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Today’s talk

The universality for random matrices, which is envisioned by E.
Wigner, is a central topic in random matrix theory as the CLT for
strongly correlated particle systems.

We consider dynamical universality for random matrices, which is
finite particle approximation for infinite dimensional stochastic
differential equations (ISDE) as a counterpart of universality for
random matrices.
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Log-gases with β = 1, 2, 4 and its macroscopic limit

For β = 1, 2, 4, consider β-log-gas on R with N particles:

µN
β,V (dxN ) ∝

N∏
i<j

|xi − xj |β
N∏
k=1

e−βNV (xk)dxN .

Here, V : R → R is free potential of some suitable class.

Let ρV be an equilibrium meas. for V , that is, for xN =
∑

1≤i≤N δxi ,

lim
N→∞

EµN
β,V

[
1

N
xN ((−∞, s])] =

∫ s

−∞
ρV (x) dx.

When V is quadratic, µN
β,V is eigenvalue distribution of G(O/U/S)E

for β = 1, 2, 4 respectively, and ρV is nothing but the Wigner
semicircle law ρsc(x) =

2
π

√
1− x21{|x|<1}.

This convergence is a macroscopic regime for log-gas. Next, we
consider a thermodynamical limit for and obtain a random
configuration with infinitely many particles as a microscopic regime.
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Soft-edge scaling limit and the Airy random point fields

First we consider the case V is quadratic.

We take the soft-edge scaling as x 7→ s

2N
2
3
+ 1 and let µN

Ai,β,V be the

prob. meas. w.r.t. s:

µN
Ai,β,V (ds

N ) ∝
N∏
i<j

|si − sj |β
N∏
k=1

exp
{
− βN

∣∣∣ sk

2N
2
3

+ 1
∣∣∣2} dsN .

Then it is well known that for β = 1, 2, 4,

lim
N→∞

µN
Ai,β,V = µAi,β in law .

Here, µAi,β is the Airyβ random point field (RPF).
For β = 2, n-corr. func. ρnAi,2 for µAi,2 is given by

ρnAi,2(x
n) = det

[Ai(xi)Ai′(xj)−Ai′(xi)Ai(xj)

xi − xj

]
1≤i,j≤n

.

For β = 1, 4, corr. func. for µAi,β have similar expressions.
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ISDEs associated with the Airyβ RPFs

We’d like to find a ISDE related to the Airyβ RPF.
Recall that when V is quadratic, then

µN
Ai,β,V (ds

N ) ∝
N∏
i<j

|si − sj |β
N∏
k=1

exp
{
− βN

∣∣∣ sk

2N
2
3

+ 1
∣∣∣2} dsN ,

and consider the Dirichlet form on L2(RN , µN
Ai,β,x2) given by

EN (f, g) =
1

2

∫
RN

N∑
i=1

∇if · ∇ig dµ
N
Ai,β,V .

By integration by parts for this Dirichlet integral, we obtain a
generator and deduce the associated SDE: for 1 ≤ i ≤ N ,

dXN,i
t = dBi

t +
β

2

{ ∑
1≤j ̸=i≤N

1

XN,i
t −XN,j

t

− XN,i
t

2N
1
3

−N
1
3

}
dt.

A limit formula N → ∞ is supposed to be an ISDE related to the
Airyβ RPF.
What is the limit ISDE?
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ISDEs associated with the Airyβ RPFs

For β = 1, 2, 4, [Osada-Tanemura ’16 +] proved that the limit ISDE
for

dXN,i
t = dBi

t +
β

2

{ ∑
1≤j ̸=i≤N

1

XN,i
t −XN,j

t

− XN,i
t

2N
1
3

−N
1
3

}
dt

is given by the following Airyβ interacting ISDE

dXi
t = dBi

t +
β

2
lim
s→∞

{ ∑
|Xj

t |<s,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<s

ρ̂(x)

−x
dx

}
dt, i ∈ N,

where ρ̂(x) =
1(−∞,0)(x)

π

√
−x.

In other word, the (labeled) distorted Brownian motion w.r.t. the
Airyβ RPF solves the Airyβ interacting ISDE.
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Soft-edge universality for log-gases

Let µN
β,V for V (x) =

∑2l
i=0 κix

i (κ2l > 0) and the soft-edge scaling

x 7→ N− 1
2l

{
cN

(
1 +

s

αNN
2
3

)
+ dN

}
,

then the prob. meas. µN
Ai,β,V is given by

µN
Ai,β,V (ds

N ) ∝
N∏
i<j

|si − sj |β

×
N∏
k=1

exp
{
− βNV

(
N− 1

2l

{
cN

(
1 +

s

αNN
2
3

)
+ dN

})
} dsN .

Here, cN , αN , dN are constants depend only on N and V .
For β = 1, 2, 4,

lim
N→∞

µN
Ai,β,V = µAi,β in law.

µAi,β is independent of V (the Airyβ RPF is universal).
The soft-edge universality was proven for more general V , but for a
certain reason we consider even degree polynomial (explain later).
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Dynamical universality

We’d like to formulate dynamical version of universality for RM.

Recalling

µN
Ai,β,V (ds

N ) ∝
N∏
i<j

|si − sj |β

×
N∏
k=1

exp
{
− β

2
NV

(
N− 1

2l

{
cN

(
1 +

s

αNN
2
3

)
+ dN

})}
dsN ,

from the same procedure as V (x) = x2, we deduce the associated
SDE : for 1 ≤ i ≤ N ,

dXN,i
t = dBi

t +
β

2

{ ∑
1≤j ̸=i≤N

1

XN,i
t −XN,j

t

dt

− N
1
3
− 1

2l cN
2αN

V ′
(
N− 1

2l

{
cN

(
1 +

XN,i
t

αNN
2
3

)
+ dN

})}
dt, .
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Dynamical universality

It is supposed that the limit ISDE for

dXN,i
t = dBi

t +
β

2

{ ∑
1≤j ̸=i≤N

1

XN,i
t −XN,j

t

dt

− N
1
3
− 1

2l cN
2αN

V ′
(
N− 1

2l

{
cN

(
1 +

XN,i
t

αNN
2
3

)
+ dN

})}
dt,

as N → ∞ is the Airyβ interacting ISDE given by

dXi
t = dBi

t +
β

2
lim
s→∞

{ ∑
|Xj

t |<s,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<s

ρ̂(x)

−x
dx

}
dt.

Here, the limit is independent of V (dynamical universality).

The Airyβ interacting ISDE is a universal dynamical object.

We expect geometrical universality derives dynamical universality.

How to prove this limit transition?
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How to prove the dynamical universality

dXN,i
t = dBi

t +
β

2

{ ∑
1≤j ̸=i≤N

1

XN,i
t −XN,j

t

dt

− N
1
3
− 1

2l cN
2αN

V ′
(
N− 1

2l

{
cN

(
1 +

XN,i
t

αNN
2
3

)
+ dN

})}
dt,

dXi
t = dBi

t +
β

2
lim
s→∞

{ ∑
|Xj

t |<s,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<s

ρ̂(x)

−x
dx

}
dt.

One way to prove the limit transition is to calculate the drift term,
like Osada-Tanemura’s argument for quadratic V, but such argument
is difficult (even for the simplest case V (x) = x2, it involves hard
analysis).
To avoid such model dependent hard calculation, we constructed a
general framework such that geometrical universality derives
dynamical universality automatically.
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Strong convergence for RPFs

We saw that for β = 1, 2, 4,

lim
N→∞

µN
Ai,β,V = µAi,β in law.

One requirement for the dynamical universality is strong convergence
for RPFs in the following sense: for any n ∈ N,

lim
N→∞

ρN,n
Ai,β,V = ρnAi,β compact uniformly,

Here ρN,n
Ai,β,V and ρnAi,β are n-corr. func’s for µN

Ai,β,V and µAi,β resp.

We quote the following strong convergence result:

Lemma 1 (’07 Deift-Gioev)

For β = 1, 2, 4 and V (x) =
∑2l

i=0 κix
i (κ2l > 0), then for any n ∈ N,

lim
N→∞

ρN,n
Ai,β,V = ρnAi,β compact uniformly.

This lemma (and non-colliding property for Airyβ interacting ISDE)
deduces the next result.
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Dynamical soft-edge universality

Theorem 1 (K. -Osada 17+ for β = 2, K. 18+ for β = 1, 4)

For β = 1, 2, 4 and V (x) =
∑2l

i=0 κix
i, let (XN,1, . . . , XN,N ) be a

solution with equilibrium initial distribution for

dXN,i
t = dBi

t +
β

2

{ ∑
1≤j ̸=i≤N

1

XN,i
t −XN,j

t

dt

− N
1
3
− 1

2l cN
2αN

V ′
(
N− 1

2l

{
cN

(
1 +

XN,i
t

αNN
2
3

)
+ dN

})}
dt.

Then there exists a stoch. proc. (X1, X2, . . .) ∈ C([0,∞],RN) satisfying

dXi
t = dBi

t +
β

2

{
lim
s→∞

{ ∑
|Xj

t |<s,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<s

ρ̂(x)

−x
dx

}
dt

}
,

with equilibrium initial distribution such that for any m ∈ N
lim

N→∞
(XN,1, . . . , XN,m) = (X1, . . . , Xm) in law in C([0,∞],Rm).

Here ρ̂(x) = 1(−∞,0)(x)π
−1

√
−x. 12 / 13



Concluding remarks & Summary

We see that the “strong” universality for random matrices derives
dynamical version.

The universality for random matrices have been generalized
intensively ([Bourgade-Erdös-Yau 2014], etc. ), but many results
show only weak convergence of correlation functions.
If we improve their weak convergence results to strong convergence
results, accordingly our approach can prove the dynamical universality.
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