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Determinants of non-hermitian random matrices

Method I: Singular values

Introducing the singular value decomposition
X = Q1diag (τ1, . . . , τN)Q2, where {τl} denotes the singular values
of X , we have

| detX | =
N∏
l=1

τl .

In the Gaussian case, X = [N [0, 1]]N×N , {λl = τ2l } — eigenvalues
of XTX — have joint PDF prop. to

N∏
l=1

λ
−1/2
l e−λl/2

∏
1≤j<k≤N

|λk − λk |, λl > 0.



Moments of the determinant
Can study the distribution of

∏
l λl through its moments

〈
∏N

l=1 λ
s
l 〉. In the Gaussian case, need then to compute the

multi-dimensional integral∫ ∞
0

dλ1 · · ·
∫ ∞
0

dλN

N∏
l=1

λ
−1/2+s
l e−λl

∏
1≤j<k≤N

|λk − λj |

This is a particular Selberg integral, and so can be evaluated as a
product of gamma functions〈 N∏

l=1

λsl

〉
=

N∏
j=1

Γ(s + j/2)

Γ(j/2)

Let χ2
j denote the chi-square distribution with j degrees of

freedom. We read off that〈 N∏
l=1

λsl

〉
=

N∏
j=1

〈
λsj

〉
χ2
j

⇐⇒ | detX |2 d
=

N∏
j=1

χ2
j .



Distribution the determinant
Explanation. Method II: Gram-Schmidt

Write X = QR, where R is upper triangular with positive real

entries on the diagonal, e.g. N = 3, R =

r11 r12 r13
0 r22 r23
0 0 r33


We have the change of variables formula

(dX ) =
N∏
l=1

rN−lll (dR)(QTdQ)

Also

e−
1
2
TrXTX =

∏
1≤j<k≤N

e−
1
2
r2jk , detXTX =

N∏
j=1

r2jj .

Conclusion. Each variable r2jj has distribution χ2
N−j+1. Hence

| detX |2 d
=

N∏
j=1

χ2
j .



Volume of a Gaussian random polytope pinned to
the origin

In RN , choose N point from N standard Gaussian vectors xj . The
simplex formed by the convex hull of these points and the origin is
a Gaussian random polytope pinned to the origin.

Multiplying this volume by N! gives the volume of a Gaussian
random parallelotope ∆ (in 2d, parallelogram) formed by the N
vectors. We know

vol.∆ =
∣∣∣ det[xj ]

N
j=1

∣∣∣ and hence
(
vol.∆

)2 d
=

N∏
j=1

χ2
j .

The (Hausdorff) volume of the parallelotope ∆M formed by
M < N vectors in RN (e.g. the area of the parallelogram formed by
x1 and x2 in R3) is equal to (det(XN×M)TXN×M)1/2. In the
Gaussian case the Gram-Schmidt decomposition gives(

vol.∆M

)2 d
=

M∏
j=1

χ2
N−j+1.

e.g. M = 1 is the length squared a Gaussian random vector.



Application: Computation of Lypanunov spectrum
for Gaussian random matrices

Define the random product matrix Pm = X1X2 · · ·Xm where each
Xi is an N × N matrix independently distributed from a common
distribution.

According to the multiplicative ergodic theorem of Oseledec, the
limiting matrix limm→∞(PTP)1/(2m) is well defined and
non-random. Parameterising the eigenvalues as eµ1 > · · · > eµN ,
one refers to {µj} as the Lyapunov exponents, and Oseledec
showed

µ1 + · · ·+µk = sup lim
m→∞

1

m
log volk{y1(m), . . . , yk(m)} (k = 1, . . . ,N),

where yj(m) := Pmyj(0) and the sup operation is over all sets of
linearly independent vectors {yj(0)}.
For Xj = Σ1/2Gj , Gj standard Gaussian matrix

µ1 + · · ·+ µk =
〈

log det
(

(GN×k)TΣGN×k

)1/2〉
.

Differentiate s-th moment on RHS w.r.t. s, set s = 0, to get log.



Beyond the Gaussian case — isotropic ensembles
For isotropic ensembles the distribution of each row of the matrix
is dependent on its length only, thus unchanged by rotations.

For example, suppose the random matrix X is formed by choosing
each row uniformly from the unit (N − 1)-sphere. Always, by

Gram-Schmidt (dX ) =
∏N

l=1 r
N−l
ll (dR)(QTdQ). The

Gram-Schmidt vectors are now uniformly distributed on the unit
(l − 1)-sphere (l = 1, . . . ,N), so each r2ll has distribution
proportional to Beta[1/2, (l − 1)/2], implying that

| detX |2 d
=

N∏
l=1

Beta [(N − l + 1)/2, (l − 1)/2].

Largest Lyapunov exponent: Sum of squares of r.v. with PDF
∝ (1− x2)(N−3)/2. Geometric interpretation for N = 3: volume of
intersection unit cube and sphere.

2µ1 =
π

4

∫ 1

0

s1/2 log s ds +
π

4

∫ 2

1

(3− 2s1/2) log s ds +

∫ 3

2

f3,2(s) log s ds

≈ −0.187705.



Expected volume of a uniformly random simplex ∆
(N + 1 points in RN) in a unit ball BN

E.g. N = 2. What is the mean area of a random triangle in the
unit disk? Relates to Sylvester’s problem: when is the convex hull
of 4 points a triangle?

Kingman (1969) gives

1

volBN

〈
vol∆

〉
= 2−N

(
(N + 1)

(N + 1)/2

)N+1/( (N + 1)2

(N + 1)2/2

)
,

For N = 2, evaluates to 35
48π2 . Question: What underlies this?



Polar decomposition

E.g. real case. Begin with singular value decomposition

Mn×N = Un×Ndiag (s1, . . . , sN)V T
N×N

= UV T (Vdiag (s1, . . . , sN)V T

= QP

where P = Vdiag (s1, . . . , sN)V T = W 1/2, W = MTM is
symmetric.

We have the change of variables formula (from classical RMT)

(dM) = 2−N(detW )β(n−N+1)/2−1 (dW )
(
Q†dQ

)
.



Polar integration formula (Moghadasi [Bull. Aust.
Math. Soc. 2012]

Corollary of the above decomposition of measure:∫
Mn×N

g(M)dM = 2−N
∫
VN,n

(
Q†dQ

) ∫
W>0

(dW ) (detW )β(n−N+1)/2−1

× g(QW 1/2)

Choose g(M) = f (M†M). RHS integration over W independent
of Q. Use the case n = N to now rewrite integration over W .
Inserting value of

∫
VN,n

(
Q†dQ

)
gives∫

Mβ
n×N

f (M†M) (dM)

=
N∏
i=1

σβ(n−i+1)

σβ(N−i+1)

∫
Mβ

N×N

f (M†M)
(
detM†M

)β(n−N)/2
(dM).

(σl equals surface area of unit ball in Rl)
Remark: This allows for a “different” computation of the moments
of detM for M Gaussian.



Blaschke-Petkantschin decomposition of measure
(Miles version)

Factor
Qn×N = An×NQ̃N×N

Here An×N specifies a “reference basis” — an element of the
Grassmanian GN,n, which is the set of N-dimensional subspaces in
Fn. Denote the corresponding invariant measure by dωN,n.

The polar integration formula (again used twice) implies∫
M∈Mβ

N,n

g(M) (dM)

=

∫
A∈GN,n

dωN,n

∫
M∈Mβ

N,N

(dM) g(AM)
(
detM†M

)β(n−N)/2
.

Equivalently

N∏
k=1

dvn
k =

∣∣∣ det[vN
k ]Nk=1

∣∣∣β(n−N) N∏
k=1

dvN
k dωN,n

Here vNk ∈ (Fβ)N is the co-ordinate for vnk in a particular basis.



Affine Blaschke-Petkantschin
Introduce

znk = vnk − vn0

znk = Bn×NzNk

zNk = vNk − vN0

vn0 = Bn×NvN0 + r

Here r is an element of the orthogonal complement of the column
space of B, with corresponding volume element dS⊥n−N .

Conclude

N∏
k=0

dvn
k =

∣∣∣ det[vN
k − vN

0 ]Nk=1

∣∣∣β(n−N) N∏
k=0

dvN
k dωβN,n dS

⊥,β
n−N

For β = 1 (real case) Miles used this to generalise the result of
Kingman, evaluating, for example, all the moments of vol ∆.



Statistical properties of random lattices (problem in
the geometry of numbers)

For M ∈ SL2(R) denote the columns by ~v1, ~v2. They define a basis
of R2. Associated with this basis is the lattice{
~y : ~y = n1v1 + n2v2, n1, n2 ∈ Z

}
. Note that a unit cell in the

lattice has volume 1.

Question: Let ~v1, ~v2 be chosen with invariant measure. What are
the statistical properties of the reduced basis? What about general
dimension d? What can be said about the complex case
M ∈ SL2(C) with (say) the Gaussian or Eisenstein integers?



Invariant measure for GLN(R) and SLN(R)

Work of Siegel on the geometry of numbers lead him to consider
the invariant measure on GLN(R),

dµ(M) =
(dM)

| detM|N

Here (dM) =
∏N

i ,j=1 dMi ,j .

For matrices A ∈ SLN(R), Siegel defines the cone λA, 0 < λ < 1,
λA ∈ GLN(R). From above, the latter has invariant measure equal
to the Lebesgue measure (dA). Equivalently, the invariant measure
for matrices in SLN(R) is equal to

δ
(

1− detM
)

(dM)

for M ∈ GLN(R).



Shortest lattice vector
Basis vectors ~m1, . . . , ~mn. Want to choose (n1, . . . , nN) 6= ~0 and

∈ ZN such that
∣∣∣∑N

j=1 nj ~mj

∣∣∣ is minimum.

Question: What is the distribution of the shortest lattice vector
when the basis vectors are chosen with invariant measure?

Can answer this question for N = 2.

For N = 2 it is easy to show that the shortest vector u and the
second shortest, linearly independent vector v are characterised by
the inequalities ||v|| ≥ ||u||, 2|u · v| ≤ ||u||2, the second being
equivalent to ||v + nu|| ≥ ||v|| for all n ∈ Z.



QR (Gram-Schmidt) decomposition
To align the shortest vector along the x-axis we use the QR
decomposition: for N = 2[

m11 m12

m21 m22

]
=

[
cos θ − sin θ
sin θ cos θ

] [
r11 r12
0 r22

]
with r11 > 0 and r22 = 1/r11. Hence u = (r11, 0) and

v = (r12, r22).

Invariant measure factorises according to

dµ(M) = δ(1−
N∏
l=1

rll)
N∏
l=1

rN−lll (dR)(QTdQ).

For N = 2, integrate over r22, and (QTdQ). Leaves 2πdr11d12 —
flat measure. Inequalities for a reduced lattice read r212 + r222 ≥ r211,
2|r12| ≤ r11.
The coordinate r11 corresponds to the length of the shortest basis
vector. Integrating out r12 gives its distribution.



Complex case
There are multiple choices for the meaning of integers,
e.g. Gaussian, Eisenstein integers.

In the real case, the inequality 2|r12| ≤ r11, rewritten

−1

2
≤ r12

r11
≤ 1

2

can be interpreted as the values r12/r11 closest to the origin in Z.
In the complex case, the reduced basis in Gram-Schmidt
coordinates requires

DZ[ω]

( r r12 + ir i12
r11

)
= 0,

where DZ[ω] is the so-called lattice quantiser for Z[ω], giving the
set of values closest to the origin in Z [ω].

For the Gaussian integers, |r r12/r11| ≤ 1/2, |r i12/r11| ≤ 1/2. With
x1 = r r12/r11, x2 = r i12/r11, x3 = 1/t211, invariant measure reads

π2χx21+x22+x23>1χ|x1|≤1/2χ|x2|≤1/2χx3>0
dx1dx2dx3

x33
.



Realisation
For 2d real case, integration over the fundamental domain gives for
the PDF of the shortest vector

12

π

( s
2
− χs>1(s2 − 1/s2)1/2

)
, 0 < s < (4/3)1/4.

Can be illustrated by the following numerical procedure:

1. Generate random matrices M from SL2(R) with invariant
measure, constrained so that ||M||Op ≤ R for some (large) R.
For this use the singular value decomposition and the
associated decomposition of measure.

2. Apply Lagrange–Gauss lattice reduction to the columns of M,
giving the reduced basis.



Small distance distribution of shortest lattice vectors
for general d

Let C = d
2ζ(d)Vol (BR)

∣∣∣
R=1

. To leading order, the Siegel mean

value theorem implies the PDF for the length of the shortest lattice
vector has leading small s behaviour

P(s) = Csd−1.

E.g. d = 3, using exact lattice reduction
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