Four Different Problems: Interplay Between Geometry and Physics

- 1. Sphere Packing Problem
 - Applications: low-temperature states of matter (liquids, crystals and glasses), granular media, biological media, communications, string theory, etc.
- 2. Number Vari3.802 130.890.145533(r)0.eroblem

Interaction Energies of Many-Particle Systems

for the second second

r r

Reformulations of the Covering and Quantizer Problems

Sphere Packing Problem

The packing density is the fraction of space R ^{191]TJ 52007Á}

Minkowski Lower Bound on

Random Packings Beat Checkerboard Lattice in Relatively Low

Ghost RSA Packin0.039807402(g0.181173(c):)-309.828

Ghost RSA Packing: An Exactly Solvable Model

At small times or, equivalently, low densities, can show

$$g_2(r;) = (r-1) + O(^3).$$

. At the maximum density () = 1/2,

$$g_2(r;)$$
 $\lim_t g_2(r; t) = (r - t)$

Existence of Disordered Packings in High Dimensions

Disordered Packings Might Win in High Dimensions

Disordered Packings Might Win in High Dimensions

Hyperuniformity and Number Theory

Surface-area coefficient enables rank ordering of hyperuniform point patterns.

Table 2:

Covering Problem

Table 3: Best known solutions to the covering problem in selected dimensions.

Dimension, d	Covering		Covering Density,
1	A ₁	\mathbb{Z}	1
2			

Quantizer Problem

Nearest-Neighbor Functions

Series Representations

For example, for an ensemble,

$$\mathsf{E}_{\mathsf{V}}(\mathsf{R}) = \mathbf{k} + \frac{\mathbf{X}}{\mathbf{k}=1} (-\mathbf{k})^{\mathsf{K}} \frac{\mathbf{k}}{\mathsf{k}}$$

Covering and Quantizer Calculations Using $E_{V}\left(\mathsf{R}\right)$

Table 6:

Bounds on the Quantizer Error

Revisiting Zador's Bounds (1982): •

$$(\mathbf{d}+2)$$
 $\mathbf{d}/2)^{\mathbf{2/d}}$ \mathbf{G}_{min}

Table 7:

RSA Quantizers

CONCLUSIONS

ACKNOWLEDGMENTS

Collaborators

- **Antonello Scardicchio**, Princeton/ICTP
- **Frank Stillinger**, Princeton
- **Chase Zachary**, Princeton
- Special thanks to Henry Cohn!