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The torus

Let A = AZY be a lattice in RY. Let Q ¢ RY be the fundamental
domain. One can identify Q with the flat torus R9/A.



The torus

Let A = AZY be a lattice in RY. Let Q ¢ RY be the fundamental
domain. One can identify Q with the flat torus R9/A.
The dual lattice

N ={xeRI:YrxeA (x,\) eZ}

is given by the matrix (A")~".
We denote by |A| = | det A|, the co-volume of A and dy is the
normalized measure in Q



The periodic potential

For s > d, the Epstein Hurwitz zeta function for the lattice A
defined by

Ca(six)=> 1 x € RY,

s?
veA |X+ V‘

is the A-periodic potential generated by the Riesz s-energy
|X|75.
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The periodic potential

For s > d, the Epstein Hurwitz zeta function for the lattice A

defined by
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veA
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is the A-periodic potential generated by the Riesz s-energy
|X|75.
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The energy in the torus

For w € QN define, for 0 < s < d, the periodic Riesz s-energy
of w=(xq,...,Xxn) by

Esa(w) =) Fsalxk — X),
k#j

and the minimal periodic Riesz s-energy by

ES,A(N) = wei(?g];)N Es’/\(wN).

This was considered by Hardin, Saff and Simanek who
computed the leading terms.



Known results in the torus

Hardin, Saff, Simanek and Su proved that for 0 < s < d there
exists a constant Cs 4 independent of A such that for N — oo

27Td/2‘/\’71
r(3)(d-s)

It is also shown that for0 < s < d

CS,d S IRf C/\(s)a

Esa(N) = N2 + Cs 4|\ "S/IN™3 + o(N'*3),

where A runs on the lattices with |A| = 1.



Known results in the torus

Hardin, Saff, Simanek and Su proved that for 0 < s < d there
exists a constant Cs 4 independent of A such that for N — oo

27Td/2‘/\’71
r(3)(d-s)

It is also shown that for0 < s < d

CS,d S IRf C/\(s)a

Esa(N) = N2 + Cs 4|\ "S/IN™3 + o(N'*3),

where A runs on the lattices with |A| = 1. The Epstein zeta
function (a(s) defined by

)= > 1 s>d,

[v|s’
veA\{0}

can be extended analytically to C \ {d}.
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Some estimates

Sarnak and Strdmbergsson observed that

/ CA(8)dAg(A) = O,

thus Cs 4 < 0.

But all explicitly known lattices in large dimensions are such
that the corresponding Epstein zeta function have a zero in
0<s<d.

The value of Cs 4 it is known only for d = 1 and

Cs1 = (z(s) = 2((s). For d = 2 it is known that infs (A(S) is
attained for the triangular lattice.



Determinantal point process

Definition
A determinantal point process A is a random point process
such that the joint intensities have the form:

pn(X1, ..., Xn) = det(K(X;, X;)i j<n)-



Determinantal point process

Definition
A determinantal point process A is a random point process
such that the joint intensities have the form:

pn(X1, ..., Xn) = det(K(X;, X;)i j<n)-

Recall that the joint intensities py satisfy:
E Z f(x1,.. /fx,,... ) Pk(Xis -y Xk)

for any f symmetric bounded and of compact support.



To define the processes we will consider only projection
kernels.

Definition
We say that K is a projection kernel if it is a Hermitian

projection kernel, i.e. the integral operator in L?() with kernel
K is selfadjoint and has eigenvalues 1 and 0.

A projection kernel K(x, y) defines a determinantal process
with N points a.s. if the trace for the corresponding integral
operator equals N, i.e. if

/ K(x,x)du(x) = N.
Q



Translation invariant kernels

For w € A*, the Laplace-Beltrami eigenfunctions
fu(u) = €2 (u:W) of eigenvalue —472(w, w) i.e. satisfying

Afy + 472 (w, w)f, =0,

are ortonormal in L2(Q), with respect to the normalized
lebesgue measure p,

[ @ (@) = by
Q

for w, w' € A*.



Translation invariant kernels

For w € A*, the Laplace-Beltrami eigenfunctions
fu(u) = €2 (u:W) of eigenvalue —472(w, w) i.e. satisfying

Afy + 472 (w, w)f, =0,

are ortonormal in L2(Q), with respect to the normalized
lebesgue measure p,

[ @ (@) = by
Q

for w, w' € A*.
We consider functions « = (ky)n>0 Where each
kn - N — {0, 1} has compact support define the kernels

KN(U, V) _ Z K:N(W)eZWI'(u—V,W)?

WEN*



Expected Energies

The expected periodic Riesz s-energy of Ty points is

E(Esa(x)) = /QZ(T/% — |Kn(u, v)[2)Fsa(u — v)du(u)dp(v).



Expected Energies

The expected periodic Riesz s-energy of Ty points is

B(Esn(x)) = |

Q2(Tﬁ/ — |Kn(u, v)[2)Fsa(u — v)du(u)dp(v).

Theorem

Letx = (xq,...,Xt,) be drawn from the determinantal process
Then, for 0 < s < d, the expected energy is

_d _

2" (Th2—T, )_FS 2r<%> 3 rn(W)rn (W)
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Frequencies in an open set

Definition
Let D c RY be open, bounded with |9D| = 0. Take

1 ifweA*nNN'/ID,
0 otherwise.
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Frequencies in an open set

Definition
Let D c RY be open, bounded with |9D| = 0. Take

1 ifweA*nNN'/ID,
0 otherwise.

kn(w) = {

Proposition
Let |\||D| = 1. Then E,¢(gayv. (Es (X)) is

s—9r-(d=s
272N L, T T (T> PNIFS/9 L o/
r(s)(d-s r)Ia " ’
1
Il :/ a0t (y),
Tl S P p(x)dp*(y)

Q* is a fundamental domain for \* and p*(Q*) = 1.




Final optimization

A natural question is now, given a fixed lattice A, to find the
optimal D c R?.

Theorem (Riesz inequality)

Given f, g, H nonnegative functions in R? with h(x) = H(|x|)
symmetrically decreasing. Then

/ F(X)a(y)H(|x—y!)dxdy < / F)@(y)H(x—y/)axdy,
R JRA

where 7, g are the symmetric decreasing rearrangements of f
and g.




Upper bounds for the minimal Energy

Proposition
If we take

d 1/d
D = Bo(0.1o). with 1y = (—fgerr)

Then




d=1

In the one-dimensional case Cs 1 = 2((s) and our bound is
mRr (1) 2




Riesz Potentials in the sphere

Given a Riesz potential:

X—y|@ ifa>0
Ka(xuy): | y| 1 .
log |x — y| if =0,

and given n points P, at the sphere, we want to minimize the
energy

E.= Z Ka(x,¥),

X,YE€Pn, XF£Yy

among all collections of points P, c S%. When a = d — 2 we
have the Newtonian potential that corresponds to the Thomson
problem. When o — oo, we recover Tammes problem.
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It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff,
Brauchart) for d > 2 and 0 < s < d there exist constants
C, ¢ > 0 such that

—cn'ts/9 < £(s,n) — Vs(S9)n? < —Cn'*s/9,

forn> 2.



It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff,
Brauchart) for d > 2 and 0 < s < d there exist constants
C, ¢ > 0 such that

—cn'ts/9 < £(s,n) — Vs(S9)n? < —Cn'*s/9,

forn> 2.
Conjecture (BHS) : there is a constant A 4 such that

A
E(S, n) _ VS(Sd)n2 + s,d n1+s/d + O(nH_S/d).

W
Furthermore, when d = 2,4, 8,24
Asg = [Na[*/9Cn,(S), (1)

where |A4| stands for the co-volume and ¢, (s) for the Epstein
zeta function of the lattice Ay. Here Ay denotes the hexagonal
lattice for d = 2, the root lattices D4 for d = 4 and Eg ford = 8
and the Leech lattice for d = 24.



It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff,
Brauchart) for d > 2 and 0 < s < d there exist constants
C, ¢ > 0 such that

_Cn1+s/d < 5(37 n) - Vs(Sd)nZ < —CHH_S/d,
forn> 2.
Conjecture (BHS) : there is a constant A 4 such that

A
E(S, n) _ VS(Sd)n2 + s,d n1+s/d + O(nH_S/d).

W
Furthermore, when d = 2,4, 8,24
Asg = [Na[*/9Cn,(S), (1)

where |A4| stands for the co-volume and ¢, (s) for the Epstein
zeta function of the lattice Ay. Here Ay denotes the hexagonal
lattice for d = 2, the root lattices D4 for d = 4 and Eg ford = 8
and the Leech lattice for d = 24.

Recall that in the logarithmic case the constant exist.



Spherical ensembles

Krishnapur considered the following point process: Let A, B be
n by nrandom matrices with i.i.d. Gaussian entries. Then he
proved that the generalized eigenvalues associated to the pair
(A, B), i.e. the eigenvalues of A~'B have joint probability
density (wrt Lebesgue measure):

n
].:[ +’Zk| n+1H|Z’

i<j



Spherical ensembles

Krishnapur considered the following point process: Let A, B be
n by nrandom matrices with i.i.d. Gaussian entries. Then he
proved that the generalized eigenvalues associated to the pair
(A, B), i.e. the eigenvalues of A~'B have joint probability
density (wrt Lebesgue measure):

n
H 14+ ’Zk| n+1 H |Zi =
k=1 i<j

If we consider the stereographic projection to the sphere S?,
then the joint density (with respect to the product area measure

in the sphere) is
K [T 11P: = Pill3s.
i<j



Spherical ensemble dimension: 3200




Spherical ensemble 25281 points




The harmonic ensemble in S¢

Let I, of spherical harmonics of degree at most L in S¢.
By Christoffel-Darboux formula the reproducing kernel of N,
Ku(x,y) = 5P

L+3
L

X, ¥)), x,yes,

where \ = 932 and the Jacobi polynomials are
P£1+>\,>\)(1) _ (Ltg).
By definition
P(X) = <P7 KL('aX)> = Sd KL(X)y)P(y)dM(y)a for P ¢ I_IL-
M, is the space of polynomials in Rt restricted to S¢,

2
Md+1)
and K, (x, x) = =, for every x € S°.

dimn, =7, = L9+ o(L9),



The harmonic ensemble in S¢

The harmonic ensemble is the determinantal point process in
S9 with 7, points a.s. induced by the kernel

T
Ki(x,y) = (L+€2,)P£1“’”(<x,y>)
L
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The harmonic ensemble in S¢

The harmonic ensemble is the determinantal point process in
S9 with 7, points a.s. induced by the kernel

4 12,0

Ki(x.y) = —--P{ N ((x,y)
(?)

L
We study different aspects of this process:

@ Expected Riesz energies

@ Linear statistics and spherical cap discrepancy

@ Separation distance

@ Energy optimality among isotropic processes




Let x = (X1, ..., Xn) Where n = m; be drawn from the harmonic
ensemble. Then, for 0 < s < d,

Exe(Sd)n(Es(X)) = Vs(Sd)nZ _ Cs,dn1+s/d + O(n1+s/d)7

for some explicit constant Cs 4 > 0.

The general case (and the limiting cases) are more difficult: we
improve the constants or match the order (s=d).



Let x = (X1, ..., Xn) Where n = m; be drawn from the harmonic
ensemble. Then, for 0 < s < d,

Exe(Sd)n(Es(X)) = Vs(Sd)n2 _ CS,dn1+S/d + O(n1+s/d)7

for some explicit constant Cs 4 > 0.

The general case (and the limiting cases) are more difficult: we
improve the constants or match the order (s=d).
For d = 2 the BHS conjecture is

o = W (\/é/(if)/sz/i/\z(s) n'ts/2 4 o(n'ts/2),

where (p,(s) is the zeta function of the hexagonal lattice
(Dirichlet L-series).
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: Graphic of —% in black, 25T (1 — £) (spherical) in red,

the constant Cs » (harmonic) in green and 1/(2v/27)% in blue.
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Can we find the best determinantal process? i.e. the kernel
such that the expected energy is minimal?

Some assumptions:
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Optimality

Can we find the best determinantal process? i.e. the kernel
such that the expected energy is minimal?

Some assumptions:
@ Invariant by rotations i.e.
d(x,y):d(z,t):>K(x,y):K(z,t), X,y,Z,I'ESd,

and then K((x, y)) for some K : [-1,1] — C.
@ We need that for any xi, ..., xx € SY the matrix

(K (X5, X)) )1<ij<ko

is nonnegative definite.

@ If we want n points a.s. in S¢ then all the eigenvalues must
be 1 (projection kernel).



Schoenberg theorem

We must have

Kxy) = K((xy)). K() =3 aeC22"/2(n),
k=0

where C"’/z_”2 is a Gegenbauer polynomial and the
ay € [0 2k+d 1} satisfy:

trace(K Z (d+k 2) < o0.

k=0



Schoenberg theorem

We must have
00 4/
Kx.y) = K((x,y), Kt)=Y aC* (),
k=0
where C"’/z_”2 is a Gegenbauer polynomial and the
ay € [0 2k+d 1} satisfy:

trace(K) = K(1):iak(d+:_2) < 0.

k=0

To have a projection kernel with with n points we take

2k +d—1 o [(d+ k=2

=n. (%)



Theorem

Let K5 and Ky, be two kernels with coefficients a = (ag, a1, . . .)
and b = (b, by, . ..) satisfying conditions (x). Let E5 and Ej
denote respectively the expected value of

ZHX/—XI\Z’

i#]

when x = (X1, ..., Xpn) IS given by the determinantal point
process associated to K5 and Ky,. Assume that for every i,j € N
we have:

ifi <j,a; =0 anda; > 0 then b; = 0. (2)

Then, E, < E,, with strict inequality unless a = b. In particular,
the harmonic kernel is optimal since (2) is trivially satisfied in
that case.



Discrepancy

There are other ways of quantifying the “equidistribution” of the
point process: A measure of the uniformity of the distribution of
asetx = {x1,...,xp} C S? of n points is the spherical cap
discrepancy. We denote as d(x, y) = arccos(x, y) the geodesic
distance in SY. A spherical cap is a ball with respect to the
geodesic distance.

The spherical cap discrepancy of the set x is

1 n
D(x) = sup| D xalx) = (A,

where A runs on the spherical caps of S¢.

Lubotzky, Philips and Sarnak found (a deterministic)
2/3
construction with discrepancy smaller than %

This was improved by T. Wolff to > and by Beck to
n2(1+3) log n



Theorem

Let A= A, be a spherical cap of radius 0, € [0, ) with
lim 6, € [0, ),
L—o0

and L, — oo when L — oo. Let p = xa. Then

Var(X(¢)) < L9 tlog L+ O(L9 1),

d-1__ 4

where the constant is lim 0
L—oo VL 2d7rr( % )

Corollary

For every M > 0 the spherical cap discrepancy of a set of
n =, points x = (X, ..., Xn) drawn from the harmonic
ensemble satisfies

D(x) = O(L~ % log L) = O(n~2(1+3) log n)



