
Logarithmic energy of the Coulomb gas on the
sphere at low temperature

Adrien Hardy
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Let ‖ · ‖ be the Euclidean norm on R3 and

S :=
{
x ∈ R3 : ‖x‖ ≤ 1

}
.

The logarithmic energy of a configuration x1, . . . , xN ∈ S is

HN (x1, . . . , xN ) :=
∑
i 6=j

log
1

‖xi − xj‖
.

7th Smale’s problem: For any N , provide a configuration
x1, . . . , xN ∈ S such that, for a universal constant c > 0,

HN (x1, . . . , xN )−min
SN

HN ≤ c logN. (Smale)

“For a precise version one could ask for a real number algorithm
in the sense of Blum, Cucker, Shub, and Smale which on input
N produces as output distinct x1, . . . , xN on the 2-sphere
satisfying (Smale) with halting time polynomial in N .”
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Asymptotic expansion

min
SN

HN = ClogN
2 − 1

2
N logN + C∗N + o(N)

� Explicit leading order constant:

Clog := min
µ∈P(S)

∫∫
log

1

‖x− y‖
µ(dx)µ(dy) =

1

2
− log 2.

� C∗ exists [Betermin, Sandier 2018] and satisfies

C∗ ≤ 2 log 2 +
1

2
log

2

3
+ 3 log

√
π

Γ(1/3)
= −0.056...

C∗ ≥ −0.223...

where the best lower bound comes from [Dubickas 1996]

� The precision logN is not yet reached...
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Deterministic contructions

Numerical simulations: No deterministic algorithm seems to
reach the precision N [Hardin, Michaels, Saff 2016]



Independent configurations

If x1, . . . , xN are independent and uniformly distributed on S,

Ei.i.d

[
HN (x1, . . . , xN )

]
= ClogN(N − 1) = ClogN

2 + wrong.



Zeros of random polynomials

If x1, . . . , xN are the zeros of the spherical GAF,

fN (z) :=

N∑
k=0

ξk

√(
N

k

)
zk, (ξk)

N
k=0 i.i.d NC(0, 1),

up to a stereographic projection, then

EGAF

[
HN (x1, . . . , xN )

]
= ClogN

2 − 1

2
N logN + wrong.

[Armentano, Beltrán, Shub 2011]



Zeros of random polynomials

Taken from [Bardenet, H. 2018?]



The spherical ensemble

Let A,B be independent N ×N Ginibre matrices.
If x1, . . . , xN are the eigenvalues of AB−1 up to a stereographic
projection, then

ESE

[
HN (x1, . . . , xN )

]
= ClogN

2 − 1

2
N logN + wrong,

where “wrong”:=“more wrong than GAF’s wrong”

[Alishahi and Zamani 2015]



The Coulomb gas

For any β > 0, consider the probability distribution on SN ,

dPβ(x1, . . . , xN ) :=
1

Zβ
e−βHN (x1,...,xN )

N∏
j=1

dσ(xj)

=
1

Zβ

∏
i 6=j
‖xi − xj‖β

N∏
j=1

dσ(xj).

� The partition function reads

Zβ :=

∫
e−βHN dσ⊗N .

� σ is the uniform measure on S normalized so that σ(S) = 1.

Remark: β = 1 yields the spherical ensemble [Krishnapur 2006]
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Theorem (Beltrán, H. 2018)

The Coulomb gas at β := N satisfies (Smale) with high probability

:

PN

(
HN (x1, . . . , xN )−min

SN
HN ≤ 10 logN

)
≥ 1− e−N logN .

Moreover, the expected energy satisfies

EN

[
HN (x1, . . . , xN )

]
−min

SN
HN ≤ 9 logN.
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Open problem

The precise version of the 7th Smale’s problem yields the
natural problem:

Problem: Can we sample configurations from the Coulomb gas
PN with a polynomial time algorithm?

NB: Having in mind MCMC type methods, it’s not even required to

sample exactly from PN but only approximately within the required

precision range.



The strategy

Laplace’s method heuristics: we expect that

logZβ = log

∫
e−βHN dσ⊗N ' −βmin

SN
HN as β →∞.

Trivial upper bound: for any β > 0,

logZβ ≤ −βmin
SN

HN .

Problem: What about a lower bound?



1st key of the proof

If one can find Cβ > 0 such that

logZβ ≥ −βmin
SN

HN − Cβ,

� For any δ > 0,

Pβ
(

HN (x1, . . . , xN )−min
SN

HN > δ
)
≤ e−βδ+Cβ .

� Moreover,

Eβ
[
HN (x1, . . . , xN )

]
−min

SN
HN ≤

Cβ
β
.



2nd key of the proof

Let (x∗1, . . . , x
∗
N ) ∈ SN be any minimizer of HN .

Let (x1, . . . , xN ) ∈ SN satisfying

N
max
j=1

dS(xj , x
∗
j ) ≤ arcsin

(
s√

5N3/2

)
for some 0 ≤ s ≤

√
5N/2. Then,

HN (x1, . . . , xN ) ≤ min
SN

HN + s2.

NB: This improves a previous result from [Beltrán 2013]

Proof:

� Componentwise subharmonicity of HN ⇒ Maximum principle

� Explicit computations in spherical geometry

� Elementary inequalities (Cauchy–Schwarz and 1st year analysis)
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The lower bound

Now, pick (x∗1, . . . , x
∗
N ) ∈ SN any minimizer of HN and set

Ωs :=

{
(x1, . . . , xN ) ∈ SN :

N
max
j=1

dS(xj , x
∗
j ) ≤ arcsin

(
s√

5N3/2

)}
.

Then, using the 2nd key

logZβ ≥ log

∫
Ωs

e−βHNdσ⊗N

≥ −βmin
SN

HN − βs2 + log σ⊗N (Ωs)

and optimizing in s yields Cβ.



Thank you
ありがとう


