Random normal matrices with hard edge spectrum

Nikolai Makarov (Caltech)

joint work with Yacin Ameur and Nam-Gyu Kang

1. Set up

Plasma β -ensembles

$$\zeta = \{\zeta_j\}_{j=1}^n \subset \mathbb{C}, \quad Z_n = \int_{\mathbb{C}^n} e^{-\beta H_n},$$

where

$$H_n(\zeta) = \sum_{j \neq k} \log \frac{1}{|\zeta_j - \zeta_k|} + n \sum_{j \neq k} Q(\zeta_j),$$

 $Q:\mathbb{C}\to\mathbb{R}\cup\{+\infty\}$ is given.

 $\beta = 1$ random normal matrix model

Equilibrium and droplet

$$\frac{1}{n}\sum_{1}^{n}\delta_{\zeta_{j}}\to\sigma$$

 σ is probability measure of minimal Q-energy

- $S := \operatorname{supp}(\sigma)$
- ▶ If $Q \in C^2$ in nbh(S), then

$$\sigma = \frac{1}{\pi} \partial \bar{\partial} Q \cdot 1_S$$

Hele-Shaw flow

$$S_t = \operatorname{supp}(\sigma_t)$$

 σ_t equilibrium measure of mass t

Obstacle problem

$$S_t = \{Q = \check{Q}_t\}$$

 \check{Q}_t is maximal subharmonic $V \leq Q, \ V \sim t \log |z|^2$ at ∞

"Free boundary"

Assumptions: S = S(Q)

$$Q \in C^{\omega}(nbh S), \quad \Delta Q > 0 \text{ on } S$$

Regular and singular boundary points:

"Hard edge"

$$Q^S := egin{cases} Q & ext{on } S \\ +\infty & ext{on } \mathbb{C} \setminus S \end{cases}$$

Generalization ("local droplets"): *S* is a compact set such that

$$\sigma(Q^S) = \frac{1}{\pi} \Delta Q \cdot 1_S$$

Scaling

$$\{\zeta_j\}_1^n \mapsto \{z_j\}_1^n$$

where

$$z_j = c\sqrt{n}(\zeta_j - p), \quad c := \sqrt{\Delta Q(p)}$$

Generalization: $p_n \rightarrow p$,

$$z_j = \sqrt{n}(\zeta_j - p_n).$$

Notation: S limiting shape of rescaled droplets (e.g. halfplane or strip)

Q: limiting point processes?

[Cf. Airy, Bessel in determinantal 1D case]

$$\mathbb{S} = \{x \le 0\}$$

1-point function at a regular boundary point

$$\mathbb{S} = \{x \le 0\}$$

free boundary

hard edge

Scaling at a singular boundary point

$$\mathbb{S} = \{ -T \le y \le T \}$$

$$\mathbb{S} = \{ -T \le x \le T \}$$

free boundary

hard edge

2. Compactness and analyticity

Det-processes

$$R^{(k)}(\zeta_1,\ldots,\zeta_k)=\det \mathbf{K}(\zeta_i,\zeta_j)$$

 $R^{(k)} \sim \epsilon^{-k} \mathbb{P}(\text{at least one particle in each } B(\zeta_i, \epsilon).$

RNM model:

$$\mathbf{K}_n(\zeta,\eta) = \sum_{j=1}^{n-1} p_j(\zeta) \overline{p_j(\eta)} e^{-nQ(\zeta)/2} e^{-nQ(\eta)/2},$$

 p_j 's are ON polynomials in $L^2\left(e^{-nQ}\right)$.

Rescaling: if $z = \sqrt{n}\zeta$ and $w = \sqrt{n}\eta$, then

$$K_n(z, w) = \frac{1}{n} \mathbf{K}_n(\zeta, \eta).$$

If $K_n(z, w) \to K(z, w)$, then limiting process exists, is unique.

$Ginibre(\infty)$

Example: $Q(\zeta) = |\zeta|^2$ and p = 0, then

$$K_n(z, w) = \sum_{j=0}^{n-1} \frac{(z\bar{w})^j}{j!} e^{-|z|^2/2} e^{-|w|^2/2}$$

converges to

$$G(z, w) = e^{z\bar{w}} e^{-|z|^2/2} e^{-|w|^2/2}$$

Universality in bulk: if $p_n \in \text{int}(S)$ and $\sqrt{n} \cdot \text{dist}(p_n, \partial S) \to \infty$, then G is the limiting process

Compactness and analyticity

Theorem

Every subsequence of the point processes $\{K_n\}$ has a further subsequence which converges to a det-process (maybe zero)

Theorem

Every limiting process has the form

$$K = G\Psi$$
 (free boundary), or $K = G\Psi 1_{\mathbb{S} \times \mathbb{S}}$ (hard edge),

where $\Psi = \Psi(z, w)$ is a Hermitian entire function.

Proof

- The case of a regular point on hard edge boundary. For simplicity, $\Delta Q \equiv 1$, and p=0. Rescaling: $z=\sqrt{n}\zeta$, $w=\sqrt{n}\eta$
- Rescaled correlation kernels

$$K_n = K_n^\# \Psi_n \ 1_{\sqrt{n}S \times \sqrt{n}S}$$

where

$$K_n^{\#}(z, w) = ne^{n[Q(\zeta, \eta) - Q(\zeta)/2 - Q(\eta)/2]}$$

and

$$\Psi_n(z,w) = \frac{1}{n} \mathbf{k_n}(\zeta,\eta) e^{-nQ(\zeta,\eta)};$$

 $Q(\zeta,\eta)$ is Hermitian extension, and \mathbf{k}_n is the reprokernel in $\mathcal{P}_n^2\left(e^{-nQ^S}\right)$

- **L**emma 1. There are cocycles c_n such that $c_n \mathcal{K}_n^\# o G$
- ▶ Lemma 2. $\forall \eta \in \mathbb{C}$, $\mathbf{k}_n(\eta, \eta) \lesssim ne^{n\check{Q}(\eta)}$

Proof of last lemma

- Consider S_t with $(1-t) \simeq \frac{1}{\sqrt{n}}$. The points on the exterior boundary of S_t are at distance $\simeq \frac{1}{\sqrt{n}}$ from the boundary of S
- ightharpoonup Fix η and let

$$q_n(\zeta) = \frac{\mathbf{k}_n(\zeta,\eta)}{\sqrt{\mathbf{k}_n(\eta,\eta)}}.$$

 $\blacktriangleright \text{ We have } ||q_n||_{nQ^S}^2 = 1 \text{ so}$

$$|q_n|^2 e^{-nQ} \le Cn$$
 on S_t .

▶ Denote $u_n = \frac{1}{n} \log |q_n|^2$. Then

$$u_n - \check{Q}_t - \frac{C + \log n}{n} \le 0$$
 on S_t .

LHS is subharmonic in S_t^c and $\sim (1-t)\log |\zeta|^2$ at ∞ . Therefore,

$$u_n \leq \check{Q}_t + \frac{C + \log n}{n} + (1 - t)G_t$$
 on S_t^c

and we conclude

$$u_n \leq \check{Q} + \frac{C' + \log n}{n}$$
 on S and therefore everywhere.

Zero-one law

Theorem

Either $K \equiv 0$, or $\Psi(z,z) > 0$ for all $z \in \mathbb{C}$

Theorem

Suppose the limiting droplet \mathbb{S} exists. Then (every) K is trivial iff \mathbb{S} has zero area.

Holomorphic kernel

$$L(z,w):=e^{z\bar{w}}\Psi(z,w).$$

Theorem

L is the reprokernel of some Hilbert space H of entire functions. Moreover,

$$\mathcal{H} \stackrel{\text{contr}}{\hookrightarrow} A^2 \left(e^{-|z|^2} \right)$$
 (free boundary)

and

$$\mathcal{H} \stackrel{\mathrm{contr}}{\hookrightarrow} A^2 \left(e^{-|z|^2} \cdot 1_{\mathbb{S}} \right) \quad \text{(hard edge)}$$

Cf. de Branges spaces $\mathcal{B}(E)$ with

$$E = e^{-i\pi z}$$
, $E = \operatorname{Ai}' - i\operatorname{Ai}$, $E = \sqrt{z}J_0'(\sqrt{z}) - iJ_0(\sqrt{z})$.

Mass one equation

Conjecture: we should have $\mathcal{H} \stackrel{\mathrm{iso}}{\hookrightarrow} A^2(\cdots)$, i.e.

$$\forall z \in \mathbb{C}, \ \int_{\mathbb{C}} B(z, w) \ dA(w) = 1$$

or

$$\forall z \in \mathbb{S}, \ \int_{\mathbb{S}} B(z, w) \ dA(w) = 1,$$

where

$$B(z,w) = \frac{|K(z,w)|^2}{K(z,z)}.$$

[We assume $K \neq 0$]

3. Rescaling Ward's identities

S.E.T.

$$v \mapsto W[v]$$
 (vector field \mapsto random variable)

For β -ensembles:

$$W_n^+[v] = \beta B_n(v) - \beta n \operatorname{Tr}_n(v \partial Q) + \operatorname{Tr}_n(\partial v)$$

$$B_n(v) = \frac{1}{2} \sum_{j \neq k} \frac{v(z_j) - v(z_k)}{z_j - z_k}$$

- INOTATION: $\operatorname{Ir}_n(\tau) = \sum \tau(z_j)$
- V is \mathbb{C} -linear part of $v \mapsto W_v$
- $V_n[v] = W_n^+[v] + \overline{W_n^+[v]}$

Ward's identities

$$\mathbb{E}W_n^+[v]=0$$

If $\rho = \rho_n$ is the density field, a (1,1)-differential,

$$\int f \rho_n = \frac{1}{n} \sum f(z_j),$$

then

$$\mathbb{E}\mathcal{L}_{v}\left[\rho(z_{1})\rho(z_{2})\ldots\right]=\mathbb{E}W_{v}\left[\rho(z_{1})\rho(z_{2})\ldots\right],$$

where \mathcal{L}_{v} is Lie derivative.

Ward's equation

Define

$$C(z) = \int_{\mathbb{C}} \frac{B(z, w)}{z - w} \ dA(w),$$

or

$$C(z) = \int_{\mathbb{S}} \frac{B(z, w)}{z - w} \ dA(w).$$

Theorem

The equation

$$\bar{\partial}C = R - 1 - \Delta(\log R)$$

holds pointwise in \mathbb{C} or in \mathbb{S} .

4. Translation invariant solutions

We will consider free boundary and hard edge cases with

$$\mathbb{S} = \{ x \le 0 \}$$
 or $\mathbb{S} = \{ -\tau \le x \le \tau \}$

Mass one and Ward's equations are (vertically) translation invariant. We'll find all their t.i. solutions

$$\Psi(z+it,w+it)\equiv\Psi(z,w).$$

Clearly,

$$\Psi(z,w)=\Phi(z+\bar{w}), \qquad \Phi\in\mathcal{A}(\mathbb{C}).$$

Key idea: use inverse Fourier transform for the purpose of analytic continuation

$$\Phi(z) = \int_{\mathbb{R}} e^{izt} (\Phi_{\mathbb{R}}) \hat{\ } (t) \ dt, \quad (z \in \mathbb{C})$$

Gaussian representation

$$\gamma(t) := \frac{1}{\sqrt{2\pi}} e^{-t^2/2}.$$

Theorem (free boundary case)

Let $K(z, w) = G(z, w)\Phi(z + \bar{w})$ be a t.i. limiting kernel. Then

$$\Phi_{\mathbb{R}} = \gamma * f$$
, $0 \le f \le 1$.

Proof

 $L(z,w)=e^{z\bar{w}}\Phi(z+\bar{w})$ is a PDK on $i\mathbb{R}$

$$\sum \alpha_j \overline{\alpha_k} e^{x_j x_k} \Phi(ix_j - ix_k) \ge 0.$$

▶ Define V(z) by $\Phi(iz) = V(z)e^{z^2/2}$. Then

$$\sum \alpha_j \overline{\alpha_k} e^{x_j^2/2} e^{x_k^2/2} V(x_j - x_k) \ge 0,$$

so $V(x) = \hat{\mu}(x)$ for some positive finite μ .

- We have $\Phi_{\mathbb{R}} = \gamma * \nu$ for $d\nu = e^{t^2/2} d\mu$
- Since $\mathcal{H}(L) \stackrel{\mathrm{contr}}{\hookrightarrow} A^2 \left(e^{-|z|^2} \right)$, we have $L_1(z,w) := e^{z\bar{w}} L(z,w)$ is a PDK, so $1 \Phi_{\mathbb{R}} = \gamma * \nu_1$ and $\nu + \nu_1 \equiv 1$

Free boundary solutions

$$K(z, w) = G(z, w)\Phi(z + \bar{w}); \quad \Phi_{\mathbb{R}} = \gamma * f$$

Theorem

- $K \in \text{(mass one)}$ iff $f = 1_E$, $E \subset \mathbb{R}$
- $K \in (Ward)$ iff $f = 1_E$ and E is connected

Proof

Lemma:

$$\int_{\mathbb{C}} e^{|w|^2} e^{iwt} e^{i\bar{w}s} \ dA(w) = e^{-st}$$

Mass one:

$$\forall x \in \mathbb{R}, \ \int_{\mathbb{C}} e^{-|w|^2} |\Phi(z+w)|^2 = \Phi(x)$$

or $(F := \Phi_{\mathbb{R}})$

$$F(x) = \iint_{(s,t)} e^{ix(t+s)} e^{-st} \hat{F}(t) \hat{F}(s)$$

Subtract

$$F(x) = \iint_{(s,t)} e^{ix(t+s)} e^{-st} \hat{F}(t) \hat{I}(s)$$

to get $(F_1 := 1 - F)$

$$0 = \iint_{(s,t)} e^{ix(t+s)} e^{-st} \hat{F}(t) \hat{F}_1(s)$$

▶ Gaussian representation $F = \gamma * f$, $F_1 = \gamma * f_1$, $f_1 = 1 - f$ gives $\hat{f} * \hat{f}_1 = 0$ or $f = f^2$.

Hard edge solutions with $\mathbb{S} = \{x \leq 0\}$

$$K(z, w) = G(z, w)\Phi(z+\bar{w})\cdot 1_{\mathbb{S}}(z)1_{\mathbb{S}}(w); \quad \Phi_{\mathbb{R}} = \gamma * h$$

Theorem

• $K \in (\text{mass one})$ iff $h = 1_E/F$, where

$$F = \gamma * 1_{(-\infty,0)},$$

$$\forall A>0, \quad \int_E e^{At} \ dt < \infty$$

▶ $K \in (Ward)$ iff $h = 1_E/F$, and E = (a, b) with $b < \infty$

Hard edge solutions with $\mathbb{S} = \{-\tau \le x \le \tau\}$

$$\Phi_{\mathbb{R}} = \gamma * h_{\tau}$$

Theorem

• $K \in (\text{mass one})$ iff $h_{\tau} = 1_E/F_{\tau}$, where

$$F_{\tau} = \gamma * 1_{(-2\tau, 2\tau)},$$

and

$$\forall A>0, \quad \int_E e^{A|t|}dt<\infty$$

▶ $K \in (Ward)$ iff $h_{\tau} = 1_E/F_{\tau}$, and E is a finite interval

5. Concluding remarks

Radially symmetric potentials

$$Q(\zeta) = Q(|\zeta|)$$

Theorem

If p is on a hard edge boundary, then the limiting point process exists and

$$K(z, w) = G(z, w)\Phi(z + \overline{w}), \quad (\Re z \le 0, \ \Re w \le 0)$$

with

$$\Phi(z) = \int_{-\infty}^{0} \frac{e^{-(t-z)^{2}/2}}{\int_{t}^{\infty} e^{-s^{2}/2} ds} dt.$$

Non-TI solutions

Twisted convolutions:

$$(f \star g)(z) = \int_{\mathbb{C}} f(z - w)g(w)e^{i\Im(\bar{z}w)}dA(w)$$

▶ Hermitian extension of the 1-point function:

$$\Psi(z,w)=\int_{\mathbb{C}}e^{i(z\bar{t}+\bar{w}t)}\hat{R}(t)\ dA(t).$$

Gauss representation:

$$\hat{R} = \Gamma r$$
, $\widehat{1-R} = \Gamma r_1$, $\Gamma(z) := e^{-|z|^2/2}$

Mass one equation:

$$\hat{r} \star \hat{r}_1 = 0$$

Ward's equation has a similar form

Rescaling by n^{α} at singular points

$$\Delta C = (I - \Delta)\partial R$$

Equations for β **-ensembles**

$$\partial C = R - 1 - \frac{1}{\beta} \Delta \log R$$

 $\{\sqrt{\beta}z_j\}$ satisfy Ward $(\beta=1)$ but mass β

Guess the form of $R^{(2)}$ such that $Ward(\beta)$ implied mass one