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Eigenvalues vs Singular values

Horn’s question:

Given a generic non-Hermitian square matrix X € MN((C), what is the rela-
tionship between its eigenvalues and singular values?

EVs: A(X), A2(X), ..., An(X), descending in magnitude
SVs (EVs of vV XX*): s1(X),s2(X),...,sn(X), descending

Answer: [Weyl's inequalities]

For any X € My(C) and any 1<k< N

k

g Ae(X)] < [Tse(X),

(=1
and equality holds when k=N (both sides are |det(X)]).




A randomized question

Random X with given SVs

X=USV"

S = diag(sl,...,sN) iS given, U,V independent Haar unitary.

Question Is there any typical behavior of the set of EVsS given the set
of the SVs, if one selects U and V uniformly?

Distribution of N numbers: the empirical measure

Empirical spectral distribution: For any X € My(C), Borel set D cC,

i: 00X € DY
N

1 .
'UJX:NZ(S)%(X)’ I.e. ,LLX(D) =

Specifically, we are interested in the weak limit of the measure ux, whose
definition involves free additive convolution.



Stieltjes transform

Definition: For any probab. measure p on R, its Stieltjes transform m,(z) is

mu(z):fid,,b(x), 2eCr.

Inverse formula: one to one correspondence between measure and its Stielt-
jes transform: density of u given by

1
p(E) =—IlimImm,(E +in).
7 nl0

Notation: For pus and ug, we use us B up to denote their free additive
convolution, and use m,,(z), m,,(z) and m, =,,(2) to denote their Stieltjes
transforms.



Free convolution via subordination

Definition via subordination functions [Voiculescu '93, Biane '98, Belinschi-
Bercovici '07, Chistyakov-Gotze '11]

There exist unique analytic wy,wp : C* - C*, s.t. Imwg(z) > Imz and

nmmw%“) -1 for k= A, B, such that

muAuB(Z) = muA(WB(Z)) = muB(wA(Z))a
(*)

~[my(wp(2))] = walz) + wp(2) - 2.

e wa(z),wp(z): subordination functions

e (x): self-consistent equation (SCE)

Another definition R-transform [Voiculescu '86]



Additive model

Let A=Ay and B = By be two deterministic Hermitian matrices with ESD pugy
and pup. Let U be Haar unitary matrix.

Theorem [Voiculescu '91] Let H = A+ UBU* and py =+ Y6y, Under
certain mild conditions, ug = us B ug almost surely, as N — oo.

Other proofs [Speicher'93, Biane'98, Collins’03, Pastur-Vasilchuk'00]

Remark Voiculescu’s result identifies the law of the sum of two large Hermi-

tian matrices in a randomly chosen relative basis.



Examples

semicircle semicircle

semicircle Bernoulli
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three point masses three point masses
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Bulk regime where the density is bounded below and above.



Single ring theorem

Random X with given SVs X =USV", U,V indept Haar
Empirical Singular value distribution fs = % X 0, (x) = Moo

Brown measure (associated with u.) : denoted by v, , given by

1 _
dve (w) = ;Aw( .[]R log |u|,uoo,|w|(du))dw A dw, w e C.

Here A, is the Laplacian w.r.t. Re(w) and Im(w), and

— ,,SYym sym
/'Loo,|w| = Mo 5|w| ’

where p™(1) = (u(1) + p(=1)) /2

Single ring theorem [ Guionnet-Krishnapur-Zeitouni '11] Under several
technical assumptions, ux = %Zi%(x) converges weakly (in probab.)
to the Brown measure v,. In addition, the sum)ort1 of v, IS a single
ring on C, with the inner radius r_ := | [ 2 2du«(2)| > and outer radius

Ty = [f xQduoo(x)]%




Remarks

Remark 1 Single ring theorem was discovered in [Feinberg-Zee '97], for a
special class of non-Hermitian matrices, without full rigor.

Remark 2 In [ Guionnet-Krishnapur-Zeitouni '11], there are several hard-to-
check assumptions. One of them on the smallest singular value of X —z,z€C
was removed in [Rudelson-Vershynin '14].

Remark 3 The Brown measure v, was previously analyzed in [Haagerup-
Larsen '00]
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Non-asymptotic counterpart of v

Replacing u. by ung, we define the non-asymptotic counterpart of vy,

1 _
dvg(w) = ZAw( [R{ log |u|,ug,|w|(du))dw A dw, weC

sym
w|

where pig,| = py ' B0

Remark Write px —ve = (ux —vs) + (Vs — v ). FOr convergence speed of uy, it
would be more appropriate to work with ux—vg since vg = v, Can be arbitrarily

slow.
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Example

Properties
1: vg possesses a radially-symmetric density.

2. The support of vg is a single ring.

us = %61 + %52

inner radius:

r_i= [f x_Qd,uS(:c)]_

outer radius:

Ty = [f xQdug(x)]

N~

N~
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Special cases

Circular Unitary Ensemble Ginibre Ensemble
X: Haar Unitary Matrix X i.i.d. Gaussian matrix
s =01 ps(dz) ~ %\/4 ~x?1(g 2y (z)dx
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Our question: Local law

Global law For any fixed continuity set D c C of vg,

px (D) -vs(D) iid .
D] 0. (*)

Our question (local law) Does the convergence still hold if |D| = o(1), and
how small can |D| be? (Answer )

Remark Global law cannot exclude the existence of big hole or eigenvalue
clustering on a scale of o(1), but local law can.

Remark Actually, the LHS of (*) is bounded by x5 for all [D| > &, which

implies a convergence rate +.
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Local single ring theorem (bulk)

Local single ring theorem (bulk) [B.- Erdés-Schnelli '16] Suppose || S|| ~
1 and ps = po iS NOt one point mass. Let |wg|€[r_+ 7,7, — 7| for some
small 7> 0. Let f:C— R be compactly supported, smooth, s.t ||f] <C,
| f'llcc < N¢. Then for a € (0,1/2], we have

NQOL

[C FIN*(w = wo))| px(dw) - Vs(dUJ)” < N2 Af] Lo

Remark If f(z) ~ 1(x € 5), then f(N®(w—wg)) ~ 1(w € wg + N‘O‘ﬁ) =:1(w e D).

Previous work [Benaych-Georges '15] (|D| > (log N)~1/2).

Notation A < B: |A|< N¢|B| with high probability for any given > 0.

15



Related work: Local circular law

Ginibre ensemble can be extended by considering i.i.d. entries (no unitary
invariance). Global/local circular laws have been widely studied.

Global [Ginibre '65] (complex Gaussian), [Girko '84] (independent entries,
without full rigor), [Bai '97] (i.i.d., bounded density), [Tao-Vu, '10] (i.i.d.,
second moment).....

Local [Bourgade-Yau-Yin '14], [Yin '14], [Tao-Vu '15](bulk/edge local laws,
optimal scale)

Method (of Bourgade-Yau-Yin):

Girko's Hermitization + Local law for Hermitian matrix
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Girko’s Hermitization

Logarithmic potential

P (w) :=—/Clog|>\—w|,u(d>\)

Example 1

Py (w) = 1 > log [\(X) —w| = S log det|X — w|

N % N
-~ L logdet|(X —w)(X —w)| =t| ——— log det| H, |
2N 2N
where
)
X" —w”*

Example 2

1 -
Pus(w) = —o- fc 109 A~ |2 A 109 [ulps () )dr A X

= —[Rlog [ ulps ) (du)
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Reduction to log determinant

A fact For any smooth and compactly supported F:C - R

o [C F(\)pu(dA) = - [C AyF(w) Py (w)dw A d@

since 2rF(\) = [ ApF(w) log|w — A|dw A dw.

Consequence For (local) single ring theorem, it suffices to estimate

1
P () = Pugw)| = | > log det|H, | - [ 109 ulus uy(du)]

Task For optimal local single ring theorem, one needs

‘ - log det|H,,| flo |u)| (d )‘ =
[ —_ <_
oN Y A e A Y,

Remark For global law, an o(1) bound will be sufficient.
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Reduction to Stieltjes transform
ESD of H,: ug, QNZZ 1 A
We can rewrite

1
‘Q—Nlog det|Hw|—fR|09 |UIus,|w|(dU)‘=‘fR'09 |U|d(MHw—Ns,|w|)‘

A basic equation (used in [Tao-Vu '15])

A 109 [ulp(du) = A@ 109 [u — i K]|p(du) - fo * 1 i (i) dn.

Choosing K = NZ,

flog |u—iK|d(uH —Ms|w|) < l
R v ’ N

Further task

NL 1
| fo I (1, (1) = s (i) ] < - |
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Local law for Stieltjes transform

Theorem [B.-Erd&s-Schnelli '16] : Suppose that |w| € [r_+ 7,7, — 7] for
some small 7 > 0, we have the following uniformly in n >0

1M (110, (i) = 170, (i1))] < Nin

The above is not sufficient to control the integral over [0, N*]. For the tiny
n regime, n € [0, N"|, we need

Theorem [Rudelson-Vershynin'l4] There exists positive constants ¢ >0
and C < o0, s.t.

in A, Ly (tyene
IP’(miln|)\Z(Hw)|< )g(w)N.

The above provides an upper bound for Imm,,, (in) <

n
i e (E P2 when = 0.
We still need an upper bound of Imm, (in) for small 7.
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0 is in the bulk of ug,

Theorem [B.-Erd&s-Schnelli '16] : Let J = [r_+ 7,7, — 7] for any given
(small) 7>0. For pg, :=ug " @B6>", we have

[w]

|w|eJ ne[0,K ] | MS’W‘( 77)| lwleJ ne[0,K] | MS,|w|( n)l

Consequently, O is in the bulk of g,

Consequence To derive the bulk local law of the non-Hermitian matrix, one
only needs the bulk local law for the Hermitian matrix, since

NL . . NL 1 1
‘[V—L Im(mMHw(m) _mu5,|w|(”7))d77‘ < /J; . N—ndn < N
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Block additive model

Write

With the above notation

X - USV* -
H, = e )= avuBue.
X —w* VSU* —w*

sym sym

Observe that uy = 5|w| , UB = g

Our aim

Prove the local law for block additive model with parameter z =0 + in.

Two ingredients

e Stability of SCE at z=0+1in

e Approximate SCE for block additive model
22



Local stability in the bulk

Recall

magp(z) = ma(ws(z)) =mp(wa(z)),

~[ma(wp(2))]™ = wa(z) +wp(z) - =.

Write it as ®,,, ., (wa(z),wp(2),2) = 0 with

~[ma(w2) ]t —w1 —wo + Z)

<> =
pan (@1, w2, 2) (—[mB(wl)]‘l —wi—wa+2

and prove a stability result [B.-Erd&s-Schnelli '15], i.e., if

(DMA,MB(wiX(Z)’wCB(Z)a Z) = I‘(z),

and |wi/B(z) —wA/B(z)| <9, then
[wiyp(2) —wap(2)| < Clr(2)].

if Rez e bulk of pug@ up and Imz20.
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Approximate SCE for block additive model

Green function: G(z) = (H, —z)™!, note

mun(z) = %Z )\Z(Hi) " tr G(z) = %ZG”(Z)

Approximate subordination functions

trAG(z) W6 (2) = 2 - trUBU*G(z).

My, (2) Mg, (2)

(=) = 2 -

From (A+UBU* - 2)G =1, we have

~[Mpyy, (] = W0 (2) + Wh(2) - 2.
Our aim: Show that

1 1

M) =MD < 0~ ()] < 5
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Two steps for approximate SCE

Step 1 Green function subordination (entrywise local law)

1
<

max ‘(G(z) - GA(w%(z)))”.

E

Step 2 Fluctuation averaging (average improves the bound)

) 1
1m0 () = ma(wB(2))] < o

Remark Proof is similar to the local law of additive model [B-Erd&s-Schnelli
'17], but with new difficulties: no full Haar unitary for block model, uniform
control on the parameter w, etc.

We briefly explain the approach with the simpler additive model A+ UBU*.
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Step 1: Green function subordination

Non-optimal way: Using the full randomness of U at one time

Full expectation E[G;;| + Gromov-Milman Concentration for G;; — E[G};]

G.-M.: P(’f(U)—]E[f(U)]‘g(S); 1—exp(—c]\£—‘j2f), Ls: Lip.
E.g. f(U) =G Li=1/n? =8> 1/\/Nn*=>n> N3

Optimal way: Separating some partial randomness u; from U

Partial expectation E, [G;;] + Concentration for G;; — E,.[G]

Remark: In general, to identify E[-] is easier than E,,[-], to estimate (Id-E)|[-]

is harder than (Id - E,.)[-].
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Householder reflection as partial randomness

Proposition [Diaconis-Shahshahani '87] U: Haar on U(N),

: 1 e; + e‘i91u1
U=-e"(I-rqr} =1/2 .
( rlrl) ( Ul ) ’ Ir \/_He]_ + e—|01u1H2

u; eSéV‘lz uniform, U; eL{(N—l): Haar, ui, U; independent.

Remark 1 Analogously, we have independent pair u; and U; for all z. Actually,
—e%i(I —r;r}) is the Householder reflection sending e; to u;. Actually, u; is the
1-th column of U.

Remark 2 Independence between u; and U enables us to work on the partial

expectation E, [G;;] and the concentration of G;; - E,.[G};].
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Step 2: Fluctuation averaging

We use a method inspired by [Khorunzhy-Khoruzhenko-Pastur '96]. Let P;
be certain variant of G;; - (Ga(w$)); and let

mE0 - (% v Pz)k(% Zﬁi)ﬂ.

Claim: (Recursive moment estimate) For all £ > 2, we have

E[m*k)] = [ ( )m("C L k)] +IE[O ( ym (k- 2"“)] +IE[O ( )m(’“‘l’k‘l)].

()2 ()2

Then using Young or HOlder, we get, for any k,
1
(Nn)2:
which will lead to the fluctuation averaging estimate by Markov.

E[m(k’k)] <

28




Proof of recursive moment estimate

The proof of the recursive moment estimate again relies on the partial
randomness decomposition. Write u; = (uw) Roughly, we can write

E[m(+)] ZE[% By (U, U Ym0 ] — B[ em(E-10)]
:—ZE[ﬁz‘jhz‘j(U» U*)(—sz‘)k 1( > Pi)'] - E[em(20)]
N 75 N
Observe that u;; » N@(O,%). Using the integration by parts

lol?
fgf(g gle 2dgnrdg=o fé’ f(g,9)e 02dg/\dg
Taking derivative w.r.t. u;; for h;;(U,U"), (%2737;) 7 and (% Zf@-)k gives

E[m®R] = E[§;mF 18] + E[som*F28)] + E[smF-1kE-1)],

Estimating ¢;'s gives the answer.
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THANK YOU!
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