Eigenvector Distribution and QUE for Deformed Wigner Matrices

Lucas Benigni

LPSM, Université Paris Diderot

Random matrices and their applications Kyoto University

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• D a diagonal deterministic matrix of size N with some assumptions on its density of states.

- D a diagonal deterministic matrix of size N with some assumptions on its density of states.
- \bullet t a scaling parameter.

- D a diagonal deterministic matrix of size N with some assumptions on its density of states.
- t a scaling parameter.
- W a centered symmetric or Hermitian Wigner matrix of size N such that $\mathbb{E}[|W_{ij}^2|] = N^{-1}$.

- D a diagonal deterministic matrix of size N with some assumptions on its density of states.
- t a scaling parameter.
- W a centered symmetric or Hermitian Wigner matrix of size N such that $\mathbb{E}[|W_{ij}^2|] = N^{-1}$.

We will consider the model:

 $D+\sqrt{t}W$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

	$t \ll N^{-1}$	$N^{-1} \ll t \ll 1$	$t \ge 1$
Eigenvalues			
Eigenvectors			

	$t \ll N^{-1}$	$N^{-1} \ll t \ll 1$	$t \ge 1$
Eigenvalues	$\lambda_i \approx D_i$		
Eigenvectors			

	$t \ll N^{-1}$	$N^{-1} \ll t \ll 1$	$t \ge 1$
Eigenvalues	$\lambda_i\approx D_i$		
Eigenvectors	Supported on $\mathcal{O}(1)$ entries		

	$t \ll N^{-1}$	$N^{-1} \ll t \ll 1$	$t \ge 1$
Eigenvalues	$\lambda_i\approx D_i$		RM Universality
Eigenvectors	Supported on $\mathcal{O}(1)$ entries		

	$t \ll N^{-1}$	$N^{-1} \ll t \ll 1$	$t \ge 1$
Eigenvalues	$\lambda_i\approx D_i$		RM Universality
Eigenvectors	Supported on $\mathcal{O}(1)$ entries		Completely Delocalized

	$t \ll N^{-1}$	$N^{-1} \ll t \ll 1$	$t \ge 1$
Eigenvalues	$\lambda_i\approx D_i$	RM Universality	RM Universality
Eigenvectors	Supported on $\mathcal{O}(1)$ entries		Completely Delocalized

	$t \ll N^{-1}$	$N^{-1} \ll t \ll 1$	$t \ge 1$
Eigenvalues	$\lambda_i\approx D_i$	RM Universality	RM Universality
Eigenvectors	Supported on $\mathcal{O}(1)$ entries	Non-ergodic Delocalized	Completely Delocalized

• Eigenvectors are delocalized over Nt sites: a growing number of sites but a vanishing fraction of the spectrum.

- Eigenvectors are delocalized over Nt sites: a growing number of sites but a vanishing fraction of the spectrum.
- Projections of eigenvectors are asymptotically Gaussian with an explicit variance localizing on Nt entries.

- Eigenvectors are delocalized over Nt sites: a growing number of sites but a vanishing fraction of the spectrum.
- Projections of eigenvectors are asymptotically Gaussian with an explicit variance localizing on Nt entries.
- A form of quantum unique ergodicity holds: the probability mass of a single eigenvector is concentrated around this specific variance.

- Eigenvectors are delocalized over Nt sites: a growing number of sites but a vanishing fraction of the spectrum.
- Projections of eigenvectors are asymptotically Gaussian with an explicit variance localizing on Nt entries.
- A form of quantum unique ergodicity holds: the probability mass of a single eigenvector is concentrated around this specific variance.

Thank you!