
Universality for the hard edge

Brian Rider (Temple University)

joint work with Patrick Waters



The hard edge

First consider n×m matrices M of independent (real, complex, quaternion)
Gaussians and form the appropriately scaled MM †.

For the counting measure of eigenvalues: if say m
n
→ γ ≥ 1,

1

n

n∑
k=1

δλk(λ)→
1

2πλ

√
(λ− L)(R− λ) dλ

where L = (1−√γ)2 and R = (1 +
√
γ)2

When γ > 1 both edges are “soft”, and we have (classical) Tracy-Widom
fluctuations (in terms of Painlevé II).

When γ = 1, then L = 0 and have a different phenomenon as the eigenvalues
now feel the “hard edge” of the origin.

In fact, if m = n+ a as n ↑ ∞ there is a one-parameter family of limit laws for
λmin indexed by a (first discovered by Tracy-Widom in terms of Painlevé IV).

And if take a→∞ after the fact one recovers the (soft-edge) Tracy-Widom
laws.



Beta ensembles

For the soft edge it is more immediate to consider “beta Hermite ensem-
bles” generalizing GOE or GUE. These are the measures on Rn with density
proportional to ∏

i 6=j

|λi − λj|β
n∏
i=1

w(λi), w(λ) = e−
β

4
nλ2
.

with any β > 0.

Similarly, the appropriate generalization of the Wishart type matrices are the
so called “beta Laguerre ensembles” where the above is replaced by∏

i 6=j

|λi − λj|β
n∏
i=1

w(λi), w(λ) = λ
β

2
(m−n)−1e−

β

2
nλ

restricted to Rn+.

Tuned for the hard edge we set m− n = a in the latter density which is then
sensible for any a > −1.



Random operators

Raḿırez-R-Virág established that the limiting general beta soft-edge point
process is described by the “stochastic Airy operator”

Hβ = −
d2

dx2
+ x+

2√
β
b′(x)

acting on R+ with a Dirichlet boundary condition at the origin. Here b′(x) is
a white noise.

The corresponding hard edge operator was worked out by Raḿırez-R and
reads:

Lβ,a = −ex
(
d2

dx2
− (a+

2√
β
b′(x))

d

dx

)
,

again on R+ with a Dirichlet boundary condition at the origin.

While Hβ requires some care to make sense of one can write down L−1
β,a ex-

plicitly and check that it is (almost surely) trace class.



Hermite/Laguerre Tridiagonals

These (due to Dmitriu-Edelman) in a sense generalize the standard House-
holder tri/bi-diagonalization algorithm.

For the e−nβλ
2/2 weight on the line build the n× n random Jacobi matrix

T (A,B) where

Ak ∼ N(0,2) for k = 1, . . . , n, Bk ∼ χβ(n−k) for k = 1, . . . , n− 1

and all independent. Then (for whatever β > 0) the matrix T (A,B) has the
desired eigenvalue law (after a scaling by 1√

nβ
).

For the Laguerre-like case, you take instead a bidiagonal matrix M(X,Y ) with
the X’s on diagonal and the Y ’s above where:

Xk ∼ χβ(k+a) for k = 1, . . . , n, Yk ∼ χβk for k = 1, . . . , n− 1,

again all independent. Then MMT does the job.



Soft edge easier to “see”

The scaling for Tracy-Widom is of course that n2/3(λmax − 2)⇒ TW , so what
you want to see is that

n2/3
(

2− T (A,B)
)
→ Hβ

in an appropriate sense. And formally χβ(n−k) ∼
√
βn−

√
β

2
k
n

+ 1√
2
G gives that

the left hand side (n2/3 times) resembles the discrete Laplacian with potential

1

2n1/3
T (0, (1,2,3, . . . )) + β−1/2n1/6 T (G,G′).

In a real sense TWβ is identified through the integrated potential:

n2/3

xn1/3∑
k=1

(E − (Ak + 2Bk))⇒
x2

2
+

2√
β
b(x)

where E is the edge (here happens to be E = 2).



Hard edge goes through inverses

The formula advertised before is that

(−L)−1 = KKT

where K is the kernel operator

K(s, t) =
1
√
t

(
s

t

)a/2

exp

[∫ t

s

dbu√
βu

]
1s<t

(after a change of variables). This arises from the matrix model having the
form MMT and the explicit expression

[M−1]k,` =
(−1)k+`

M`,`

`∏
j=k

Mj,j+1

Mj,j

for bi-diagonals. Then the simple facts

Xnt√
βn
⇒
√
t,

nt∑
k=ns

log
Yk

Xk

⇒
a

2
log
(
s

t

)
+

∫ t

s

dbu√
βu

identify the hard edge operator.



Universality (for general potentials)

Now one wants to consider weights e−nβV (x)1R or xγe−nβV (x)1R+ generalizing
β-Hermite/Laguerre.

Again there are tridiagonal models − give a conceptually simply explanation
for soft/hard edge universality.

Krishnapur-R-Virág showed that that for β > 0 and V a strictly convex poly-
nomial see the Stochastic Airy Operator at the soft edge.

**There are better universality results out there (Bourgade-Erdös-Yau, Bekerman-
Figalli-Guionnet)**

What is new is a similar statement for the hard edge. Though now we need
β ≥ 1.



Quick look at soft edge

Draw (A,B) according to the law with density

∝ exp
(
−nβtrV (T (a, b))

) n−1∏
k=1

bβ(n−k)−1
k = exp (−nβH(a,b))

Then T ((A,B) has eigenvalue density
∏
|λi − λj|βe

−n
∑

βV (λi).

And you want to get your hands on: for Φ a nice test function of the first
O(n1/3) coordinates,∫

Φ(a,b)e−nβH(a,b)dadb =

∫ [∫
Φ(a, b)e−nβHq(a,b)dadb

]
dQ(q)

where the cryptic Hq indicates a conditional Hamiltonian/measure.

Now the finite range nature of the potential V produces an exponential decay
of dependence of the minimizers of Hq on the particulars of q.



Course Hamiltonians/minimizers

The full Hamiltonian is

H(a,b) = trV
(
T (a,b)

)
−

n−1∑
k=1

(
1−

k

n
−

1

nβ

)
log bk.

Fix an index k ∼ nt, and take the point of view that the minimizing ak, bk
should be locally constant. By counting the paths that comprise the trace
arrive at “course” Hamiltonian in two variables:

H0(a, b) = [1]V
(
a+ b(z +

1

z
)
)
− (1− t) log b

whose minimizer a(t), b(t) you can compute enough information about in order
to expand around.

Has further meaning via the time-dependent equilibrium problem: the mini-
mizing measure for∫

1

1− t
V (x)dµ(x)−

∫ ∫
log |x− y|dµ(x)dµ(y)

has support [a(t)− 2b(t), a(t) + 2b(t)].



General Wishart tridiagonals

Let M = M(x,y) by the bidiagonal matrix with x = (x1, x2, . . . ) on the main
diagonal and y = (y1, y2, ...) just above.

Draw (X,Y) from the density

PV (x1, . . . xn, y1, . . . , yn−1) = c exp
[
−nβtrV (MMT)

] n∏
k=1

xk+a−1
k

n−1∏
k=1

yk−1
k ,

then the tridiagonal matrix M(X,Y )M(X,Y )T has joint eigenvalue law

c′
n∏

k=1

λ
β

2
a−1

k e−nβV (λk) ×
∏
j 6=k

|λj − λk|β.



Hard edge universality

Assume now that x 7→ V (x2) is a strictly convex polynomial and β ≥ 1.

With V (x) =
∑d

m=1
gmxm define φ to be the (unique) solution to

t =

d∑
m=1

m
(2m
m

)
gmφ(t)2m for t ∈ [0,1]

as well as

θ(t) = c

(∫ t

0

du

φ(u)

)2

normalized so that θ(1) = 1.

Then, with the bidiagonal M drawn from the law PV it holds that

(M)−1(ns, nt) =
1

Xnt

nt∏
ns

Xk

Yk
→

1√
φ(s)φ(t)

(
θ(s)

θ(t)

) a
2

+ 1
4

exp

[
1√
β

∫ θ(t)

θ(s)

dbz√
z

]
as operators. Note when V (x) = x have that φ(t) =

√
t and θ(t) = t and this

is the limit kernel K that we saw before.



Some ingredients

First, what is this function φ?

The full Hamiltonian reads

H(x,y) = trV
(
M(x,y)M(x,y)T

)
−

n∑
k=1

(
k

n
+
a

n
−

1

nβ
) logxk −

n−1∑
k=1

(
k

n
−

1

nβ
) log yk

Following the same philosophy as in the soft edge we fix about a continuum
index k ∼ nt and use the guess that the minimizer k 7→ xk, yk is locally constant.
Dropping nuisance factors this leads to

H0(x, y) =

d∑
m=1

(
gm

m∑
`=0

(m
`

)2
x2`y2m−2`

)
− t logx− t log y

and φ is the common minimizing x and y.

Though keep in mind that since the limiting potential arises from
∑nt

k=ns
log
(
Xk

Yk

)
,

this can’t give the full story, even for the mean.



Issue 1: Non-locality

The fact that the functional CLT is required over O(n) variables simply means
that you have to employ a classical block strategy (the soft edge calculation
is a “one block” problem).

The field is split up into “good” blocks of length O(nγ) for γ small, and “bad”
blocks of length O(logn).

The latter are small enough not to contribute, but large enough that the
variables in consecutive good blocks decorrelate in the limit.

The decorrelation again comes the decay of dependence of the minimizers on
any (reasonable) boundary condition. This yields that the Gaussian approxi-
mation in any good block doesn’t feel the variables outside.

Basically had this tool developed for the soft edge (though now need more
care as errors “pile up”).



Issue 2: Require finer estimates of the minimizer(s)

The proposed limit theorem requires say: with k 7→ x0(k), y0(k) the true
(global) or any appropriate conditional minimizer,

nt∑
ns

log
x0(k)

y0(k)
→
(
a

2
+

1

4

)
log

θ(t)

θ(s)
−

1

2
log

φ(t)

φ(s)
,

and certainly our first order approximation x0 ∼ y0 ∼ φ doesn’t cut it.

Here we really rely on convexity, as we have that: with c the convexity constant
for H,

||(x,y)− (x′,y′)||2 ≤
1

c
||∇H(x, y)−∇H(x′, y′)||2.

And then putting in the ansatz

x0(k) = φ(k/n) +
1

n
x̄(k/n) + · · · , y0(k) = φ(k/n) +

1

n
ȳ(k/n) + · · ·

an exact calculation of ∇H will provide as sharp an approximation to the
actual minimizer as you may want/need.


