx N \int \log |\det D\Phi_t|(x) d\mu_0$$
$$\approx N \left(\int \mu_0 \log \mu_0 - \int \mu_t \log \mu_t \right)$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

"Trick" needed to show that $Ani(\vec{X}_N)$ is negligible.

Know how to compute
$$\frac{K_{N,\beta}(\mu_t)}{K_{N,\beta}(\mu_0)}$$
 up to order $\exp(o(N))$, for t of order 1.
There is no **Ani** term !
Thus

$$\mathbf{E}_{\mathbb{P}_{N,\beta}}\left[\exp(t\mathbf{Ani})\right] = \exp(o(N)).$$

+ Hölder's inequality, implies for t of order 1/N

$$\mathbf{E}_{\mathbb{P}_{N,\beta}}\left[\exp\left(\frac{t}{N}\mathsf{Ani}\right)\right] = \exp(o(1)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

We may then prove that $\mathbf{E}_{\mathbb{P}_{N,\beta}}[t\operatorname{Fluct}_{N}[\varphi_{N}]]$ converges to the Laplace transform of a Gaussian random variable.

Microscopic behavior I

Figure:
$$\beta = 400$$

・ロト・西ト・ヨト・ヨー うらぐ

Microscopic behavior I

Figure:
$$\beta = 5$$

Microscopic behavior II

Non-averaged point process Let $z \in \mathring{\Sigma}$ be fixed.

$$\mathcal{C}_{N,z}: \vec{X}_N \mapsto \sum_{i=1}^N \delta_{N^{1/d}(x_i-z)}.$$

Values in \mathcal{X} , the space of point configurations.

Empirical field Let $\Omega \subset \Sigma$ be fixed.

$$\overline{\mathcal{C}}_{N,\Omega} := \frac{1}{|\Omega|} \int_{\Omega} \delta_{\mathcal{C}_{N,z}} dz$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Values in $\mathcal{P}(\mathcal{X})$.

- Ω of size independent of *N*: macroscopic average.
- Ω of size $N^{-\frac{1}{d}+\delta}$ mesoscopic average.

Microscopic behavior - III

Assumptions: Σ is a C^1 compact set, and μ_{eq} has Hölder density. Take $\Omega = B(x, \varepsilon)$ and for simplicity, assume $\mu_{eq}(x) = m$ on Ω . Theorem (L. - Serfaty) There exists a functional \mathcal{F}^m_β on the space $\mathcal{P}(\mathcal{X})$ such that: The law of the empirical field $\overline{\mathcal{C}}_{N,\Omega}$ concentrates on minimizers of \mathcal{F}^m_β as $N \to \infty$, with proba $1 - \exp(-N|\Omega|)$.

For d = 2, $g(x) = -\log |x|$, true for mesoscopic average (i.e. $\Omega = B(x, \varepsilon)$ with $\varepsilon = N^{-1/2+\delta}$).

Rate function

For m > 0, define \mathcal{F}^m_β by

 $\mathcal{F}^m_{\beta}(P) := \beta \mathbb{W}^{ ext{elec}}_m(P) + \mathbf{ent}[P|\Pi^m]$

 $\mathbb{W}_m^{\text{elec}}(P)$ is an energy functional, $\operatorname{ent}[P|\Pi^m]$ is a relative entropy functional, $\Pi^m = \operatorname{Poisson}$ point process. Minimizers of \mathcal{F}_{β}^m depend on *m* only through a scaling. In the logarithmic cases, the dependency on *m* "decouples" and the microscopic behavior is thus largely independent of *V* (and we may

restrict to study m = 1).

Some known facts

$\mathcal{F}_{\beta}(P) := \beta \mathbb{W}^{ ext{elec}}(P) + \mathbf{ent}[P|\Pi^1]$

- The Sine_β point processes of Valko-Virag are minimizers of *F*_β for β > 0 in the d = 1, g(x) = − log |x| case
- The Ginibre point process minimizes \mathcal{F}_{β} for $\beta = 2$ in the $d = 2, g(x) = -\log |x|$ case.
- Minimizers of *F_β* tend (in entropy sense) to a Poisson point process as *β* → 0.
- In dimension 1 minimizers of \mathcal{F}_{β} converge to $\mathcal{P}_{\mathbb{Z}}$ as $\beta \to \infty$.

Relative specific entropy

P stationary,

$$\mathbf{ent}[P|\Pi^{1}] = \lim_{R \to \infty} \frac{1}{R^{d}} \operatorname{Ent}[P_{R}|\Pi_{R}^{1}].$$

$$P_{R}, \Pi_{R} = \text{restrictions to } [-R/2, R/2]^{d}.$$
Hard to compute explicitely.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 \mathbb{W}^{elec} is defined using the "electric approach" of Sandier-Serfaty (& Rougerie, & Petrache). An alternative, more explicit formulation: define $\mathbb{W}^{\text{int}}(P)$ as

$$\liminf_{R\to\infty}\frac{1}{R^d}\mathbf{E}_P\left[\iint_{C_R\times C_R\setminus \bigtriangleup}g(x-y)\left(d\mathcal{C}(x)-dx\right)\left(d\mathcal{C}(y)-dy\right)\right]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Inspired by Borodin-Serfaty.

Energy functional II

If *P* stationary and has intensity 1, let $\rho_{2,P}$ be its pair correlation function.

$$\mathbb{W}^{\mathrm{int}}(P) := \liminf_{R o \infty} \int_{[-R,R]^d} g(v) \left(
ho_{2,P} - 1
ight) \prod_{i=1}^d \left(1 - rac{|v_i|}{R}
ight),$$

where $v = (v_1, \dots, v_d)$. For "decorrelating" systems $(\rho_{2,P} - 1 \rightarrow 0 \text{ fast enough})$

$$\mathbb{W}^{\mathrm{int}}(P) := \int_{\mathbb{R}^d} g(v) \left(
ho_{2,P} - 1
ight)$$

Some properties and questions

- For d = 1 and g(x) = − log |x| or |x|^{-s} (g convex...), P_Z is the unique minimizer.
- What about $d \ge 2$? Can we minimize \mathbb{W}^{elec} or \mathbb{W}^{int} ?
- If W^{elec}(P) is finite then the number variance scales as R^{d+s}. In the d = 1, g(x) = − log |x| case, W^{elec}(P) < +∞ implies hyperuniformity, but Poisson always has finite Riesz energy.

- What about the $d = 2, g(x) = -\log |x|$ case?
- There is a minimizing sequence of "decorrelating" P_k .
- Disordered system with minimal energy?

Other settings

- Hypersingular Riesz gases g(x) = |x|^{-s}, s > d. No equilibrium measure from potential theory (depends on β), microscopic behavior determined by a similar free energy functional (Hardin L. Saff Serfaty).
- Two-component plasma: ±1 charges, d = 2, logarithmic interactions. No equilibrium measure from potential theory, microscopic behavior determined by a similar free energy functional (L.-Serfaty-Zeitouni + Wu).
- Other RMT ensembles? Zeroes of random polynomials? Other physically relevant interactions?

Thank you for your attention!