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1. Setup



Plasma (-ensembles

n

C — {Cj}le C Cj Z — / e_ﬁHnj

where

Zlog Ck+nZQCJ;

JF#k

Q:C — RU{+o0} is given.

[ =1 random normal matrix model



Equilibrium and droplet

1 n
; Z (SCJ —5 I
1
o is probability measure of minimal Q-energy
» S :=supp(o)
» If @ € C? in nbh(S), then

1 _
UI-@@Q']_S
s






Hele-Shaw flow

Sp = SUPP(Ut)

o+ equilibrium measure of mass t




Obstacle problem

St:{Q: ét}

Q: is maximal subharmonic V < @, V ~ tlog|z/|?
at oo



" Free boundary”

Assumptions: S = S(Q)

Qe C’(nbh §), AQ >0o0nS

Regular and singular boundary points:

>4



"Hard edge”

oS — Q onS
" |4+o0conC\S

Generalization ("local droplets”): S is a compact
set such that

1
O'(QS) — ;AQ > 15



Scaling

(52 S E2 51

where

zi=cVn(( —p), c:=+/AQ(p)

Generalization: p, — p,

Zj = \/E(CJ _ pn)'

Notation: S limiting shape of rescaled droplets (e.g. halfplane or strip)

Q: limiting point processes?

[Cf. Airy, Bessel in determinantal 1D case]






1-point function at a regular boundary point

free boundary \

hard edge




Scaling at a singular boundary point




S={-T<x<T}

free boundary

hard edge




2. Compactness and analyticity



Det-processes

R() ~ ¢=kP(at least one particle in each B((, €).

RNM model:

n—1
Ka(C.n) = pi(Q)pi(n)e " 20/,
=1

p;'s are ON polynomials in L2 (e—”Q)_

Rescaling: if z =+/nC and w = \/nn, then

Kalz.w) = ~K,(C.7)

If Kn(z,w) — K(z,w), then limiting process exists, is unique.



Ginibre()
Example: Q(¢) = |¢|? and p = 0, then

n—1 _ e
Kn(Z; W) = Z (ZJV:/)J e—lz’2/2e—|w|2/2

converges to

G(z,w) = e e 2*/2g /2

Universality in bulk: if p, € int(S) and
Vv/'n - dist(p,, 0S) — oo, then G is the limiting
process



Compactness and analyticity

Theorem

Every subsequence of the point processes {K,,} has
a further subsequence which converges to a
det-process (maybe zero)

Theorem
Every limiting process has the form

K = GV (free boundary), or
K = GVls.s (hard edge),

where W = V(z, w) is a Hermitian entire function.



Proof

» The case of a regular point on hard edge boundary. For simplicity, AQ =1,
and p = 0. Rescaling: z =+/n(, w = +/nn
» Rescaled correlation kernels

K, = KTV, 1 /sy /ms

where

and

Q(¢, n) is Hermitian extension, and k, is the reprokernel in 77% (e_”QS)

» Lemma 1. There are cocycles ¢, such that <:ﬂK,Z‘7E — G
» Lemma 2. Vn € C, kn(n,n) < nen@(n)



Proof of last lemma

>

]

Consider St with (1 — t) < —=. The points on the exterior boundary of S; are

/n
at distance =< % from the boundary of S

Fix  and let
kn(C-W)

qn(C) = m

We have ||C?n||,21Q5 =1so

lgn|?e™"? < Cn on S;.
Denote u, = %Iog |qn|2. Then

. C+1
up — Q¢ — 7+nogn <0 onS;.

LHS is subharmonic in S¢ and ~ (1 — t) log |¢|? at co. Therefore,

» C +1
un < Qe+ =B (106 on S

and we conclude

« C'+logn
upn < Q@+ el on S and therefore everywhere.
n



Zero-one law

Theorem
Either K =0, or W(z,z) > 0 for all z € C

Theorem

Suppose the limiting droplet S exists. Then (every)
K is trivial iff S has zero area.



Holomorphic kernel

L(z,w) = eV (z,w).

Theorem
L is the reprokernel of some Hilbert space H of
entire functions. Moreover,

contr

H — A (e_lzlz) (free boundary)

and

contr

H — A (e_’z|2 : 18) (hard edge)

Cf. de Branges spaces B(E) with
E=e"™, E=A{—-iAi, E=+zJ(Vz)—il(V2).



Mass one equation

1SO

Conjecture: we should have H — A%(---), i.e.

Vz € C, /B(Z7 w) dA(w) =1

or

Vz €8S, /B(z: w) dA(w) =1,
S

where
B(z,w) =

[We assume K # 0]



e e

s B







3. Rescaling Ward’s identities



S.E.T.
v — W]v] (vector field — random variable)

For -ensembles:

W' v] = BB,(v) — 8nTr,(vOQ) + Tr,(0v)

Yy

JFk

* INOLauON: 1Tp\l') = ) T\Z)
» W7 is C-linear part of v = W,
> Wilv] = Wiv]+ W [v]




Ward’s identities

EWT'[v] =0
If p = p, is the density field, a (1,1)-differential,

/fan%Zf(ZjL

then

ELy [p(21)p(22) - -] = EW, [p(21)p(22) - - -]

where L, is Lie derivative.



Ward’s equation

Define - :/ B(z. w) -
C(z) = /S BZ (Z_ x) dA(w)
Theorem

T he equation
IOC=R—1— A(logR)

holds pointwise in C or in S.



4. Translation invariant solutions



We will consider free boundary and hard edge cases
with

S={x<0} or S={-7<x<7}

Mass one and Ward's equations are (vertically)
translation invariant. We'll find all their t.i.
solutions

V(z+it,w+it) = WV(z, w).
Clearly,
V(z,w)=d(z+ w) ¢ c A(C).

Key idea: use inverse Fourier transform for the
purpose of analytic continuation

d(z) = /Re’ff (Pr)"(t) dt, (z €C)

-
/



Gaussian reprersentation

Theorem (free boundary case)
Let K(z,w) = G(z,w)®(z+ w) be a t.i. limiting
kernel. Then

Op =pad, U= fF< L



Proof

» [(z,w) = &"d(z+ w) is a PDK on iR
Z ajage Tk d(ix; — ixk) > 0.
» Define V(z) by ®(iz) = V(z)ezz/z. Then

2
Zaja—kexj /zexff/z\/(xj —xx) >0,

~

so V(x) = fi(x) for some positive finite p.

» We have $p = v * v for dv = etz/zd)u.

contr

» Since H(L) — A? (elz|2), we have Li(z,w) := &% — L(z,w) is a PDK,
sol—Pp =vxv;and v+ =1



Free boundary solutions

K(z,w) =G(z,w)P(z+w); Pp=ryxf

Theorem
» K € (mass one) ifff =1g, ECR

» K € (Ward) iff f = 1g and E is connected



Proof

» Lemma:

B e .
/e|w| oWt oiWs dA(W) s SR
C

» Mass one:
Vx €R, / e~ (z 4+ w)2 = b(x)
C

or (F := &3p)
e = e.ix{tJrs)e—st" r 5
Fo = [ /{) F(t)F(s)

> Subtract
Efd= / / (1) =5t (1)1 (5)
(s.t)

o get (/= 1— F)

0 — // eix(tJrs)e—stﬁ(t)F'\l(s)
(s.¢)

» Gaussian representation F = ~vxf, F{ =~vxfi, 1 =1 — f gives fxf =0or
F—ifZ



Hard edge solutions with S = {x < 0}

K(z,w) = G(z, w)P(z+w)-1s(z)1s(w); Pr = yxh

Theorem
» K € (mass one) iff h=1g/F, where

F=vx1_x0),

VA > 0, /eAtdt<oo
E

» K € (Ward) iff h=1g/F, and E = (a, b) with
b < o0



Hard edge solutions with S={—7 < x <7}

q)R:’)/*hT

Theorem

» K € (mass one) iff h, = 1g/F;, where

F’T = 1(—2’7‘,2’7‘)3

and
VA > 0. / At « 0
E

» K € (Ward) iff h, = 1g/F., and E is a finite
interval



5. Concluding remarks



Radially symmetric potentials

Q(¢) = Q(I¢<])

Theorem

If p is on a hard edge boundary, then the limiting
point process exists and

K(z,w)=G(z,w)P(z+w), (Rz<0, Rw <0)

(t—2z)%/2
/ f e~ 52/2ds

with




Non-TI solutions

» Twisted convolutions:
(F+8)(2) = [z~ w)g(w)e " dAw)
C

» Hermitian extension of the 1-point function:

V(z, w) = /C e’ CHWIR(t) dA(t).

» Gauss representation:

R=Tr, 1-R=Tn, [(z):=e "2
» Mass one equation:
F f’\l =0

» Ward's equation has a similar form



Rescaling by n“ at singular points

AC = (I — AR



Mercy!



Equations for $-ensembles

GC—RléAIogR

{\/Bz} satisfy Ward(f = 1) but mass /3

Guess the form of R(®) such that Ward(/3) implied
Mass one
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