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Description of the Model

D a diagonal deterministic matrix of size N with some
assumptions on its density of states.

t a scaling parameter.

W a centered symmetric or Hermitian Wigner matrix of size N
such that E[|W 2

ij |] = N−1.

We will consider the model:

D +
√
tW
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Different Phases

Good model for phase transitions for eigenvalues and eigenvectors

t� N−1 N−1 � t� 1 t > 1

Eigenvalues

λi ≈ Di RM
Universality

RM
Universality

Eigenvectors

Supported on
O(1) entries

Non-ergodic
Delocalized

Completely
Delocalized
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Non-ergodic Delocalized States

Eigenvectors are delocalized over Nt sites: a growing number of
sites but a vanishing fraction of the spectrum.

Projections of eigenvectors are asymptotically Gaussian with an
explicit variance localizing on Nt entries.

A form of quantum unique ergodicity holds: the probability mass
of a single eigenvector is concentrated around this specific variance.

Thank you!
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