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Continuous Anderson Hamiltonian

Continuous Anderson Hamiltonian :
Hy : ue l?([0, L)) — —u" +€-u
& . white noise.

Dirichlet boundary conditions: u(0) = u(L) =0 or Neumann
u'(0) = (L) =0.

— Random Schrédinger operator with potential = white noise.
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Continuous Anderson Hamiltonian

Continuous Anderson Hamiltonian :
Hy : ue l?([0, L)) — —u" +€-u

& . white noise.

Dirichlet boundary conditions: u(0) = u(L) =0 or Neumann
u'(0) = (L) =0.

— Random Schrédinger operator with potential = white noise.

H, : self adjoint operator on L2([0, L]), pure point spectrum
A1 < A < ---, associated eigenvectors (x)x form an orthonormal
basis of L2([0, L]) and are Hélder 3/2—.
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Goals

Study the spectrum of this operator when L — oo:
» Eigenvalue distribution. Microscopic level: repulsion?

» Eigenvectors: localized? Shape?
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Laplacian

—u"(x) = du(x)
u(0) = u(L) =0.
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Laplacian

Eigenvalues \; < A\ < --- satisfy:
M = (mk/L)%
And the associated eigenvectors are:

Tk

x € [0, L] — sin( T x).



Laplacian

Eigenvalues \; < A\ < --- satisfy:
M = (mk/L)%
And the associated eigenvectors are:

Tk

x € [0, L] — sin( T x).

Eigenvectors are completely delocalized!
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Density of states

Density of states:

1 d
— lim = —#{ei < x}.
X L|I 1 X#{elgenvalues x}
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Density of states

Density of states:
=i ! d#{e'e alues < x}
xe lim o — igenvalues < x}.

Eigenvalues of the Laplacian:

A = (mk /L)%
— Density of states:

X€R+l—>

2my/x
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Density of states for H;
Frisch and Lloyd ('60), Halperin ('65) and then Fukushima, Nakao
('77): Explicit formula for the density of states of H; :
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Density of states for H;
Frisch and Lloyd ('60), Halperin ('65) and then Fukushima, Nakao
('77): Explicit formula for the density of states of H; :
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— We are interested in the localization at the edge.
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Motivations and links with literature
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Brief historical review

McKean ('94) : Convergence of the smallest eigenvalue \;

(recentred and rescaled) for Dirichlet, Neumann and periodic b.c.:

—4./a; (/\1 + aL) =1 00 efeixdx7

where

2/3
ar=(3IL)" +371327(n )3 (3nin L+ 1n 52 + o(1)).
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Brief historical review

McKean ('94) : Convergence of the smallest eigenvalue \;
(recentred and rescaled) for Dirichlet, Neumann and periodic b.c.:

—4./a; (/\1 + aL) =1 00 efeixdx7

where 2/3

ar=(3IL)" +371327(n )3 (3nin L+ 1n 52 + o(1)).
Cambronero, McKean ('99) : Integral expression for the
distribution of A\; when L is fixed, with periodic b.c..

Cambronero, Rider, Ramirez ('06) : Precise asymptotical behavior
of the left tail of A\; whenL is fixed with periodic b.c.
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The parabolic Anderson model (PAM)

PAM:

deu(t,x) = 2u(t, x) + £(x)u(t, x),
= —H u(t,x)

t>0, x €[0,L]
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The parabolic Anderson model (PAM)

PAM:

deu(t,x) = O2u(t,x) + £(x)u(t,x), t>0, xe[0,L]
= —H u(t,x)

Solution: with eigenvalues and eigenvectors of H,:

o
- Z )\kt ) < @k, u(0,) >1,
k=1
~ e Mty (x) < 1, u(0,) >, sit>1

et < 1, U(O, ) >L2¢ 0
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The parabolic Anderson model (PAM)

PAM:

deu(t,x) = O2u(t,x) + £(x)u(t,x), t>0, xe[0,L]
= —H u(t,x)

Solution: with eigenvalues and eigenvectors of H,:

o
- Z )\kt ) < @k, u(0,) >1,
k=1
~ e Mty (x) < 1, u(0,) >, sit>1

et < 1, U(O, ) >L2¢ 0

— Large time limit of the solution can be understood thanks to
the study of the smallest eigenvectors of H;.
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Discrete Schrodinger operator

0 81 1
1 og

1 g 8N

where g, ~ N(0,1) i.i.d.
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Discrete Schrodinger operator
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— “Discretization” of —H; (Mind the scalings!).
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Discrete Schrodinger operator

0 81 1
1 og

1 g 8N

where g, ~ N(0,1) i.i.d.

— “Discretization” of —H; (Mind the scalings!).

» 0> 1/V/N: localized, o < 1/v/N : deterministic.
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Discrete Schrodinger operator

0 81 1
1 o 82

1 ogn

where g, ~ N(0,1) i.i.d.

— “Discretization” of —H; (Mind the scalings!).

» 0> 1/V/N: localized, o < 1/v/N : deterministic.

» o ~ 1/+/N: transition between the two regimes.
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Discrete Schrodinger operator

o 81 1
1 og

1 ogn

When o ~ l/m:

Kritchevski, Valké, Virag ('11): local limit when N — oo of the
bulk eigenvalues: repulsion.
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Discrete Schrodinger operator

o 81 1
1 og

1 ogn

When o ~ l/m:

Kritchevski, Valké, Virag ('11): local limit when N — oo of the
bulk eigenvalues: repulsion.

Rifkind, Virag ('16): Shape of the eigenvector around its maximum
(exponential of a Brownian motion plus a drift).
— delocalized.
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Discrete Schrodinger operator

o 81 1
1 og

1 ogn

When o ~ l/m:

Kritchevski, Valké, Virag ('11): local limit when N — oo of the
bulk eigenvalues: repulsion.

Rifkind, Virag ('16): Shape of the eigenvector around its maximum
(exponential of a Brownian motion plus a drift).
— delocalized.

Heuristically: study of the largest eigenvalues of H, .
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Random matrices: [3-ensembles
Other discrete Schrodinger model (tridiagonal):

\@gl X(N-1)8
X(N-1)8 \@gz X(N—2)3
HY = : 3 3
VB ' '
X2 \@gN—1 XB
xs  V2ewn
gk: indep N(0,1), xkp: indep x distribution.
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Random matrices: [3-ensembles
Other discrete Schrodinger model (tridiagonal):

\/§g1 X(N-1)8
X(N-1)8 \@gz X(N—2)3
HY = : 3 3
VB ' '
X2 \@gN—1 XB
xs  V2ewn
gk: indep N(0,1), xxp: indep x distribution.

0.2

0.1

0.0
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Edge: Airy Hamiltonian

Airy Hamiltonian:

Ag i u€ LP(Ry) = —02u+ (x + if)u.

VB

where & white noise.

Ramirez, Rider, Virag ('06): Edge limit.
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Edge: Airy Hamiltonian

Airy Hamiltonian:

Ag i u€ LP(Ry) = —02u+ (x + ;Bf)u.

where & white noise.
Ramirez, Rider, Virag ('06): Edge limit.

Allez, D. ('13): Convergence of the smallest eigenvalue TWg when
B — 0 towards a Gumbel distribution.
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Bulk: Sinegs

Valké and Virag ('16): Sineg operator. Self adjoint random Dirac
operator.

Spectrum = Sineg process characterized by Brownian carousel
and a family of coupled SDEs.
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Bulk: Sineg

Valké and Virag ('16): Sineg operator. Self adjoint random Dirac
operator.

Spectrum = Sineg process characterized by Brownian carousel
and a family of coupled SDEs.

Allez, D. ('14): Convergence of Sineg when 5 — 0 to a Poisson
point process. Sineg : transition between Wigner (5 = 2) and
Poisson.
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Our results on the Hamiltonian of
Anderson
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Localization of the smallest eigenvectors

Notons

QL = Z 64@()\;(-{-31_)?

k>1
my(dt) := (Lok(Lt)?dt)k>1.

Théoréme (D., Labbé (’17))

(Qr, m k(dt)) converges in distribution towards (Qec, Mos) where:

» Q.. Poisson point process of intensity e~ dx,

> Moo = (0u)k>1 © (Uk)k>1 i.i.d, uniform on [0,1], independent
of Q.

16
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Simulation of the first eigenvectors
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The first 5 eigenvectors gpi in order: black, blue, purple, red, green.
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Shape of the eigenvectors
Théoréme (D., Labbé (’17))

Let uy be the point where @y reaches its maximum.
hk(t) = ./aL @i(uk +\aL t)

converges towards h(t) := 1/ cosh(t)? uniformly over compact
subsets of R.

O(in(L)™)

U
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Eigenvalue equation

"+ u=Nu

with u(0) = 0 (without any condition on u(L)).
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Eigenvalue equation

"+ u=Mu

with u(0) = 0 (without any condition on u(L)).

For all A € R, there is an unique solution uy (up to a scaling).
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Eigenvalue equation

"+ u=Mu

with u(0) = 0 (without any condition on u(L)).

For all A € R, there is an unique solution uy (up to a scaling).

The couple (A, uy) is an eigenvalue/eigenvector when

ux(L) = 0.
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Riccati

Riccati transform: transforms a linear equation of the second
order into a non linear one of the first order:
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Riccati

Riccati transform: transforms a linear equation of the second
order into a non linear one of the first order:

satisfies the SDE:

dX(t) = (=X — X3(t))dt + dB(t)
X(0) =

where B(t) = [£(s)1o,4(s)dt is a Brownian motion.
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X blows up to —co a.s. in a finite time. Then it immediately
restarts at +oo.
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Riccati

Riccati transform: transforms a linear equation of the second
order into a non linear one of the first order:

satisfies the SDE:
dX(t) = (=X — X3(t))dt + dB(t)
X(0) =

where B(t) = [£(s)1o,4(s)dt is a Brownian motion.

X blows up to —co a.s. in a finite time. Then it immediately
restarts at +oo.

Explosion times of X = cancellation points of u).
A is an eigenvalue when X(L) = —oc.
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Sturm-Liouville

dX(t) = (=X — X?(t))dt + dB(t)
X(0) = 4o0.

We have:

# {eigenvalues < A} = # {blows up to —oo of X} on [0, L]}.
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Sturm-Liouville

Simulation of the diffusion X) for A = —1.4. — 1 explosions so we
have 1 eigenvalue < —1.4.
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Sturm-Liouville
Simulation of the diffusion Xy for A = —1.2 (blue) and A = —1.4
(red). — 5 explosions so 5 eigenvalues < —1.2.
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Eigenstate when L — o0
PL(\) = # {explosions of X)} = # {eigenvalues of H; < A}.

L
PL(\) ~ '
L(A) ~iseo E+00[First explosion time of X]
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Eigenstate when L — o0
PL(\) = # {explosions of X)} = # {eigenvalues of H; < A}.

L
PL(\) ~ '
L(A) ~ioo E o [First explosion time of X]

Eigenstate density X — lim;_, o %d?,(\/\)-
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Study of the diffusion

Let a = —A.
Coupled SDEs (X,)acr:

dX,(t) = (a — X,(t)?)dt + dB(t).

X5(0) = +o0.
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Study of the diffusion

Let a = —\.

Coupled SDEs (X;).cr:
dX,(t) = (a — X,(t)?)dt + dB(t).
X5(0) = +o0.

When a > 0, the diffusion evolves in the potential:

3
V(x) = —ax + %

Barrier: AV = §a3/2.
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Study of the diffusion

Let a = —\.
Coupled SDEs (X;).cr:

dX,(t) = (a — X,(t)?)dt + dB(t).
X5(0) = +o0.

When a > 0, the diffusion evolves in the potential:

3
V(x) = —ax + iy
3
Barrier: AV = §a3/2.

Explosion time denoted (1,2, ).
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Trap the diffusion in a stationary well
Let

m(a) == Eqoo[C1]
We have

\ﬁ/ exp (2av — (15V3)

T 8 3/2
a—oo al/ eXp <3 >

Proposition (First explosion of X,)

&
m(a)

=200 £(1) exponential of parameter 1.

26
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Trap the diffusion in a stationary well
Let

m(a) == Eqoo[C1]
We have

\ﬁ/ exp (2av — (15V3)

T 8 3/2
~a—00 al/ eXp <3 >

Proposition (First explosion of X,)

!

Proof. Convergence of the Laplace transform (EDP).

—— =100 E(1) exponential of parameter 1.
m(a)

26
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Trap the diffusion in a stationary well

Proposition (First explosion of X)

!
m(a)

=200 £(1) exponential of parameter 1.

Corollary: ¢, converges to a Poisson point process of
intensity 1.

Other corollary:
# {rescaled and recentred eigenvalues < A} converges to a
Poisson distribution exp(A).
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Typical behavior of the diffusion X, when a > 1

1. X, goes down from 400 to y/a deterministically in a short

time O(In(a)/+/a).

2. X, spends time of order m(a) ~ exp(%a3/2) around +/a.
— Many short excursions out of the bottom of the well.

3. X, crosses [—4/a, /a] then blows up to —oo in a time of order

O(In(a)/v/a)-

4. X, restarts from +oo right after its explosion.
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Convergence to a Poisson point process

We want to show that

(Qu([A1; A2l), -+, Qul[An—1, Anl))

converges towards n independent random variables variables with
Poisson distributions of parameter e — M ... M g1
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Convergence to a Poisson point process

We want to show that

(Qu([A1; A2l), -+, Qul[An—1, Anl))

converges towards n independent random variables variables with
Poisson distributions of parameter e — M ... M g1

i.e.

(#XaLi A2 _#Xai/\ilf"v#xa_)\n _#X >\n—1)

e LA WL RV

converges towards n independent random variables variables with
Poisson distributions of parameter P Y L

29 /40



Main ideas

» Most of the time X, ~ /a.
Next explosion time after s > 0 does not depend on the exact
position X,(s) when X;(s) is in the well (memory loss).
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Main ideas

» Most of the time X, ~ /a.
Next explosion time after s > 0 does not depend on the exact

position X,(s) when X;(s) is in the well (memory loss).
» Coupling: If & > a and X, (s) > X,(s) then Xy (t) > X,(t)
for all t > s before the next explosion.
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First eigenvector: back to Riccati transform

We have seen that the explosions of the diffusions (X;).cr
characterize the law of the eigenvalues.
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First eigenvector: back to Riccati transform

We have seen that the explosions of the diffusions (X;).cr
characterize the law of the eigenvalues.

If a1 := —A1, X;, is the Riccati transform of the first eigenvector
and X, (L) = —o0.
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First eigenvector: back to Riccati transform

We have seen that the explosions of the diffusions (X;).cr
characterize the law of the eigenvalues.

If a1 := —A1, X;, is the Riccati transform of the first eigenvector
and X, (L) = —o0.

We find back the first eigenvector ;1 performing the inverse of the
Riccati transform:

A1(0) = er()exp( [ Xo(0))

31/40



First eigenvector: back to Riccati transform

First eigenvector ¢ :

A1(0) = er()exp( [ Xo(0))
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First eigenvector: back to Riccati transform

First eigenvector 7 :

A1(0) = er()exp( [ Xo(0))

Be careful: a; depends on the whole noise (B(t)):c[o,1] !

32/40



First eigenvector: back to Riccati transform

First eigenvector 7 :

A1(0) = er()exp( [ Xo(0))

Be careful: a; depends on the whole noise (B(t)):c[o,1] !

— X, is NOT a diffusion and won't have a typical behavior.
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First eigenvector: back to Riccati transform

First eigenvector 7 :

A1(0) = er()exp( [ Xo(0))

Be careful: a; depends on the whole noise (B(t)):c[o,1] !
— X, is NOT a diffusion and won't have a typical behavior.

Strategy: We bound X, with typical diffusions.
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Riccati transform of the first eigenvector

.Tp |I|‘l"1' 'y‘l‘ ")
ik

AW ALA A ) tl |
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First eigenvector
We have for a < a1 < @
Xo(t) < Xa,(t)  forall t < (1(X3)
Xay (t) < Xy (t) forall t < ((Xs) = L.
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First eigenvector
We have X; ~ X, &~ y/a most of the time.

— we control 1 until the first explosion of X, :
p1(t) = p1(to) exp(Va(t — to)), if t < (1(Xa)

where a =~ a; =~ a,.
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First eigenvector
We have X; ~ X, &~ y/a most of the time.

— we control 1 until the first explosion of X, :
p1(t) = p1(to) exp(Va(t — to)), if t < (1(Xa)

where a =~ a; =~ a,.

How can we control the eigenvector AFTER this explosion time?
35/40



Time reversal

Look at the problem:

=
—~

~
N—r

I

A eigenvalue iff #(0) = 0.
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Time reversal

Look at the problem:

=
—~

~
N—r

I

A eigenvalue iff #(0) = 0.

Riccati transform:

dX,(t) = (—a+ Xa(t)?)dt + dB(t)

where B(:) = B(L — ).

36
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First eigenvector
For all a < a1

Xa(t) < Xa,(t) for all t < (1(X5)
Xa (1) < Xao(L—1t) forall t > L — ¢ (X,).
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Time reversal

— We control ;1 between the first explosion of X, and time L :

p1(t) = p1(t) exp(—va(t — t1)), sit>t > L—G(X)
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Time reversal

— We control ;1 between the first explosion of X, and time L :
p1(t) = pr(t) exp(—va(t — 1)), sit>n>L-G(X)
It suffices to prove that the first explosion of X,(L — -) is close to

the first explosion time of X, to deduce the convergence towards a
Dirac mass.
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Shape of the first eigenvector
Shape of X, when it crosses the interval [—y/a, /a] 7

39 /40



Shape of the first eigenvector
Shape of X, when it crosses the interval [—y/a, /a] 7

Girsanov : Diffusion X, conditioned to explode right away follows
the diffusion:

dY(t) = (—a+ Y(t)?)dt + dB(t).
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Shape of the first eigenvector
Shape of X, when it crosses the interval [—y/a, /a] 7

Girsanov : Diffusion X, conditioned to explode right away follows
the diffusion:

dY(t) = (—a+ Y(t)?)dt + dB(t).
With large probability, this diffusion is close to

f(t) := —y/atanh(y/a(t — A)) where f(0) = /a— 0.

,\[_ S —

1/Va
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THANK YOQU!
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