Energy of determinantal point processes in the torus and the sphere

C. Beltrán (U. Cantabria) J. Marzo (U. Barcelona) & J. Ortega-Cerdà (U. Barcelona)

Paris, June 30 2016

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let $\Lambda = A\mathbb{Z}^d$ be a lattice in \mathbb{R}^d . Let $\Omega \subset \mathbb{R}^d$ be the fundamental domain. One can identify Ω with the flat torus \mathbb{R}^d/Λ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let $\Lambda = A\mathbb{Z}^d$ be a lattice in \mathbb{R}^d . Let $\Omega \subset \mathbb{R}^d$ be the fundamental domain. One can identify Ω with the flat torus \mathbb{R}^d/Λ . The dual lattice

$$\Lambda^* = \{ \boldsymbol{x} \in \mathbb{R}^d : \forall \lambda \in \Lambda \ \langle \boldsymbol{x}, \lambda \rangle \in \mathbb{Z} \},\$$

is given by the matrix $(A^t)^{-1}$. We denote by $|\Lambda| = |\det A|$, the co-volume of Λ and $d\mu$ is the normalized measure in Ω

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The periodic potential

For s > d, the Epstein Hurwitz zeta function for the lattice Λ defined by

$$\zeta_{\Lambda}(\boldsymbol{s};\boldsymbol{x}) = \sum_{\boldsymbol{v}\in\Lambda} \frac{1}{|\boldsymbol{x}+\boldsymbol{v}|^{\boldsymbol{s}}}, \quad \boldsymbol{x}\in\mathbb{R}^{d},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is the Λ -periodic potential generated by the Riesz s-energy $|x|^{-s}$.

The periodic potential

For s > d, the Epstein Hurwitz zeta function for the lattice Λ defined by

$$\zeta_{\Lambda}(\boldsymbol{s};\boldsymbol{x}) = \sum_{\boldsymbol{v}\in\Lambda} \frac{1}{|\boldsymbol{x}+\boldsymbol{v}|^{\boldsymbol{s}}}, \quad \boldsymbol{x}\in\mathbb{R}^{d},$$

is the Λ -periodic potential generated by the Riesz s-energy $|x|^{-s}$.

$$F_{s,\Lambda}(x) = \zeta_{\Lambda}(s;x) + \frac{2\pi^{d/2}|\Lambda|^{-1}}{\Gamma\left(\frac{s}{2}\right)(d-s)}, \ s > d,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The periodic potential

For s > d, the Epstein Hurwitz zeta function for the lattice Λ defined by

$$\zeta_{\Lambda}(\boldsymbol{s};\boldsymbol{x}) = \sum_{\boldsymbol{v}\in\Lambda} \frac{1}{|\boldsymbol{x}+\boldsymbol{v}|^{\boldsymbol{s}}}, \quad \boldsymbol{x}\in\mathbb{R}^{d},$$

is the Λ -periodic potential generated by the Riesz s-energy $|x|^{-s}$.

$$F_{s,\Lambda}(x) = \zeta_{\Lambda}(s;x) + rac{2\pi^{d/2}|\Lambda|^{-1}}{\Gamma\left(rac{s}{2}
ight)(d-s)}, \ s > d,$$

$$\sum_{v\in\Lambda}\int_{1}^{+\infty}e^{-|x+v|^{2}t}\frac{t^{\frac{s}{2}-1}}{\Gamma\left(\frac{s}{2}\right)}dt+\frac{1}{|\Lambda|}\sum_{w\in\Lambda^{*}\setminus\{0\}}e^{2\pi i\langle x,w\rangle}\int_{0}^{1}\frac{\pi^{d/2}}{t^{d/2}}e^{-\frac{\pi^{2}|w|^{2}}{t}}\frac{t^{\frac{s}{2}-1}}{\Gamma\left(\frac{s}{2}\right)}dt$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

For $\omega \in \Omega^N$ define, for 0 < s < d, the periodic Riesz *s*-energy of $\omega = (x_1, \ldots, x_N)$ by

$$E_{s,\Lambda}(\omega) = \sum_{k\neq j} F_{s,\Lambda}(x_k - x_j),$$

and the minimal periodic Riesz s-energy by

$$\mathcal{E}_{s,\Lambda}(N) = \inf_{\omega \in (\mathbb{R}^d)^N} E_{s,\Lambda}(\omega_N).$$

This was considered by Hardin, Saff and Simanek who computed the leading terms.

Known results in the torus

Hardin, Saff, Simanek and Su proved that for 0 < s < d there exists a constant $C_{s,d}$ independent of Λ such that for $N \to \infty$

$$\mathcal{E}_{s,\Lambda}(N) = \frac{2\pi^{d/2}|\Lambda|^{-1}}{\Gamma\left(\frac{s}{2}\right)(d-s)}N^2 + C_{s,d}|\Lambda|^{-s/d}N^{1+\frac{s}{d}} + o(N^{1+\frac{s}{d}}).$$

It is also shown that for 0 < s < d

$$C_{s,d} \leq \inf_{\Lambda} \zeta_{\Lambda}(s),$$

(日) (日) (日) (日) (日) (日) (日)

where Λ runs on the lattices with $|\Lambda| = 1$.

Known results in the torus

Hardin, Saff, Simanek and Su proved that for 0 < s < d there exists a constant $C_{s,d}$ independent of Λ such that for $N \to \infty$

$$\mathcal{E}_{s,\Lambda}(N) = \frac{2\pi^{d/2}|\Lambda|^{-1}}{\Gamma\left(\frac{s}{2}\right)(d-s)}N^2 + C_{s,d}|\Lambda|^{-s/d}N^{1+\frac{s}{d}} + o(N^{1+\frac{s}{d}}).$$

It is also shown that for 0 < s < d

$$C_{s,d} \leq \inf_{\Lambda} \zeta_{\Lambda}(s),$$

where Λ runs on the lattices with $|\Lambda| = 1$. The Epstein zeta function $\zeta_{\Lambda}(s)$ defined by

$$\zeta_{\Lambda}(\boldsymbol{s}) = \sum_{\boldsymbol{v} \in \Lambda \setminus \{0\}} \frac{1}{|\boldsymbol{v}|^{\boldsymbol{s}}}, \quad \boldsymbol{s} > \boldsymbol{d},$$

can be extended analytically to $\mathbb{C} \setminus \{d\}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Some estimates

Sarnak and Strömbergsson observed that

$$\int \zeta_{\Lambda}(\boldsymbol{s}) \boldsymbol{d} \lambda_{\boldsymbol{d}}(\Lambda) = \boldsymbol{0},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

thus $C_{s,d} < 0$.

Some estimates

Sarnak and Strömbergsson observed that

$$\int \zeta_{\Lambda}(\boldsymbol{s}) \boldsymbol{d} \lambda_{\boldsymbol{d}}(\Lambda) = \boldsymbol{0},$$

thus $C_{s,d} < 0$.

But all explicitly known lattices in large dimensions are such that the corresponding Epstein zeta function have a zero in 0 < s < d.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Some estimates

Sarnak and Strömbergsson observed that

$$\int \zeta_{\Lambda}(\boldsymbol{s}) \boldsymbol{d} \lambda_{\boldsymbol{d}}(\Lambda) = \boldsymbol{0},$$

thus $C_{s,d} < 0$.

But all explicitly known lattices in large dimensions are such that the corresponding Epstein zeta function have a zero in 0 < s < d.

The value of $C_{s,d}$ it is known only for d = 1 and $C_{s,1} = \zeta_{\mathcal{Z}}(s) = 2\zeta(s)$. For d = 2 it is known that $\inf_{\Lambda} \zeta_{\Lambda}(s)$ is attained for the triangular lattice.

Determinantal point process

Definition

A determinantal point process A is a random point process such that the joint intensities have the form:

$$\rho_n(x_1,\ldots,x_n) = det(K(x_i,x_j)_{i,j\leq n}).$$

・ロト ・聞ト ・ヨト ・ヨト 三日

Determinantal point process

Definition

A determinantal point process A is a random point process such that the joint intensities have the form:

$$\rho_n(x_1,\ldots,x_n) = det(K(x_i,x_j)_{i,j\leq n}).$$

Recall that the joint intensities ρ_k satisfy:

$$\mathbb{E}\sum_{x_1,\ldots,x_k\in A}f(x_1,\ldots,x_k)=\int f(x_i,\ldots,x_k)\rho_k(x_i,\ldots,x_k)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

for any f symmetric bounded and of compact support.

To define the processes we will consider only projection kernels.

Definition

We say that *K* is a projection kernel if it is a Hermitian projection kernel, i.e. the integral operator in $L^2(\mu)$ with kernel *K* is selfadjoint and has eigenvalues 1 and 0.

A projection kernel K(x, y) defines a determinantal process with N points a.s. if the trace for the corresponding integral operator equals N, i.e. if

$$\int_{\Omega} K(x,x) d\mu(x) = N.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Translation invariant kernels

For $w \in \Lambda^*$, the Laplace-Beltrami eigenfunctions $f_w(u) = e^{2\pi i \langle u, w \rangle}$ of eigenvalue $-4\pi^2 \langle w, w \rangle$ i.e. satisfying

$$\Delta f_{w} + 4\pi^{2} \langle w, w \rangle f_{w} = 0,$$

are ortonormal in $L^2(\Omega)$, with respect to the normalized lebesgue measure μ ,

$$\int_{\Omega} f_{w}(u) \overline{f_{w'}(u)} d\mu(u) = \delta_{w,w'}$$

(日) (日) (日) (日) (日) (日) (日)

for $w, w' \in \Lambda^*$.

Translation invariant kernels

For $w \in \Lambda^*$, the Laplace-Beltrami eigenfunctions $f_w(u) = e^{2\pi i \langle u, w \rangle}$ of eigenvalue $-4\pi^2 \langle w, w \rangle$ i.e. satisfying

$$\Delta f_{w} + 4\pi^{2} \langle w, w \rangle f_{w} = 0,$$

are ortonormal in $L^2(\Omega)$, with respect to the normalized lebesgue measure μ ,

$$\int_{\Omega} f_{w}(u) \overline{f_{w'}(u)} d\mu(u) = \delta_{w,w'}$$

for $w, w' \in \Lambda^*$. We consider functions $\kappa = (\kappa_N)_{N \ge 0}$ where each $\kappa_N : \Lambda^* \longrightarrow \{0, 1\}$ has compact support define the kernels

$$K_N(u, v) = \sum_{w \in \Lambda^*} \kappa_N(w) e^{2\pi i \langle u - v, w \rangle},$$

Expected Energies

The expected periodic Riesz s-energy of T_N points is

$$\mathbb{E}(E_{s,\Lambda}(x)) = \int_{\Omega^2} (T_N^2 - |K_N(u,v)|^2) F_{s,\Lambda}(u-v) d\mu(u) d\mu(v).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Expected Energies

The expected periodic Riesz s-energy of T_N points is

$$\mathbb{E}(\mathcal{E}_{s,\Lambda}(x)) = \int_{\Omega^2} (T_N^2 - |\mathcal{K}_N(u,v)|^2) \mathcal{F}_{s,\Lambda}(u-v) d\mu(u) d\mu(v).$$

Theorem

Let $x = (x_1, ..., x_{T_N})$ be drawn from the determinantal process Then, for 0 < s < d, the expected energy is

$$\frac{2\pi^{d/2}}{\Gamma\left(\frac{s}{2}\right)(d-s)|\Lambda|^{-1}}(T_N^2-T_N)-\frac{\pi^{s-\frac{d}{2}}\Gamma\left(\frac{d-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)|\Lambda|}\sum_{\substack{w,w'\in\Lambda^*\\w\neq w'}}\frac{\kappa_N(w)\kappa_N(w')}{|w-w'|^{d-s}}$$

Frequencies in an open set

Definition

Let $\mathcal{D} \subset \mathbb{R}^d$ be open, bounded with $|\partial D| = 0$. Take

$$k_{N}(w) = \begin{cases} 1 & \text{if } w \in \Lambda^{*} \cap N^{1/d}\mathcal{D}, \\ 0 & \text{otherwise.} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Frequencies in an open set

Definition

Let $\mathcal{D} \subset \mathbb{R}^d$ be open, bounded with $|\partial D| = 0$. Take

$$k_{N}(w) = \begin{cases} 1 & \text{if } w \in \Lambda^{*} \cap N^{1/d}\mathcal{D}, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

Let
$$|\Lambda||\mathcal{D}| = 1$$
. Then $\mathbb{E}_{x \in (\mathbb{R}^d)^{N_*}}(E_{s,\Lambda}(x))$ is

$$\frac{2\pi^{d/2}|\Lambda|^{-1}}{\Gamma\left(\frac{s}{2}\right)(d-s)}N_*^2 - \frac{\pi^{s-\frac{d}{2}}\Gamma\left(\frac{d-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)|\Lambda|}I_{\mu^*}^{\mathcal{D}}N_*^{1+s/d} + o(N_*^{1+s/d}),$$
$$I_{\mu^*}^{\mathcal{D}} = \int_{\mathcal{D}\times\mathcal{D}}\frac{1}{|x-y|^{d-s}}d\mu^*(x)d\mu^*(y),$$

 Ω^* is a fundamental domain for Λ^* and $\mu^*(\Omega^*) = 1$.

A natural question is now, given a fixed lattice Λ , to find the optimal $\mathcal{D} \subset \mathbb{R}^d$.

Theorem (Riesz inequality)

Given f, g, H nonnegative functions in \mathbb{R}^d with h(x) = H(|x|) symmetrically decreasing. Then

$$\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}f(x)g(y)H(|x-y|)dxdy\leq\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}\widetilde{f}(x)\widetilde{g}(y)H(|x-y|)dxdy,$$

where \tilde{f}, \tilde{g} are the symmetric decreasing rearrangements of f and g.

Upper bounds for the minimal Energy

Proposition

If we take

$$\mathcal{D} = \mathbb{B}_d(0, r_d), \text{ with } r_d = \left(\frac{d}{\omega_{d-1}|\det A|}\right)^{1/d}$$

Then

$$\begin{split} &\frac{\pi^{s-\frac{d}{2}}\Gamma\left(\frac{d-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)|\Lambda|^{1-\frac{s}{d}}}I_{\mu^{*}}^{\mathcal{D}} = \\ &\frac{\Gamma\left(\frac{d-s}{2}\right)\Gamma\left(d+1\right)\Gamma\left(\frac{s+1}{2}\right)}{2^{d+1}\Gamma\left(\frac{d}{2}+1\right)\Gamma\left(\frac{s}{2}+1\right)\Gamma\left(\frac{d+s}{2}+1\right)\Gamma\left(\frac{d+1}{2}\right)}. \end{split}$$

d = 1

In the one-dimensional case $C_{s,1} = 2\zeta(s)$ and our bound is

Riesz Potentials in the sphere

Given a Riesz potential:

$$\mathcal{K}_{lpha}(x,y) = egin{cases} |x-y|^{-lpha} & ext{if } lpha > \mathbf{0} \ \log |x-y|^{-1} & ext{if } lpha = \mathbf{0}, \end{cases}$$

and given *n* points \mathcal{P}_n at the sphere, we want to minimize the energy

$${m {\it E}}_lpha = \sum_{{m x},{m y}\in {\cal P}_n, \ {m x}
eq {m y}} {m {\it K}}_lpha({m x},{m y}),$$

among all collections of points $\mathcal{P}_n \subset \mathbb{S}^d$. When $\alpha = d - 2$ we have the Newtonian potential that corresponds to the Thomson problem. When $\alpha \to \infty$, we recover Tammes problem.

"Well distributed" points on the sphere

$$\mathbb{S}^{d} = \{x = (x_1, \dots, x_{d+1}) \in \mathbb{R}^{d+1} : x_1^2 + \dots + x_{d+1}^2 = 1\}$$

"Well distributed" points on the sphere

R. Womersley web http://web.maths.unsw.edu.au/ rsw/Sphere/ 529 Fekete points

It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff, Brauchart) for $d \ge 2$ and 0 < s < d there exist constants C, c > 0 such that

$$-cn^{1+s/d} \leq \mathcal{E}(s,n) - V_s(\mathbb{S}^d)n^2 \leq -Cn^{1+s/d},$$

for $n \ge 2$.

It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff, Brauchart) for $d \ge 2$ and 0 < s < d there exist constants C, c > 0 such that

$$-cn^{1+s/d} \leq \mathcal{E}(s,n) - V_s(\mathbb{S}^d)n^2 \leq -Cn^{1+s/d},$$

for $n \ge 2$.

Conjecture (BHS) : there is a constant $A_{s,d}$ such that

$$\mathcal{E}(s,n) = V_s(\mathbb{S}^d)n^2 + rac{A_{s,d}}{\omega_d^{s/d}}n^{1+s/d} + o(n^{1+s/d}).$$

Furthermore, when d = 2, 4, 8, 24

$$A_{s,d} = |\Lambda_d|^{s/d} \zeta_{\Lambda_d}(s), \tag{1}$$

where $|\Lambda_d|$ stands for the co-volume and $\zeta_{\Lambda_d}(s)$ for the Epstein zeta function of the lattice Λ_d . Here Λ_d denotes the hexagonal lattice for d = 2, the root lattices D_4 for d = 4 and E_8 for d = 8 and the Leech lattice for d = 24.

It is known that (Alexander, Stolarsky, Wagner, Kuijlaars, Saff, Brauchart) for $d \ge 2$ and 0 < s < d there exist constants C, c > 0 such that

$$-cn^{1+s/d} \leq \mathcal{E}(s,n) - V_s(\mathbb{S}^d)n^2 \leq -Cn^{1+s/d},$$

for $n \ge 2$.

Conjecture (BHS) : there is a constant $A_{s,d}$ such that

$$\mathcal{E}(s,n) = V_s(\mathbb{S}^d)n^2 + rac{A_{s,d}}{\omega_d^{s/d}}n^{1+s/d} + o(n^{1+s/d}).$$

Furthermore, when d = 2, 4, 8, 24

$$A_{s,d} = |\Lambda_d|^{s/d} \zeta_{\Lambda_d}(s), \tag{1}$$

where $|\Lambda_d|$ stands for the co-volume and $\zeta_{\Lambda_d}(s)$ for the Epstein zeta function of the lattice Λ_d . Here Λ_d denotes the hexagonal lattice for d = 2, the root lattices D_4 for d = 4 and E_8 for d = 8and the Leech lattice for d = 24. Recall that in the logarithmic case the constant exist.

Spherical ensembles

Krishnapur considered the following point process: Let *A*, *B* be *n* by *n* random matrices with i.i.d. Gaussian entries. Then he proved that the generalized eigenvalues associated to the pair (A, B), i.e. the eigenvalues of $A^{-1}B$ have joint probability density (wrt Lebesgue measure):

$$C_n \prod_{k=1}^n \frac{1}{(1+|z_k|^2)^{n+1}} \prod_{i< j} |z_i-z_j|^2.$$

(日) (日) (日) (日) (日) (日) (日)

Spherical ensembles

Krishnapur considered the following point process: Let *A*, *B* be *n* by *n* random matrices with i.i.d. Gaussian entries. Then he proved that the generalized eigenvalues associated to the pair (A, B), i.e. the eigenvalues of $A^{-1}B$ have joint probability density (wrt Lebesgue measure):

$$C_n \prod_{k=1}^n \frac{1}{(1+|z_k|^2)^{n+1}} \prod_{i< j} |z_i-z_j|^2.$$

If we consider the stereographic projection to the sphere S^2 , then the joint density (with respect to the product area measure in the sphere) is

$$K_n \prod_{i < j} \|P_i - P_j\|_{\mathbb{R}^3}^2.$$

Spherical ensemble dimension: 3200

Spherical ensemble 25281 points

The harmonic ensemble in \mathbb{S}^d

Let Π_L of spherical harmonics of degree at most *L* in \mathbb{S}^d . By Christoffel-Darboux formula the reproducing kernel of Π_L

$$\mathcal{K}_{L}(x,y) = \frac{\pi_{L}}{\binom{L+\frac{d}{2}}{L}} \mathcal{P}_{L}^{(1+\lambda,\lambda)}(\langle x,y\rangle), \ x,y \in \mathbb{S}^{d},$$

where $\lambda = \frac{d-2}{2}$ and the Jacobi polynomials are $P_L^{(1+\lambda,\lambda)}(1) = {L+\frac{d}{2} \choose L}$. By definition

$$\mathcal{P}(x) = \langle \mathcal{P}, \mathcal{K}_L(\cdot, x) \rangle = \int_{\mathbb{S}^d} \mathcal{K}_L(x, y) \mathcal{P}(y) d\mu(y), \text{ for } \mathcal{P} \in \Pi_L$$

 Π_L is the space of polynomials in \mathbb{R}^{d+1} restricted to \mathbb{S}^d ,

$$\dim \Pi_L = \pi_L = \frac{2}{\Gamma(d+1)}L^d + o(L^d),$$

and $K_L(x, x) = \pi_L$ for every $x \in \mathbb{S}^d$.

The harmonic ensemble is the determinantal point process in \mathbb{S}^d with π_L points a.s. induced by the kernel

$$K_L(x,y) = \frac{\pi_L}{\binom{L+\frac{d}{2}}{L}} P_L^{(1+\lambda,\lambda)}(\langle x,y\rangle)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの
The harmonic ensemble is the determinantal point process in \mathbb{S}^d with π_L points a.s. induced by the kernel

$$\mathcal{K}_L(x,y) = rac{\pi_L}{\binom{L+rac{d}{2}}{L}} \mathcal{P}_L^{(1+\lambda,\lambda)}(\langle x,y
angle)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We study different aspects of this process:

The harmonic ensemble is the determinantal point process in \mathbb{S}^d with π_L points a.s. induced by the kernel

$$\mathcal{K}_L(x,y) = rac{\pi_L}{\binom{L+rac{d}{2}}{L}} \mathcal{P}_L^{(1+\lambda,\lambda)}(\langle x,y
angle)$$

We study different aspects of this process:

- Expected Riesz energies
- Linear statistics and spherical cap discrepancy
- Separation distance
- Energy optimality among isotropic processes

Let $x = (x_1, ..., x_n)$ where $n = \pi_L$ be drawn from the harmonic ensemble. Then, for 0 < s < d,

$$\mathbb{E}_{x \in (\mathbb{S}^d)^n}(E_s(x)) = V_s(\mathbb{S}^d)n^2 - C_{s,d}n^{1+s/d} + o(n^{1+s/d})$$

for some explicit constant $C_{s,d} > 0$.

The general case (and the limiting cases) are more difficult: we improve the constants or match the order (s=d).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let $x = (x_1, ..., x_n)$ where $n = \pi_L$ be drawn from the harmonic ensemble. Then, for 0 < s < d,

$$\mathbb{E}_{x \in (\mathbb{S}^d)^n}(E_s(x)) = V_s(\mathbb{S}^d)n^2 - C_{s,d}n^{1+s/d} + o(n^{1+s/d})$$

for some explicit constant $C_{s,d} > 0$.

The general case (and the limiting cases) are more difficult: we improve the constants or match the order (s=d). For d = 2 the BHS conjecture is

$$\mathcal{E}(s,n) = V_s(\mathbb{S}^2)n^2 + rac{(\sqrt{3}/2)^{s/2}\zeta_{\Lambda_2}(s)}{(4\pi)^{s/2}}n^{1+s/2} + o(n^{1+s/2}),$$

where $\zeta_{\Lambda_2}(s)$ is the zeta function of the hexagonal lattice (Dirichlet L-series).

d=2

the constant $C_{s,2}$ (harmonic) in green and $1/(2\sqrt{2\pi})^s$ in blue.

Can we find the best determinantal process? i.e. the kernel such that the expected energy is minimal?

Some assumptions:

Can we find the best determinantal process? i.e. the kernel such that the expected energy is minimal?

Some assumptions:

Invariant by rotations i.e.

$$d(x,y) = d(z,t) \Longrightarrow K(x,y) = K(z,t), \quad x,y,z,t \in \mathbb{S}^d,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and then $K(\langle x, y \rangle)$ for some $K : [-1, 1] \mapsto \mathbb{C}$.

Can we find the best determinantal process? i.e. the kernel such that the expected energy is minimal?

Some assumptions:

Invariant by rotations i.e.

$$d(x,y) = d(z,t) \Longrightarrow K(x,y) = K(z,t), \quad x,y,z,t \in \mathbb{S}^d,$$

and then $K(\langle x, y \rangle)$ for some $K : [-1, 1] \mapsto \mathbb{C}$.

• We need that for any $x_1, \ldots, x_k \in \mathbb{S}^d$ the matrix

$$(K(\langle x_i, x_j \rangle))_{1 \leq i,j \leq k},$$

(日) (日) (日) (日) (日) (日) (日)

is nonnegative definite.

Can we find the best determinantal process? i.e. the kernel such that the expected energy is minimal?

Some assumptions:

Invariant by rotations i.e.

$$d(x,y) = d(z,t) \Longrightarrow K(x,y) = K(z,t), \quad x,y,z,t \in \mathbb{S}^d,$$

and then $K(\langle x, y \rangle)$ for some $K : [-1, 1] \mapsto \mathbb{C}$.

• We need that for any $x_1, \ldots, x_k \in \mathbb{S}^d$ the matrix

$$(K(\langle x_i, x_j \rangle))_{1 \leq i,j \leq k},$$

is nonnegative definite.

If we want n points a.s. in S^d then all the eigenvalues must be 1 (projection kernel).

Schoenberg theorem

We must have

$$\mathcal{K}(x,y) = \mathcal{K}(\langle x,y \rangle), \quad \mathcal{K}(t) = \sum_{k=0}^{\infty} a_k C_k^{d/2-1/2}(t),$$

where $C_k^{d/2-1/2}$ is a Gegenbauer polynomial and the $a_k \in \left[0, \frac{2k+d-1}{d-1}\right]$ satisfy:

trace(
$$K$$
) = $K(1) = \sum_{k=0}^{\infty} a_k \binom{d+k-2}{k} < \infty$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Schoenberg theorem

We must have

$$\mathcal{K}(x,y) = \mathcal{K}(\langle x,y \rangle), \quad \mathcal{K}(t) = \sum_{k=0}^{\infty} a_k C_k^{d/2-1/2}(t),$$

where $C_k^{d/2-1/2}$ is a Gegenbauer polynomial and the $a_k \in \left[0, \frac{2k+d-1}{d-1}\right]$ satisfy:

trace(
$$\mathcal{K}$$
) = $\mathcal{K}(1) = \sum_{k=0}^{\infty} a_k \binom{d+k-2}{k} < \infty$.

To have a projection kernel with with *n* points we take

$$a_k \in \left\{0, rac{2k+d-1}{d-1}
ight\}$$
 with $\sum_{k=0}^{\infty} a_k \binom{d+k-2}{k} = n.$ (*)

Theorem

Let K_a and K_b be two kernels with coefficients $a = (a_0, a_1, ...)$ and $b = (b_0, b_1, ...)$ satisfying conditions (*). Let \mathbb{E}_a and \mathbb{E}_b denote respectively the expected value of

$$E_2(x) = \sum_{i \neq j} \frac{1}{\|x_i - x_j\|^2},$$

when $x = (x_1, ..., x_n)$ is given by the determinantal point process associated to K_a and K_b . Assume that for every $i, j \in \mathbb{N}$ we have:

if
$$i < j, a_i = 0$$
 and $a_i > 0$ then $b_i = 0$. (2)

Then, $\mathbb{E}_a \leq \mathbb{E}_b$, with strict inequality unless a = b. In particular, the harmonic kernel is optimal since (2) is trivially satisfied in that case.

Discrepancy

There are other ways of quantifying the "equidistribution" of the point process: A measure of the uniformity of the distribution of a set $x = \{x_1, ..., x_n\} \subset \mathbb{S}^d$ of *n* points is the spherical cap discrepancy. We denote as $d(x, y) = \arccos\langle x, y \rangle$ the geodesic distance in \mathbb{S}^d . A spherical cap is a ball with respect to the geodesic distance.

The spherical cap discrepancy of the set x is

$$\mathbb{D}(x) = \sup_{A} \Big| \frac{1}{n} \sum_{i=1}^{n} \chi_{A}(x_{i}) - \mu(A) \Big|,$$

where *A* runs on the spherical caps of \mathbb{S}^d . Lubotzky, Philips and Sarnak found (a deterministic) construction with discrepancy smaller than $\frac{(\log n)^{2/3}}{n^{1/3}}$. This was improved by T. Wolff to $\frac{c}{n^{1/3}}$ and by Beck to $n^{-\frac{1}{2}(1+\frac{1}{d})}\log n$

Theorem

Let $A = A_L$ be a spherical cap of radius $\theta_L \in [0, \pi)$ with $\lim_{L \to \infty} \theta_L \in [0, \pi),$ and $L\theta_L \to \infty$ when $L \to \infty$. Let $\phi = \chi_A$. Then $Var(\mathcal{X}(\phi)) \lesssim L^{d-1} \log L + O(L^{d-1}),$ where the constant is $\lim_{L \to \infty} \theta_L^{d-1} \frac{4}{2^d \pi \Gamma(\frac{d}{2})^2}.$

Corollary

For every M > 0 the spherical cap discrepancy of a set of $n = \pi_L$ points $x = (x_1, ..., x_n)$ drawn from the harmonic ensemble satisfies

$$\mathbb{D}(x) = O(L^{-\frac{d+1}{2}} \log L) = O(n^{-\frac{1}{2}(1+\frac{1}{d})} \log n)$$