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Eigenvalues vs Singular values

Horn’s question:

Given a generic non-Hermitian square matrix X ∈ MN(C), what is the rela-

tionship between its eigenvalues and singular values?

EVs: λ1(X), λ2(X), . . . , λN(X), descending in magnitude

SVs (EVs of
√
XX∗): s1(X), s2(X), . . . , sN(X), descending

Answer: [Weyl’s inequalities]

For any X ∈MN(C) and any 1 ⩽ k ⩽ N

k

∏
`=1

∣λ`(X)∣ ⩽
k

∏
`=1

s`(X),

and equality holds when k = N (both sides are ∣det(X)∣).
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A randomized question

Random X with given SVs

X = USV ∗

S = diag(s1, . . . , sN) is given, U,V independent Haar unitary.

Question Is there any typical behavior of the set of EVs given the set

of the SVs, if one selects U and V uniformly?

Distribution of N numbers: the empirical measure

Empirical spectral distribution: For any X ∈MN(C), Borel set D ⊂ C,

µX =
1

N
∑
i

δλi(X), i.e. µX(D) =
∣{i ∶ λi(X) ∈ D}∣

N
.

Specifically, we are interested in the weak limit of the measure µX, whose

definition involves free additive convolution.
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Stieltjes transform

Definition: For any probab. measure µ on R, its Stieltjes transform mµ(z) is

mµ(z) = ∫
1

λ − z
dµ(λ), z ∈ C+.

Inverse formula: one to one correspondence between measure and its Stielt-

jes transform: density of µ given by

ρ(E) =
1

π
lim
η↓0

Immµ(E + iη).

Notation: For µA and µB, we use µA ⊞ µB to denote their free additive

convolution, and use mµA(z), mµB(z) and mµA⊞µB(z) to denote their Stieltjes

transforms.
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Free convolution via subordination

Definition via subordination functions [Voiculescu ’93, Biane ’98, Belinschi-

Bercovici ’07, Chistyakov-Götze ’11]

There exist unique analytic ωA, ωB ∶ C+ → C+, s.t. Imωk(z) ⩾ Imz and

limη↑∞
ωk(iη)

iη = 1 for k = A,B, such that

mµA⊞µB(z) ∶= mµA(ωB(z)) =mµB(ωA(z)),

(∗)

−[mµA(ωB(z))]
−1 = ωA(z) + ωB(z) − z.

● ωA(z), ωB(z): subordination functions

● (∗): self-consistent equation (SCE)

Another definition R-transform [Voiculescu ’86]
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Additive model

Let A = AN and B = BN be two deterministic Hermitian matrices with ESD µA

and µB. Let U be Haar unitary matrix.

Theorem [Voiculescu ’91] Let H = A + UBU∗ and µH ∶= 1
N ∑ δλi(H). Under

certain mild conditions, µH ⇒ µA ⊞ µB almost surely, as N →∞.

Other proofs [Speicher’93, Biane’98, Collins’03, Pastur-Vasilchuk’00]

Remark Voiculescu’s result identifies the law of the sum of two large Hermi-

tian matrices in a randomly chosen relative basis.
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Examples

semicircle ⊞ semicircle

-2 -1 0 1 2

0.1

0.2

⊞

-2 -1 0 1 2

0.1

0.2

=

semicircle ⊞ Bernoulli

-2 -1 0 1 2

0.1

0.2

⊞
1/21/2

-1 1

=

-3 -2 -1 0 1 2 3

0.1

0.2
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Bernoulli ⊞ Bernoulli

1/21/2

-1 1

⊞
1/21/2

-1 1

=

-2 -1 0 1 2

1

2

three point masses ⊞ three point masses

1/41/21/4

-1 1

⊞
1/41/21/4

-1 1

=

-2 -1 0 1 2

1

2

3

Bulk regime where the density is bounded below and above.
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Single ring theorem

Random X with given SVs X = USV ∗, U,V indept Haar

Empirical Singular value distribution µS ∶=
1
N ∑ δsi(X)⇒ µ∞

Brown measure (associated with µ∞) : denoted by ν∞ , given by

dν∞(w) =
1

2π
∆w(∫

R
log ∣u∣µ∞,∣w∣(du))dw ∧ dw̄, w ∈ C.

Here ∆w is the Laplacian w.r.t. Re(w) and Im(w), and

µ∞,∣w∣ ∶= µ
sym
∞ ⊞ δsym

∣w∣
,

where µsym(I) = (µ(I) + µ(−I))/2.

Single ring theorem [ Guionnet-Krishnapur-Zeitouni ’11] Under several

technical assumptions, µX = 1
N ∑i δλi(X) converges weakly (in probab.)

to the Brown measure ν∞. In addition, the support of ν∞ is a single

ring on C, with the inner radius r− ∶= [ ∫ x
−2dµ∞(x)]

−1
2 and outer radius

r+ ∶= [ ∫ x
2dµ∞(x)]

1
2
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Remarks

Remark 1 Single ring theorem was discovered in [Feinberg-Zee ’97], for a

special class of non-Hermitian matrices, without full rigor.

Remark 2 In [ Guionnet-Krishnapur-Zeitouni ’11], there are several hard-to-

check assumptions. One of them on the smallest singular value of X − z, z ∈ C
was removed in [Rudelson-Vershynin ’14].

Remark 3 The Brown measure ν∞ was previously analyzed in [Haagerup-

Larsen ’00]
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Non-asymptotic counterpart of ν∞

Replacing µ∞ by µS, we define the non-asymptotic counterpart of ν∞

dνS(w) ∶=
1

2π
∆w(∫

R
log ∣u∣µS,∣w∣(du))dw ∧ dw̄, w ∈ C

where µS,∣w∣ = µ
sym
S ⊞ δsym

∣w∣
.

Remark Write µX − ν∞ = (µX − νS)+ (νS − ν∞). For convergence speed of µX, it

would be more appropriate to work with µX−νS since νS ⇒ ν∞ can be arbitrarily

slow.
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Example

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

µS ∶=
1
2δ1 +

1
2δ2

inner radius:

r− ∶= [ ∫ x
−2dµS(x)]

−1
2

outer radius:

r+ ∶= [ ∫ x
2dµS(x)]

1
2

Properties

1: νS possesses a radially-symmetric density.

2: The support of νS is a single ring.
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Special cases

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Circular Unitary Ensemble Ginibre Ensemble

X: Haar Unitary Matrix X: i.i.d. Gaussian matrix

µS = δ1 µS(dx) ≈ 1
π

√
4 − x21(0,2)(x)dx
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Our question: Local law

Global law For any fixed continuity set D ⊂ C of νS,

µX(D) − νS(D)

∣D∣

P
⇒ 0. (∗)

Our question (local law) Does the convergence still hold if ∣D∣ = o(1), and

how small can ∣D∣ be? (Answer 1
N )

Remark Global law cannot exclude the existence of big hole or eigenvalue

clustering on a scale of o(1), but local law can.

Remark Actually, the LHS of (∗) is bounded by 1
N ∣D∣

for all ∣D∣ ≫ 1
N , which

implies a convergence rate 1
N .
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Local single ring theorem (bulk)

Local single ring theorem (bulk) [B.- Erdős-Schnelli ’16] Suppose ∥S∥ ∼

1 and µS ⇒ µ∞ is not one point mass. Let ∣w0∣ ∈ [r− + τ, r+ − τ] for some

small τ > 0. Let f ∶ C → R be compactly supported, smooth, s.t ∥f∥∞ ⩽ C,

∥f ′∥∞ ⩽ NC. Then for α ∈ (0,1/2], we have

N2α∣∫
C
f(Nα(w −w0))[µX(dw) − νS(dw)]∣ ≺ N−1+2α∥∆f∥L1(C).

Remark If f(x) ≈ 1(x ∈ D̃), then f(Nα(w −w0)) ≈ 1(w ∈ w0 +N−αD̃) =∶ 1(w ∈ D).

Previous work [Benaych-Georges ’15] (∣D∣ ⩾ (logN)−1/2).

Notation A ≺ B: ∣A∣ ⩽N ε∣B∣ with high probability for any given ε > 0.
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Related work: Local circular law

Ginibre ensemble can be extended by considering i.i.d. entries (no unitary

invariance). Global/local circular laws have been widely studied.

Global [Ginibre ’65] (complex Gaussian), [Girko ’84] (independent entries,

without full rigor), [Bai ’97] (i.i.d., bounded density), [Tao-Vu, ’10] (i.i.d.,

second moment).....

Local [Bourgade-Yau-Yin ’14], [Yin ’14], [Tao-Vu ’15](bulk/edge local laws,

optimal scale)

Method (of Bourgade-Yau-Yin):

Girko’s Hermitization + Local law for Hermitian matrix
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Girko’s Hermitization

Logarithmic potential

Pµ(w) ∶= −∫
C

log ∣λ −w∣µ(dλ)

Example 1

PµX(w) = −
1

N
∑
i

log ∣λi(X) −w∣ = −
1

N
log det∣X −w∣

= −
1

2N
log det∣(X −w)(X −w)∗∣ =∶ −

1

2N
log det∣Hw∣

where

Hw =
⎛

⎝

X −w

X∗ −w∗

⎞

⎠

Example 2

PνS(w) = −
1

2π ∫C
log ∣λ −w∣∆λ(∫

R
log ∣u∣µS,∣λ∣(du))dλ ∧ dλ̄

= −∫
R

log ∣u∣µS,∣w∣(du)
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Reduction to log determinant

A fact For any smooth and compactly supported F ∶ C→ R

2π∫
C
F (λ)µ(dλ) = −∫

C
∆wF (w) ⋅Pµ(w)dw ∧ dw̄

since 2πF (λ) = ∫C ∆wF (w) log ∣w − λ∣dw ∧ dw̄.

Consequence For (local) single ring theorem, it suffices to estimate

∣PµX(w) −PνS(w)∣ = ∣
1

2N
log det∣Hw∣ − ∫

R
log ∣u∣µS,∣w∣(du)∣.

Task For optimal local single ring theorem, one needs

∣
1

2N
log det∣Hw∣ − ∫

R
log ∣u∣µS,∣w∣(du)∣ ≺

1

N

Remark For global law, an o(1) bound will be sufficient.
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Reduction to Stieltjes transform

ESD of Hw: µHw =
1

2N ∑
2N
i=1 δλi(Hw)

We can rewrite

∣
1

2N
log det∣Hw∣ − ∫

R
log ∣u∣µS,∣w∣(du)∣ = ∣∫

R
log ∣u∣d(µHw − µS,∣w∣)∣

A basic equation (used in [Tao-Vu ’15])

∫
R

log ∣u∣µ(du) = ∫
R

log ∣u − iK∣µ(du) − ∫
K

0
Im mµ(iη)dη.

Choosing K = NL,

∫
R

log ∣u − iK∣d(µHw − µS,∣w∣) ≪
1

N
.

Further task

∣∫

NL

0
Im(mµHw

(iη) −mµS,∣w∣(iη))dη∣ ≺
1

N
.
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Local law for Stieltjes transform

Theorem [B.-Erdős-Schnelli ’16] : Suppose that ∣w∣ ∈ [r− + τ, r+ − τ] for

some small τ > 0, we have the following uniformly in η > 0

∣Im(mµHw
(iη) −mµS,∣w∣(iη))∣ ≺

1

Nη

The above is not sufficient to control the integral over [0,NL]. For the tiny

η regime, η ∈ [0,N−L], we need

Theorem [Rudelson-Vershynin’14] There exists positive constants c > 0

and C <∞, s.t.

P(min
i

∣λi(Hw)∣ ⩽
t

∣w∣
) ⩽ (

t

∣w∣
)
c
NC.

The above provides an upper bound for ImmµHw
(iη) ⩽ η

mini ∣λi(Hw)∣2+η2 when η → 0.

We still need an upper bound of ImmµS,∣w∣(iη) for small η.
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0 is in the bulk of µS,∣w∣

Theorem [B.-Erdős-Schnelli ’16] : Let J = [r− + τ, r+ − τ] for any given

(small) τ > 0. For µS,∣w∣ ∶= µ
sym
S ⊞ δsym

∣w∣
, we have

inf
∣w∣∈J

inf
η∈[0,K]

∣mµS,∣w∣(iη)∣ ⩾ c, sup
∣w∣∈J

sup
η∈[0,K]

∣mµS,∣w∣(iη)∣ ⩽ C.

Consequently, 0 is in the bulk of µS,∣w∣.

Consequence To derive the bulk local law of the non-Hermitian matrix, one

only needs the bulk local law for the Hermitian matrix, since

∣∫

NL

N−L
Im(mµHw

(iη) −mµS,∣w∣(iη))dη∣ ≺ ∫
NL

N−L

1

Nη
dη ≺

1

N
.
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Block additive model

Write

A = −(
w

w∗
), B ∶= (

S

S
), U ∶= (

U

V
)

With the above notation

Hw = (
X −w

X∗ −w∗
) = (

USV ∗ −w

V SU∗ −w∗
) = A + UBU∗.

Observe that µA = δsym
∣w∣

, µB = µsym
S .

Our aim

Prove the local law for block additive model with parameter z = 0 + iη.

Two ingredients

● Stability of SCE at z = 0 + iη

● Approximate SCE for block additive model
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Local stability in the bulk

Recall

mA⊞B(z) ∶= mA(ωB(z)) =mB(ωA(z)),

−[mA(ωB(z))]
−1 = ωA(z) + ωB(z) − z.

Write it as ΦµA,µB(ωA(z), ωB(z), z) = 0 with

ΦµA,µB(ω1, ω2, z) ∶= (
−[mA(ω2)]

−1 − ω1 − ω2 + z

−[mB(ω1)]
−1 − ω1 − ω2 + z

)

and prove a stability result [B.-Erdős-Schnelli ’15], i.e., if

ΦµA,µB(ω
c
A(z), ω

c
B(z), z) = r(z),

and ∣ωc
A/B

(z) − ωA/B(z)∣ ⩽ δ, then

∣ωcA/B(z) − ωA/B(z)∣ ⩽ C∥r(z)∥.

if Rez ∈ bulk of µA ⊞ µB and Imz⩾0.
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Approximate SCE for block additive model

Green function: G(z) ∶= (Hw − z)−1, note

mµHw
(z) =

1

N
∑

1

λi(Hw) − z
= tr G(z) =

1

N
∑Gii(z).

Approximate subordination functions

ωcA(z) ∶= z −
trAG(z)

mµHw(z)

, ωcB(z) ∶= z −
trUBU∗G(z)

mµHw(z)

.

From (A +UBU∗ − z)G = I, we have

−[mµHw(z)]
−1 = ωcA(z) + ω

c
B(z) − z.

Our aim: Show that

∣mµHw(z) −mA(ω
c
B(z))∣ ≺

1

Nη
, ∣mµHw(z) −mB(ω

c
A(z))∣ ≺

1

Nη
.
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Two steps for approximate SCE

Step 1 Green function subordination (entrywise local law)

max
i

∣(G(z) −GA(ω
c
B(z)))ii∣ ≺

1
√
Nη

Step 2 Fluctuation averaging (average improves the bound)

∣mµHw(z) −mA(ω
c
B(z))∣ ≺

1

Nη

Remark Proof is similar to the local law of additive model [B-Erdős-Schnelli

’17], but with new difficulties: no full Haar unitary for block model, uniform

control on the parameter w, etc.

We briefly explain the approach with the simpler additive model A +UBU∗.
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Step 1: Green function subordination

Non-optimal way: Using the full randomness of U at one time

Full expectation E[Gii] +Gromov-Milman Concentration for Gii −E[Gii]

G.-M.: P(∣f(U) −E[f(U)]∣ ⩽ δ) ⩾ 1 − exp(−cNδ
2

L2
f
), Lf : Lip.

E.g. f(U) = Gii: Lf = 1/η2 Ô⇒ δ ≫ 1/
√
Nη4 Ô⇒ η ≫ N−1

4

Optimal way: Separating some partial randomness ui from U

Partial expectation Eui[Gii] +Concentration for Gii −Eui[Gii]

Remark: In general, to identify E[⋅] is easier than Eui[⋅], to estimate (Id−E)[⋅]

is harder than (Id −Eui)[⋅].
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Householder reflection as partial randomness

Proposition [Diaconis-Shahshahani ’87] U : Haar on U(N),

U = −eiθ1(I − r1r
∗
1)

⎛

⎝

1

U1

⎞

⎠
, r1 ∶=

√
2

e1 + e−iθ1u1

∥e1 + e−iθ1u1∥2

u1 ∈ S
N−1
C : uniform, U1 ∈ U(N − 1): Haar, u1, U1 independent.

Remark 1 Analogously, we have independent pair ui and Ui for all i. Actually,

−eiθi(I − rir
∗
i ) is the Householder reflection sending ei to ui. Actually, ui is the

i-th column of U .

Remark 2 Independence between ui and U i enables us to work on the partial

expectation Eui[Gii] and the concentration of Gii −Eui[Gii].
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Step 2: Fluctuation averaging

We use a method inspired by [Khorunzhy-Khoruzhenko-Pastur ’96]. Let Pi

be certain variant of Gii − (GA(ω
c
B))ii and let

m(k,`) = (
1

N
∑Pi)

k
(

1

N
∑P i)

`
.

Claim: (Recursive moment estimate) For all k ⩾ 2, we have

E[m(k,k)] = E[O≺(
1

Nη
)m(k−1,k)] +E[O≺(

1

(Nη)2
)m(k−2,k)] +E[O≺(

1

(Nη)2
)m(k−1,k−1)].

Then using Young or Hölder, we get, for any k,

E[m(k,k)] ≺
1

(Nη)2k

which will lead to the fluctuation averaging estimate by Markov.
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Proof of recursive moment estimate

The proof of the recursive moment estimate again relies on the partial

randomness decomposition. Write ui = (uij). Roughly, we can write

E[m(k,k)] =
1

N
∑
i,j

E[ūijhij(U,U
∗)m(k−1,k)] −E[cm(k−1,k)]

=
1

N
∑
i,j

E[ūijhij(U,U
∗)(

1

N
∑Pi)

k−1
(

1

N
∑P i)

k
] −E[cm(k−1,k)]

Observe that uij ≈ NC(0, 1
N ). Using the integration by parts

∫
C
ḡf(g, ḡ)e−

∣g∣2

σ2 dg ∧ dḡ = σ2
∫
C
∂gf(g, ḡ)e−

∣g∣2

σ2 dg ∧ dḡ.

Taking derivative w.r.t. uij for hij(U,U∗), ( 1
N ∑Pi)

k−1
and ( 1

N ∑P i)
k

gives

E[m(k,k)] = E[δ1m
(k−1,k)] +E[δ2m

(k−2,k)] +E[δ3m
(k−1,k−1)].

Estimating δi’s gives the answer.
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THANK YOU!
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