Macdonald denominators for affine root systems,
orthogonal theta functions,
and
elliptic determinantal point processes

arXiv: math.PR/1804.07994v2

Makoto Katori

( Universitat Wien / Chuo University )
Tuesday, 22 May 2018

Random matrices and their applications

Kyoto University, Department of Mathematics
May 21-25 2018



Plan

1. GUE DPP and its Elliptic Extensions

2. Orthogonal Theta Functions

3. Elliptic Determinantal Point
Processes

4. Realization as Systems of
Noncolliding Brownian Bridges

5. Concluding Remarks



1. GUE Determinantal Point Process and
its Elliptic Extensions

e Random N-point process, N € N={1,2,...}, on aspace S € R? is a statistical
ensemble of nonnegative integer-valued Radon measures

N
E() — Z(SXJ'(')?
j=1
provided that the distribution of points {X; }é\le on S is governed by a prob-

ability measure P.

e We assume that P has density p with respect to the Lebesgue measure
dx = vazl dx;, i.e.,
P(X € dz) = p(x)dz, xcS".



e For the point process (=, P), n-point correlation function of aset {x,...,x,} €
S", 1 <n<N,is defined by

N

1
p({xlv SR 73;?1}) — —/ dq/j p(a;lv ces s Ll e :LN)
(N — ’I’L)! SN—n j;{;l

e Then, for any set of observables y,,¢ = 1,2,..., N, we have the following
useful formulas for expectations,

E

/ HXE(W)E(CZJIE)] = / H {dﬂfeXe(ﬂif)}ﬁ({% s @nt), n=1,2.. N.
STL le STL gzl



e If any correlation function is expressed by a determinant in the form

p{z1,...,2,}) = det [K(x;,xp)]

1<j,k<n

with a two-point continuous function K (x,y), r,y € S, then the point process
1s said to be determinantal and K 1s called the correlation kernel.

e A typical example of determinantal point process is the eigenvalue distri-
bution on S = R of Hermitian random matrices in the (Gaussian unitary
ensemble (GUE) studied in random matrix theory. The probability mea-
sure is given as

N
~ Al ]. - :
PCYEN (X € dx) = ptVEY (z)dx = CGUEN | | e H (a1 — ;) de.
(=1 1<j<k<N

which is normalized as (1/N!) [, p““5¥ (x)dz = 1.



e It is not obvious that one can perform integrations

for

GUEy ( H 2 H 2
p () CGUEA ¢ (@ — ;)

1<j<k<N

and obtained results are generally expressed by determinants as

p({ml?"'?mn ) = det [[((mj:xk)}

1<7.k<n



e The verification is, however, not difficult, if we have the following prelimi-
naries.

[P1] The factor [[,_,_,n(2r—2;) in p“"*¥(x) obeys the Weyl denominator
formula for the classical root system Ay_q,

det [x]7'] = H (2 — ;).

1<5,k<N
1<j<k<N

[P2] By a basic property of determinant, without change of value, we
can replace the entries :U‘}i_l in LHS by any monic polynomials of z,
with order j — 1. Here we choose them as the monic Hermite polyno-
mials 2-0"VH, | (x) = 270" Ye*" (—d/dx)’'e~*", and obtain the following
equality including the square roots of Gaussian weights in p“"t~(z),

N
|| —x2/2 J—1 {—(j—l) —x3/2 17 - }
] — et e Tk . .



The reason of this choice is that they satisfy the orthogonal relation,

/ {2—(j—1)€—m2/2Hj_1($)} {2—<k—1)6—x2/sz_1(x)} dv = h;6;,.  j k€N,
R

where h; =2-U-D(j — 1)1\ /7.

e Then integrals are given by determinants with the correlation kernel,

N
‘ 1 :
KOUEN (3. y)) = E : - {2—(71_1)6—12/4]{1%_1@)} {2—(11_1)6—1,2/4 Hn—l(y)} . z,y€R.

n=1



e In [RS06]|, Rosengren and Schlosser extended the Weyl denominator formu-
las for classical root systems to the Macdonald denominator formulas for
seven types of irreducible reduced affine root systems,

Ry = AN—I; By, B]\\/Ia CN, CJ\\J/r, BCN, Dy.

e They expressed the result using the theta functions and stated that they
are elliptic extensions of the classical results.

e In this talk, we use their result as an elliptic extension of the preliminary [P1].

[RS06] Rosengren, H. and Schlosser, M., “Elliptic determinant evaluations
and the Macdonald identities for affine root systems,” Compositio Math.
142, 937-961 (2006).
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A, = Aj 0—*-0
BC,=B(} 0——0

A=A (122) 4 Yo
B, (I23) :>o—ow—o—o=%=o
B} (I1=3) >0-—%---—o——o=€—o

C, (1z2) O>=0——0— ++» —O——0=%0
Gy (1z22) O—4=0—0— -+ —O0—O0—>=0
BC,=BC]} (I1=2)

D,=D; (I24) :>O—0—Ao——o<

Macdonald 1.G., Affine root systems and Dedekind’s n-function, Invent. Math. 15 (1972), 91-143.
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e We report in this talk an elliptic extension of the preliminary [P2], and
then construct seven new types of determinantal point processes in the
elliptic level,

(28~ P/ t € (0,t.)), Ry = An_1. By, BY,, Cn, CY., BCy, Dy, N € N.

e This means that their correlation kernels are expressed by the orthogo-
nal theta functions and, if we take appropriate limits of parameters, they
are reduced to the classical ones expressed by trigonometric and rational
functions.

11



e Once the N-point systems have been proved to be determinantal, by taking
proper scaling limit associated with N — oo limit of the correlation kernels,
we can define the determinantal point processes with an infinite number of
points.

e Remark that any N — oo limit of the probability measure P“V*~ is meaningless,
since as shown by

N
_— o 1 a2
PO (X € da) = pUPN (@)de = o [[ e [T (0 - wp)de

(=1 1<j<k<N

it is absolutely continuous to the Lebesgue measure of N dimensions, dx =

H?]:l dv;, and N — oo limit of dx cannot be mathematically defined.

12



e From

1
n=1 hn

KCUEN (7 y) = {2—(71_1)6—172/4}171_1@)} {2—(71_1)6—@,2/4}[11_1@)} . x,yeR,

by taking the scaling limit called the bulk scaling limit, we obtain the
following kernel from

sin{mp(x —y)}

Ky = —0—)

x,y € R,

e This is called the sine kernel and it governs the determinantal point process
on R with an infinite number of points, which is spatially homogeneous on
R with constant density of points p > 0.

13



® Our elliptic determinantal point processes have two positive parameters

ly and r.

® We demonstrate that in the limit
ty — 00,

our seven types of determinantal point processes in the elliptic level are
reduced to the four types of determinantal point processes in the trigono-
metric level, in which the correlation kernels are expressed by sine functions.

e If we take the further limit
r— oo,

they are reduced to the three types of sine kernels.

14



e The bulk scaling limit is realized in our systems by taking the double limit

N — oo, r — oo with ratio — fixed.
r

e We construct four types of determinantal point processes in the elliptic
level with an infinite number of particles.

e The reductions of them in the limit 7, — o¢ to the classical infinite deter-
minantal point processes are also shown.

15



e The determinantal point process of GUE, (Z¢VEy PYVEN) g related with an
interacting particle system consisting of N Brownian motions (BMs) on R,
N e N.

e It is a system of BMs conditioned never to collide with each other (noncol-

liding BMs).

e The transition probability density of the one-dimensional standard Brow-
nian motion (BM) from a point v at time s to a point » at time ¢ is given
by

—(z—v)?/{2(t—s)}
e
pPM (s, vt 1) = ., 0<s<tvxeR.

16



e Consider the Weyl chamber,

e For v.x € Wy, the total probability mass of N-tuple of non-intersecting
Brownian paths, in which the j-th path starts from v; at time s and arrives
at x; at time t > s, j =1,2,..., N, is given by a determinant

/

det [p(S; v; t, m)} :

BM (

Here p(s, v;t, ) is the Nx N matrix whose (j, k)-entry is given by p”" (s, v;; ¢, 21 );

(p(st v t: 58)) " — pBM(S; Uj; t: xk)t j k < {1 29 R N}
J

This is known as the Karlin-McGregor—Lindstrom—Gessel-Viennot (KMLGV)
formula.

17



e Here we consider the situation such that N BMs start from a given config-
uration v € Wy at time 0, execute noncolliding process, and then return to
the configuration v at time ¢, > 0.

e Such a process is called the N-particle system of noncolliding Brownian
bridges from v to v in time duration ¢,

e The probability density at time ¢ of this N-particle process is then given by

pU= (g 1,) — det[p®M(0, v; ¢, zc)} det[p®M(t, z; L., v)}q
L det[pPM(0, v: 1. v)] '

xe Wy, te(0,t).

18



e We can prove that the limit v — 0 = (0,...,0) € RY exists (see [Katori—
Tanemura, JMP (2004)]), and we obtain

N

1 2 _
p?_ﬂ)(ag‘t*) — O(N . ) He 'Et*/{gt(t* t)} H (CU,IC—(TJ')Q? T © WN? t € (Ot*)
R | 1<j<k<N

with a normalization factor C'(N,t,t,) which does not depend on .
o If we put t, =2 and t =1,/2 =1, p?7°(x;t,) coincides with p“VE~ (x).

e In other words, the N-particle system of noncolliding Brownian bridges
from 0 to 0 with time duration t, realizes a one-parameter extension of
determinantal point process of GUE.

19
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Each type of elliptic determinantal point processes reported in this talk
makes a family with one continuous parameter t € (0,7.) (in addition to a
discrete parameter N € N).

We can show that, (Z4v-1, PfN_l ,t € (0,t,)) is realized as an N-particle system

of noncolliding Brownian bridges on a circle with radius r.

For Ry = By, BY,, Cx, CX., BCn, (2™ P t € (0,t,)) are realized as N-particle
systems of noncolliding Brownian bridges in an interval [0, 77| with absorb-
ing boundary conditions at both edges.

And (EPv PPY t € (0,t,)) is realized as noncolliding N-Brownian bridges in
0, 7] with reflecting boundary conditions at both edges.

These Brownian bridges are specified by the pinned configurations v’V at
the initial time ¢t = 0 and at the final time ¢ = ¢,.

22



N=35

[Ay] NAY=N=5

[By] NBv=2N-1=9
[B,Y] N B =2N=10
[Cy] N =2(N+1)=12
[CV] N O =2N=10

[BC\] N By=2N+1 =11

nr

2Ty

99—
999
904

[Dy] NDP¥=2(N-1)=8 ¢—¢—¢—¢
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2. Orthogonal Theta Functions

e Let
Z — BU’KZ’ q — 6T7TZ

where v,7 € C and 37 > 0. The Jacobi theta functions are defined as follows,

Vo(v;7) = Z(—l)” P 22 )" e cos(2nmv),

nez n=1
U 7' — Z n (n 1/2)? 2n 1 — 9 Z n 1€T7r:i(n—1/2)2 SiIl{(Zn . 1)7_{_7]}7
nel n=1
7_) _ Zq(n—l/2)2z2n—1 —9 Z 6'r7ri(n—1/2)2 COS{(Z?’L o 1)7TU}7
nez n=1

= Z q " =142 Z T cos(2nmu).

nez n=1

e We see the asymptotics

Do(v;T) ~ 1, O(v;7) ~ 2™ *sin(mv),  alv;7) ~ 2674 cos(mv),  Os(v;T) ~ 1,
in 37— 4oo (ie., = —0).

24



e The Macdonald denominators for the seven types of irreducible reduced

(&1,

.....

En) € CV, are written using the

1T (o =) J

det

j—l}
1<,k<N

[5%
1<j<k<N

V1(& — & )01 (6 + §j;’f)}7

affine root systems, W~ (¢£), & =
Jacobi theta functions as follows.
WAN-1(g:7) = H U1 (&r — &5 7),
1<j<k<N
WB]\ 5} Hﬁl 54?, H
1<j<k<N
WY (¢;7) = Hm(z&;zﬂ 11
=1

N

W(gr) =] 2e7)
=1

11

1<j<k<N

11

N

W &) =] v (fe; %)
=1

WBC“ (&:;7)

|z2

WP (g) = H

1<j<k<N

where 7 € C, 37 > 0.

1<j<k<N

D (& — &5 m)0 (& ‘|‘£j§7_)}7

U1 (§e — & )0 (& + ijT)}»

1<j<k<N

[{71(6:myon(2sis2n)

(& — &I (G + &5 |,

[T {n-gnme+gn}.

1<j<k<N

(6 — &)V (G + &) |

25



e Rosengren and Schlosser [RS06] introduced the notions of Ay_;-theta func-

tion of norm o and Ry-theta function for Ry = By, By, Cy, C¥, BCy, Dy.

e Then they proved that, if ff”‘l?j = 1,2,...,N are Ay_;-theta function of

norm «, then

1<j. k<N

N
det [fjAN_l(fk;T)} = OV (1), (Z §o + &) WAN-1(€:7)
(=1

with o = ¢2™@ and if ff“‘}j =1.2,..., N, are Ry-theta functions, ,

det [ijJ\(é-ij)} = CYRN(7’)]/[/RN(£;,7_)7 Ry = BN; Bj\<f, CN; Cj\\/r, BC’N7 DN;

1<j k<N

where C"¥ (1) depend on 7 and N but not on .

e The factors OV (7) are explicitly determined in Proposition 6.1 in [RS06]

and the above equalities are called the Macdonald denominator formulas.

[RS06] Rosengren, H. and Schlosser, M., “Elliptic determinant evaluations
and the Macdonald identities for affine root systems,” Compositio Math.
142, 937-961 (2006).

26



e Assume that 0 < r < oc.

o Let i =/—1, and put

and

o) = Elair) = st 7(t) = lhir) = o
(N, Ry = An_1,
IN — 1. Ry = By,
N Ry = BY. CY.
2(N—|— 1), Ry = Cy,
2N + 1, Ry = BCy,
2(N—1).  Ry=Dy.

e We consider the following seven sets of functions of (z,¢) € R x [0,00),
{J\JJRN(:IE t)}L,, which are defined using the Ay_;-theta function of norm
o = e?™IN with

N NT(t)/2, if N is even,
G —
(1+ N7(t))/2, if N is odd,

and the Ry-theta functions, Ry = By, By, Cy, Cy, BCn, Dy, of Rosengren and

Schlosser as

M N

J

(2.1) = fIv (NRNf(:L‘);NRNT(t)), j=1,2,...,N.

27



e The explicit expressions of the Rosengren-Schlosser’s theta functions in our
version are given by follows,

M (@, t) = MY (1)
= IR (NN LA ()7 () + € ()} (VN )Pr() )
MfN (2.t) = ]\/fRN(QC t:r)
AT g, (AL () 4 € (V) (1))
— Ny (VL ()2 (n) — €} (N Pe(n), for Ry = By, BY,
M (2, t) = M™ (2, t;7)
_ 2miI RN (f)E() (NRA (TN ()7 () + E(2) ) (NRJ\v)QT(t)>
— ¢ BN, (L () () — €k (N™)?7(n), for Ry = Ci, OY, BCy,
MPN(2,t) = M (2, ;1)
— (2N Oy, (NP LIPY () () + ()} (VPR ())
eI O, (APY LI () () = £} V)P ).

where
j-1/2, Ry = An_1, OV,
JRN(j): j_]-, RN:BNSB]\\/UDN:
; Rx = Cy. BCy.

28



e In our setting, the Macdonald denominator formulas of Rosengren and
Schlosser are-wwritten as follows. L
det [v) ] = H () — ;).

An 1<j,k<N :
det [M N 1(1},?5)} 1<j<k<N
1<jk<N L 7

4

\

N
VDR (1) (Zf(mﬂawwﬂﬂ) WA (@) N7 (1)
j=1
if N is even,
N
DN 2 A g, (Zf(xﬂ;wf“ﬂﬂ) WA= (6 ) N (1),
J=1 :
‘ it V 1s odd,
et (M ()| =™ (W g(@): N V(). Nor Ry = By, BY. D,

det _MJRN(:Uk,t): =i N BN (RN (¢(2); NEY 7 (1), Iar Ry = Cy, O, BCy.

1<9.k<N L

\- RHS are products of
theta functions

29



(1) = g () Mgy )
o) = 20N O] D o)

¥ (1) = (NP7 (1)) N gy (B () (2NB?<T( )=,
1 (1) = gV (1) /4q (N (1) 7V,

O¥(8) = g r{e) VN (O 1)) N Fr() 2D
U5 1) = AN 1) NN AP ()N AP (1))
A (1) = dg(N PV () VYD gy (D (1) N2

30



Bi-orthogonality

Lemma 2.1 Assume 0 < 1, < oco. Foranyt € (0,t.), if j,k € {1,2,..., N}, then

2mr

M  t — MUY (, t)de = m ™ (8) 8

J

MRN — ) MY (2, t)dx = m5 N (t,),,.  for Ry = By, BY.. Cx, CY.. BC'n, Dy,

J

where

mB (1) = 27 (NRNJRN ()7 (t); (NRN)QT(;;*)), jell,2,... N},
for Ry = Ay _q, Cn, CY, BCy,
) — <’47m92 go- (N Pr(t.)), j=1 P
2y (NN TN ()7 () (WA )21 (8 ), j € 42,3, N,
4m92( '(NDN)2T(t*)), j=1,
mP (t,) = { 2w ENDNJDNU)T@*), (NDN)2T(t*)>, je{2,3,... . N1},
4mrda (NN (N = 1)7(t.); (NDN)2T(t*)>, j=N.

31




Remark 1. In RHS of

MY (1) = fh (NRﬂ'g(:c);NRNT(t)), i=1,2.....N,

J

the setting of the first variable be N¥¢(x) instead of {(x) is essential for
establishing the biorthogonal relations.

Remark 2. When t =t,/2, the functions {]\/ijN(CU,t*/Z)}il form orthogonal
sets with respect to the inner product

(flg) = / Fo)g(e)de

with L = 27r for Ry = Ay_; and L = 7r for Ry = By,By,Cn,Cy,BCN,Dy.
For the case Ry = Ay_1, this fact was announced on page 217 in [For10].

[For10] Forrester, P. J., Log-Gases and Random Matrices (Princeton University
Press, Princeton, NJ, 2010).
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3. Elliptic Determinantal Point Processes
3.1 Main results

e Consider the following Weyl alcoves,

WES,’QWT)E{ZE:(QH?CUQ...VCUN)ERN:Ole<$2<"'<xN<27TT}7

WE?[’ME{m:(xl,:@...,:UN)GRN:O§:U1<§UQ<---<Q:N§7TT}.

e By the basic properties of the Jacobi theta functions,

N
Vs (Z{(:Cj);NANlT(t)) >0 for s=0,3,if 0 <1t < o0,
j=1

and the definitions of Macdonald denominators imply that

WA (@) N 17() > 0, ifxe W™ 0<t < oo,
WS (e(); NV () 2 0, if 2 € W™, 0 <t < oo, for Ry = By, BY., Cy, C¥, BCx. Dy.

33



e Now we introduce

g™ (x) = det [M-RN(xk,t* — t)] det [MERN(xm,t)} o e 0L

1<j,k<N J 1<l,m<N

e By the basic properties of the Jacobi theta functions, this product form
guarantees the follows.

Lemma 3.1 ]ft < (O,t*% qtRN(az) > 0, T < RN7 fO?“ RN = AN—17 BN7 Bj\\/], CN7 Oj\\?, BCN, DN-

34



e Moreover, we can verify the following.

Lemma 3.2 Fort e (0,t,),

N
An_1 . An_
/V\V[O'Q”T) Qt (zc)da: - 11 mnN 1(t*)7

N

N
/[O ] g™ (z)dx = H mP¥(t,), Ry = By,By,Cx,Cy,BCy,Dy.
W ,TTT

N n=1

Proof Let S4v-1 = W™ [Av-1 = 27y, and SEY = W™, LEY = 7 for
Ry = By, B]\\/], Cn, C]\\;, BCy, Dy. By the Heine identity,

1<j5,k<N

AN
/ MI™ (z,t, — )M (2, t)d | -
0

/ ¢ (x)dz =  det
SEN

By the biorthogonality given by Lemma 2.1, this is equal to detlgj,k,SN[ijN (Bs) Pl
and hence the statements are proved. j

35



e Then the seven types of one-parameter (¢ € (0,t.)) families of probability
measures P/ are defined as

( AN_1
@ @) e for Ry = Ay,

PIY(X € dx) = pI'™ (z)da = {
a (x) de, for Ry = By, BY, Cx, CY. BCx, Dy.

e They are normalized as

/ p'i(a)de =1,

WI0.27r)

/ pRN(a:)dZE: 1, Ry= BN,BJ\\/T,ON,C]\\/I;BON;DN-
W0, 7]

36



e Under these probability measures P/"¥ with one parameter ¢t € (0,t,), we
consider seven types of point processes,

[1]

N
() =376 ax () on S =[0.2mr).
=17

N
=N()=> dan() on S=[0,m]. for Ry = By, By.Cy,Cx,BCx. Dy.
j=1

37



e Given the determinantal expressions for the probability measures associated

with the biorthogonal functions, we can readily prove the following fact by
the standard method in random matrix theory.

Theorem 3.3 The seven types of one-parameter families of point processes, (21N Pf’N NS

e

(0,t.)), Ry = Anx_1, By, By, Cn, C¥, BCy, Dy, are determinantal with the corre-
lation kernels,

N
1
K T, Y te, 7)) = —_—
(@ y ) ZmﬁN(t*)
v,y € [0,27r), for Ry = An_1,

v,y € [0,7r], for Ry = By, By, Cy, CxN, BCy, Dy.

MEN (2 )M (y. t, —t), te(0,t),

n=1

38




3.2 Temporally homogeneous limit

e We consider the determinantal point processes at t = t,/2. The correlation
kernels become

N

1 -
KB T, Yt ) = —J\/[nRN r,t./2 MBS Y, te/2),
ACXINEED Bow e AN I VAN

n=1

x,y € [0,2nr) for Ry = Ay_1, and 2,y € [0, 7r] for Ry = By, By, Cn, Cy, BCy,
Dy.

e Remark the asymptotics of the Jacobi theta functions,

Vo(v;7) ~ 1,  Oq(v;7) ~ 27" sin(mv),  Ya(v;1) ~ 267 cos(mv),  Vs(v;7) ~ 1,

in Q17— +oo (i, g=¢eT —0).

e Then the temporally homogeneous limit ¢, — oo of are obtained as follows.
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(1) For RN — AN—la

KA1z, y;r) = lim [‘t*/z Yyt )

tw—00

E 2mi(n—1)(&(x)—€(y)) _
€ =
27?7“ —

1 sin{N(x—y)/2r}
2nr sin{(x —y)/2r} ’

(11) For RN - BN7 B]\\//v Oj\/7 O]\\/z BCN,

K™ (2, 9:7)

lim [&t*%(x Uity 1)

{x«—00

(1 [sin{(N"™ +1)(x —y)/2r}
2mr | sin{(x —y)/2r}

1 [sin{(N"™ —1)(x —y)/2r}

sin{(z +y)/2r}

sin{(N'™ +1)(@ +y)/2r}]

) 27r | sin{(x —y)/2r} sin{(z +y)/2r}
1 [sin{NE~¥ (2 —y)/2r} B sin{ NV (2 + TJ)/ZT}]
(27 | sin{(x —y)/2r} sin{(z +y)/2r} |

r,y € [0, 7r].
(111) For RN = DN,
KON (2, y:r) =

1 sin{(2N — )(x —y)/2r}
sin{(x —y)/2r}

hm [it*/2($7 Uity 1)

_ sin{ (2N — 1)(x + y)/2r}] |
2mr ’

sin{(x +y)/2r}

sin{(V™ — 1)+ )/2r}]

x,y € [0,277r).

if Ry = By, BY,

if Ry = Cy, BCy,

if Ry = CY,

x,y € 10,77,
40



e Since NP2V +1=NBN _ 1 =N =2N, and NPV +1 = NN -1 =2N +1,

K5 (2, yir) = KPON (,yir) = K (a,y57)
_ 1 [sin{N(:c —y)/r}  si{N(z+y)/r}
2mr | sin{(x —y)/2r}  sin{(x+vy)/2r}
K (2,yir) = K25 (2, i)
_ 1 [sin{(QN + D —y)/2r}  sin{(2N + 1)(x +y)/2r}
27 sin{ (x —y)/2r} sin{(x +y)/2r}

] ,  x,y €10, 7r],

] , o x,y € (0,7l

Corollary 3.4 Put t = t,/2 in Theorem 3.3. In the limit t, — oo, the seven

types of determinantal point processes (27, Pﬁ%) are degenerated into the four types

of determinantal point processes specified by the correlation kernels KAN=1(x,y;r),
KB (2, yr), KO (zyir). and KOV (2 ;7).
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3.3 Infinte determinantal point
processes

e We fix the density of points as

N
Gy Ry = An_1,
r
P = 1
N y y
—T, RN:BNyBNycN,CNyBCN,DNy
LT

and take double limit N — oo, r — oc. Then we obtain the following limits
of correlation kernels.
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Lemma 3.5 Fort € (0,t,), the following scaling limits are obtained for correlation

kernels.
(i) For Ry = An_1,

KMaeyitep) = lim K (@it )
N/Q?jr?“:p 5

- / ? o p2mite—pa V2P 4 2mitp); 27t p?) Vs (py — 2mi(t. — 1)pAs 27t — t)p°)
R Vo (2it, p; 2Tit, p?)

Y

v,y € R,

(11) For RN == BN, BJ\\?,

}Cég(xw%t*rp) = N lim KERN(:I??y;t*}?")
— 00, 700,
N/mr=p

- [ / "\ it V(o + Titpds 2mitp®)0s (py — mit, — t)pAs2milt, — t)p?)
2 L Ua(Tit.pA; 2mit,p?)
- / ? 1\ it (0T F TN 2mitp* )0 (—py — it — 1)pA; 2Tt — 1)p)
Vo (mitep; 2mit, p?)

7
—p

x,y € [0,00).
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(iii) For RN = CN? Cj\\/]? BCN,
}th(l',’y; te, p) = lim KtRN(SUﬂJ; te,T)

N—o00,r—00,
N/mr=p

_ 1 [ ] ? o\ it V2(p + TitpA; 2mit p?) Vs (py — (L. — 1)pA: 2mi(L, — 1)p7)
2 /-, Vo (it pA; 2mit,p?)

- / 7\ emite o V2(p 4 witp); 2mitp? Vo (—py — wilte — O)pA; 2wt — 1))
Vo (Titep; 2mit, p?)

-P
z,y € [0,00).
(iv) For Ry = Dy,

D . . Dn
Ki(w,y;te, p) = Nﬁi{l}l}}ﬁwi K7 (gt )
N/mr=p
_1 [/p " eﬂi(w_y))\ﬁQ([)ZU + witpX; 2mitp* ) 0o (py — Ti(t, — t)pX; 2mi(t, — t)p?)
2 /-, Vo (it pA; 2mit p?)

N / © I\ it V2(p + TitpA 2t p) Vs (—py — milt, — t)pAs 2mi(t, — t)p°)
_p Vo (it p; 2it, p?)

z,y € [0, 00).

?

)
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e The uniform convergence of correlation kernels implies the convergence of
all correlation kernels. Then we conclude the following.

Theorem 3.6 In the scaling limit N — oo, r — oo with constant density of points, the
seven types of one-parameter families of determinantal point processes, (21, PfN,t S
(0,t:)), Ry = An_1, Bn, BY, Cn, Cy, BCy, Dy, converge in the sense of distribution
to the four types of infinite dimensional point processes as follows,

b

N
(A1 P e (0,4) = (EA.PA 1€ (0.t)  as N — oo, 1 — o0 with 5— = p
wr
=B PBA te(0,t,)) N
(,_B\, ’ — (28, PPt €(0,t,)) as N — oo,r — oo with — = p .
(2°~, P, B te (0,t)) T
(CAPO“te Ot)) v
(X, Pt e (0.1,)) — (29, Pt € (0,t,) as N — 00,1 — 00, — = p,
(280N, PEC te t.)) "
N
(ZP% PPV e (0.t,) = (EP, PPt € (0.t,) as N — oo, r — 0o with — = p |
nr

where (24, P41 € (0,1,)). (22, PE.t € (0,t,)), (EY. P, t € (0,t,)). and (2P, PPt
(0,t,)) are z’nﬁm’te determinantal point processes associated with the correlation kernels
K&, KE,KE, and KP, t € (0,t,), respectively.
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e Putt=t,/2.

e By the asymptotics of the Jacobi theta functions, we obtain the following
three types of limits,

p .
KA (v, y;p) = lim K} (@ Yt p) =€ Mp(:r—y)/ p2mi(T=y)A 7\
0

tx—00

_ sin{mp(r —y)} vy €R

Tz —y)
K,y p) = Jim Ko (, g5t p)

_ sm{wp(:t —y)}  sin{mp(x +y)} for R =B.C, x,y¢c]0,00)

m(r —y) m(x +y)
KV (x,y:p) = i K2 (2, 43 L p)

_ slrl{ﬂp(:L —y)} L sin{mp(x +y)}
m(x —y) m(x+y)

z,y € [0, 00).
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particle density profiles

e If we put r = y in the correlation kernels, we can obtain the densities of
particles (i.e., the profiles of particle distributions),

p(a) = lim K¥(x. y).

Yy—rx
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type A 1n the classical limit

pA(ZE; P) — lim SlIl{?Tp(LU o y)}

=p, xR
y=e o w(z —y)

type A 1n the elliptic level with parameter 0 < t, < oc.

Vo (pa + wityp\; it p?)a(pr — Tt p\; Tit,p?)

P
A
P (:Cv p) /0 ?92 (2mt*p)\, 271'275*/02)

?

r € R.
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p = Figures are given by Hiroya Baba (my graduate student).
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4. Realization as Systems of
Noncolliding Brownian Bridges
4.1 New expression of Macdonald
denominators by KMLGV determinants

e Denote the transition probability density of BM, starting from x at time s
and arriving at y at time t, v,y € R,0 < s <t < 00, by

pBM(

.t y) = PPN (s, it ) = e )
2m(t — s)
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e For 0 < 5 <t < o0, define

P

cirC(

5, Z;t,Y) =P

circ<8’ T t, y: 7’)
(Z(—l)“’pm’{(s,x;t,y + 2mrw), if N is even,
< weEL |

S pPM(s, sty + 2mrw), if N is odd,
\ WEZ

prM<S’x; t,y)o(i(x —y)r/(t —s);—1/7(t —s)), if N is even,

) |
PP (s @it y)s(i(x — y)r/(t — s);—1/7(t — 5)), if N is odd,

(1
%192(5(33 —y);7(t —s)), if N is even,

1 . .
| Us(E(w —y)iT(t—s)), if N is odd,

x,y € [0,27r), where

§() = &(x;r) = o— T(t) = 7(t;7)
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e And define

P

P

abs (

ref (

s,wit,y) =

s, it y) =

{pBM(sy vty + 2mrk) — pBM(& —x;t,y + 2777“/{)}

{%@@%ﬂmT@—SD—ﬁdﬂx+y%ﬂﬁ—ﬂﬁ,

{pBM(S; vty + 2mrk) + pPN (s, —ait y + 27”%)}

{Ua(& = )i 7(t = 9) + da(€le + )i 7(t = 9)) }.
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e We introduce time dependent N x N matrices, p*(s,z;t,y), 0 < s < < oo,
with entries

(P (s, z:t.y))jx = D*(s.xj:t, ), ¢ =circ,abs,ref, . k=1,2...,N,

for x = (v1,....2n) €RY, y = (31,...,yny) € RV,

The determinant det[p“(s,x;t,y)] with z,y € WES;QW), 0 < s < t, is the

KMLGYV determinant giving the total probability mass of N-tuples of non-
colliding Brownian paths on a circle with radius r > 0, starting from the
unlabeled configuration x at time s and arriving at the unlabeled configu-
ration y at time ¢ > s (see Forrester (1990), Fulmek (2004), Liechty-Wang
(2016)).

The determinant det[p™™ (s, x;t,y)] (resp. det[p™ (s, x;t,y)]) can be regarded
as the KMLGYV determinant for the noncolliding BMs in the interval [0, 77]
with the absorbing (resp. reflecting) boundary conditions at both edges.
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e We consider the following seven types of configurations of N points, v =

v~ (r) with the elements,

o =) = 2 )
pfN = N () = fg; (j —1/2), for Ry = By, BY.
pFN = B () = fg j. for Ry = Cy, C¥, BCx,
PN = Py () = NW'_r ~(j 1), J=L2...N.

e The configurations v/ make equidistant series of points in [0, 27r) for Ry =
Anx_; and in [0, 7r] for others.

e We also consider N x N matrices whose entries are given by the biorthogonal
theta functions,

MEN (. 1) = (M,RN ‘.i) |
@ = (M en)
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N=35

[Ay] NAY=N=5

[By] NBv=2N-1=9
[B,Y] N B =2N=10
[Cy] N =2(N+1)=12
[CV] N O =2N=10

[BC\] N By=2N+1 =11

nr

2Ty

99—
999
904

[Dy] NDP¥=2(N-1)=8 ¢—¢—¢—¢
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® Then the following relations hold between matrices.

Lemma 4.1 Consider the N x N matrices v (t) with the following entries; for j =

1,....N ,
’ T Anar(g))., = 2T —ri(i=1/22 ()~ N=2(- 1/} (k=L)/N  f _ N
(r (1))jk & k=100 N,
: N - R
dmr R vty
Ry - e~ i SN ) 7(t) Ry _ Ry (. k . AT
(r'"™(t))n = AR sin {(N N —2] “(J))—Qr ] o k=1,...,] V.

f()‘l‘ R\ = BK;. C\ BCN.

f dmr i(JEN ()2 R R UJ.Q\
R et T O sin (W = 208 () = | k=1 N =
(r™ () jk = 4 "2 ‘ r
TI'T’ . Rari..
2w ()% v
I © O sinr(N +1/2 = j)], k=N.
for Ry = By, Cy,
fl 71’1(] ]) T(t E— 1
= (N = k- 1) |
21‘[ r - T/ T __ ? — 1
Dy L e —wi(i—1)%7(t) . . . _ -
(r v (t))n N - (os»{ ~ ] k=2....N—1,
?\T’?T?“ ] e—ﬂ(“f?l)?r(l) COS{TF(;\-‘T _ ]ﬂ L= N

Then fort € [0, 00),

AP0, 0 ) = MY L), @ e W,

(N ()p™ (0, 0"Vt x) = MY (t ), x € Wf;ﬂ . Rn = By, B\, Cy, Cyx, BCy,
O¥ (1)p e (0, 0PVt ) = MOV (), @ e W™
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e If we take the determinants of both sides of the above equalities between
matrices, we obtain the equalities

det[r"™ (t)] det[p*(0, v t, )] = det[M™ (¢, 2)],

where 7 = circ for Ry = Ax_1, £ = abs for Ry = By, By, Cn, C¥, BCy, and § =
ref for Ry = Dy.

e Combine them with the Macdonald denominator formulas of Rosengren and
Schlosser [RS06], we obtain new determinantal expressions for the Macdon-
ald denominators.
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Proposition 4.2 For the irreducible reduced affine root systems, Ry = Anx_1, Bn,

ByY., Oy, Y. BCy. Dx. the Macdonald denominators W~ are proportional to the

KMLGV determinants for noncolliding Brownian paths starting from the configurations
v™ as follows. Let s(N) =0 if N is even, and s(N) = 3 if N is odd, then

V() (Zf ); N7( t)) WA= (g (@) N7(t)) = b2 (t) det[p(0, v s, )],

PN (1) det[p™ (0, vV ; ¢ Ry = By, By, Cx, CY, BC
WRN(é-(:E)JNRNT(t)):{ () e [p ( , U ) 758)]: fOT N N>, PN, YN YN, N>

bUN (1) det[p™ (0, v"¥: L, ®)].  for Ry = Dy,

with coefficients b (1).
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Remark 3.

— Forrester proved this equality for the type Ay_; independently of the
Macdonald denominator formulas given by Rosengren and Schlosser
[RS06]. The matrix relation was also used to prove the determinantal
equality for Ry = Ay_; in pages 216-217 in [For10].

— The above lemma and proposition are extensions of Forrester’s results
to other six types of matrices and their determinants.

— Here we identify LHS of the equations as the Macdonald denominators
and the determinants in RHS of them as the KMLGV determinants of
noncolliding Brownian paths.
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4.2 Noncolliding Brownian bridges

The following is derived by Lemma 4.1.

Proposition 4.3 The probability densities for the determinantal point processes, (21~

(0,t4)), have the following expressions,

— det[pCirC(()? ’UAN_l; t7 m)] det [pCirc(t7 m; t*y ,UAN_l )}

AN-1 [0,277
T i ) S : )
P+ (:U) det[pCHC(O,UAN_l; t*7'UAN—1)} £

pRN (33) _ det[pabs(07 URN; , w)} det[pabs(tz Tty ’URNH T e W[O,Trr}

t det[p*2>(0, v 1, vfiv)] ’ |

fOT Ry = BN, BJ\\/f, ON, Cj\\/]7 BON,
ref Dy . ref . D

PPN (@) = det[p™ (0, v"~; t, )] det[p™ (t, x; t., v )] v e o

det[p™f (0, v~ t,, vPN)] ’

P te
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From these expressions in the above Proposition, we can conclude the fol-
lowing.

Theorem 4.4 (i) The one-parameter family of determinantal point process,
(EAN—leN_l,t € (0,t.)), is realized as the particle configuration at time t € (0,t.) of
the noncolliding Brownian bridges on a circle with radius r, starting from and return-
ing to the configuration vN-1 = (27r(j — 1)/N)X,.

(ii) For Ry = Bw, By, Cn, Cy, BCyN, each one-parameter family of determinantal
point process, (¥ PNt € (0,t.)), is realized as the particle configuration at time
t € (0,t.) of the noncolliding Brownian bridges starting from and returning to the con-
figuration v in the interval [0, wr] with the absorbing boundary conditions at both
edges.

(iii) The one-parameter family of determinantal point process, (2PN PPN t € (0.t,)),
is realized as the particle configuration at time t € (0,t.) of the noncolliding bridges
starting from and returning to the configuration v~ = (wr(j —1)/(N —1))iL, in the
interval [0, wr] with the reflecting boundary conditions at both edges.

61




5. Concluding Remarks

e In the present paper we have constructed seven types of one-parameter
families of determinantal point processes, (2~ P/ t € (0.t.)), Ry = An_1,
By, By, Cn, CYy BCy, Dy. These point processes can be interpreted as con-
figurations at time ¢ € (0,7,) of the noncolliding Brownian bridges starting
from and returning to the equidistant configurations v~

e In this picture, the variety of elliptic determinantal processes is due to
various choices of configurations pinned at the initial time ¢t = 0 and at
the final time t = t,. If we regard these Brownian bridges on a circle with
radius 7, P'(r), or in an interval [0, 77] with time duration {, as the statistical
ensembles of noncolliding paths on the spatio-temporal cylinder P'(r) x (0, ¢,)
or on the spatio-temporal plane [0, 77]x (0, ¢,), vV gives a boundary condition
to the paths.

e The degeneracy of types in the scaling limit N — oo, r — oo with constant
density p of paths shown by Theorem 3.6 is caused by vanishing of the
boundary effect in this bulk limit.

62



e Characterization of the present determinantal point processes (=¥, PtRN?t €
(0,%4)) in terms of SDEs should be further studied. The noncolliding Brown-
ian bridges discussed in Section 4 are determinantal and the spatio-temporal
correlation kernels should be determined.

e The corresponding SDEs will be the systems with the drift terms given by
the logarithmic derivatives of Macdonald denominators,

0
log W (&(a); N r(t, — 1)) dt, j=1.2.....N,

AXTN(t) = dB;(t) +
J / BCLJ :C:XRN(t)

where B,(t),7 = 1,2,..., N are independent copies of one-dimensional stan-
dard Brownian motions on R for each type Ry.

e We write the logarithmic derivatives of Jacobi’s theta functions 0,(¢;7) as

0 CASE.
@f log ﬁu(f ) = ;

dlogﬂu(f* ) [L2071;2939

with ), (§;7) = 0U,,(&7)/0€.
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Then the explicit expressions for the SDEs are given as follows;

N
de’N* (t) = dB;(t) + dlog 9 (n (Z EXTN (4); NAN =1 r(t, — t)) dt
=1

+ 3 dlog ﬁl(g(Xfol(t)) - g(Xfol(t)):NANflT(t* - t))dt, j=1.2.....N,
1<k<N,
k]
te(0.t), XteP(nV,
dX TN (1) = dB () + dlog 01 (§(XTN (8)); NPN w(t = )) dt

+ 0 3 {dtogor (e(XTN (8) = €XN () NN 7 (. — 1))
1<k<N,k#j

+dlog 0 (XN (8) + (XN () N PN r(tn — ) bat,  j=1,2,..., N,
V V.
deN (t) = dB;(t) + 2d log V1 (g(QXfN (1)) 2N BR 7 (¢, — t))dt

4 v
+ X {atesor (XN () — e(XN (1) NN 7 (8. — 1))
1<k<N,k#j

Vv \4
+ dlog 91 (€N (1) + §X N () NP 7 (1, — ) pat. i=1.2.. N
deCN (t) = dB; (t) + 2d log 91 (2§(XjCN(t))§NGNT(t* . t))dt

+ 0 > {dtogor (s(X 7N () — &(XN (1) NON n(ts — 1))
1<k<N,k#j

+ dlog 91 (E(X].CN () + E(XEN(t));NCI\\/’T(t* - t))}dt, j=1.2,.... N,
deXf (t) = dB; (t) + dlog 91 (g(XfX’ (1)) NN (1, — t)/Q)dt

\ Vv
+ 0 {ateson (s(X N () — €O N (1) NN 7 (1 — 1))
1<k<N,k#j

Vv \Y
+ dlog 91 (5(XfN () + E(X N (£))s NOR 7 (ta — 0)bar, j=1.2....N
dXPON (1) = aB; (1) + dlog 01 (XN (0): NBON 7(8, — 1)) dit + 2d 1oz 9 (26 (XN (8)); 24BN 7t — 1)) dt

+ 3 fdosun (XN () — €IV @) NEON okl — 1)
1<k<N,k#j

+ dlog ¥ (E(XfCN(t)) +e(XPON () NBON 7 (2, — ) jde, i=1.2.... N,

dX]N (1) =dBj() + 3 {d1og91 (g(XfN(t)) — e(XPN () NPN (2. — 0)
1<k<N,k#j ’

+dlog 01 (60X () + €X N (0); NON r(tu = 1)) }at,  G=1,2,.... N,

te(0,ts), XN(t)ye[0,7]Y, Ry =Bn,By,Cn,CxN,BCN,Dx.
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e An important observation is the fact that as 7 1 t,, these SDEs show the
following asymptotics,

Ry Rn
r v — XN (T)
dX ™ (t) ~ dB;(t) + - t_; .

j=1.2,....N, t1t,.

e This implies that these SDEs indeed represent the Brownian bridges pinned
at the configurations vV at t = t,.

e Further study of these SDEs involving elliptic functions are now in progress
in the joint work with P. Graczyk (Angers) and J. Malecki (Wroclaw).
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e In [For06] Forrester studied the quantum N-particle systems in two di-
mensions with doubly periodic boundary conditions, in which the N-body
potentials and wave functions are described using the Jacobi theta func-
tions. He constructed the doubly periodic probability measures on a com-
plex plane and discussed solvability and universality of the obtained two-
dimensional systems.

e From the view point of the present study, his systems are of type Ay_; and
they are truly elliptic.

e (Generalization of his study to the quantum systems associated with other
six types of irreducible reduced affine root systems will be an important
future problem.

[For06] Forrester, P. J., “Particles in a magnetic field and plasma analogies:
doubly periodic boundary conditions,” J. Phys. A: Math. Gen. 39, 13025
13036 (2006).
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e Consider the problem on C with the double periodicity with periods

L and W, 0< L, W < 0.
e Put W
() =¢=0=2  a=a(lW)=—,
and consider the following versions of Rosengren-Schlosser’s functions of
z € C,

FaiN _ asBN/ .. _ rRy Ry ARy R
M (2) = MY (2 LW) = (2 (N6 N ™a), j=12. N,

J
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e Then we can prove the following orthogonality with respect to the double
integrals with respect to x+ = Rz and y = 3z,

Proposition 5.1 Letz = v+iy,x,y € R. Ifj, k€ {1,2,..., N}, then for Ry = An_1.,
By, By, Cy, CY, BCy, Dy,

L W Ry

2NN - ) o

] dx/ dy exp (— W y2> ]V[]R“ (z)]wlf“ (2) = hf“()jk,
0 0

where

pAN-1 _ LW e2meU=122IN i e (1.2 N},

T VaNa |

QLW ARy
REN — —627ra(JR?\ (1)) /NFEN j e {17 2,.. ., N}, for Ry = Cl, C]\\/77 BCy,

7 )

%‘
S

(4L

=

2ma (RN ()2 /NN

€ J=1

hRN: < fOT RN:BN7B]\\§7

J

%H
S

2LW 627ra(.]RN(j))2/NRN j < {2, 3, ceey N}7

)

p2raU=DYNIN e (1N,

I {
e27ra(j—1)2/NDN

=) |l o

. jef{2.3.....N—1}.

\

e We can obtain new six families of DPP on C. (The type Ax_; was studied
by Forrester (2006).) More detail will be reported somewhere else.
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e As mentioned in Section 1, the present determinantal point processes are el-
liptic extensions of the eigenvalue ensembles of Hermitian random matrices

in GUE (and chiral GUE).

e The trigonometric reductions are related with the eigenvalue distributions
of random matrices in circular ensembles.

e It will be an interesting future problem to find the statistical ensembles of
random matrices in the elliptic level whose eigenvalues realize the present
seven types of elliptic determinantal point processes.
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Thank you very much
for your attention.
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