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Eigenvalue correlation functions

Hermitian N x N random matrix H with eigenvalues A1, ..., Ay.

Goal: eigenvalue density-density correlations at two different energies.
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Eigenvalue process ), 0»,, with correlation functions
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Connected (or truncated) two-point function

p(x,y) = pa(z,y) — pr(x)p1(y),

measures eigenvalue density-density correlations at the energies = and .



Spectral scales

Let H be a Wigner matrix: (H;; : i < j) are independent with EH,; =0,
E|\/NHU|2 = 1, and ‘\/NHU|C = O(l)
y—x

Scales w = ¥5=:

® Macroscopic: w < 1 (global extent of the spectrum).
® Microscopic: w < 1/N (eigenvalue spacing).
® Mesoscopic: 1/N € w < 1.
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Microscopic eigenvalue correlations

Let op := 5=+/(4 — E?), be the semicircle law.

To analyse the microscopic correlations, choose an energy E and consider
rescaled eigenvalue process
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with connected two-point function
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pe(u,v) = (NQE)2P( + — NQE + NQE>

Microscopic density-density correlations «— behaviour of pg for fixed u, v.



Wigner-Gaudin-Mehta-Dyson (WGDM) statistics

Let H be GUE (8 = 2) or GOE (8 =1). Then
]}Lr)noopE(u, v) =Yg(u—v)

weakly, where

with the sine kernel

s(u) = sin(mu)
U
For u — oo we have the asymptotic expansion
1 1+ cos?(mu) 1
Yi(u) = et mut +0 ub )’

Theorem [Universality (ABEKSTVYY, 2009-2016)]. (1) holds for arbitrary
Wigner matrices.



WGMD statistics for mesoscopic separations

Goal:
WGMD statistics for pg on mesoscopic scales 1 < u —v < N?

l.e., analyse the density-density correlations between energies v and v at
mesoscopic separations.
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Macroscopic fluctuations of linear statistics

A different type of fluctuation result, involving correlations of O(N?)
eigenvalues of typical macroscopic separation w =< 1.

E.g. for 8 =1 we have [Lytova, Pastur — 2009]

e = g [ e [ (P0) s
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where C4(-) is the fourth cumulant.

Any relation to WGDM statistics?



Result

Nn Nn

2Nw

Fix E € (-=2,2) and f,g € C°(R). Let

I/N<n<w< 1.

Using the notation

we have

/ P, 0) f (uw)g— (v) dudv = / Ty (. 0) fo (w)g—(v) dudo,



where,

1 n 3
m2(u—v)2 274 (u —v)4

Tei(u,v)=— + E(u,v)
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and
Tpo(u,v) = RN — + &(u,v)
B2\, 0) = 272 (u — v)? Y
1 1
=+ NTFLQE (2F1(U,’U) + FQ(U,U) %:6272(Hi'j) =+ Fg(u,’U) Z:C%(H,,)) .

Here C.(-) is the cumulant, kg := 2mpr = V4 — E?, and Fy, Fy, F5 are explicit
bounded elementary functions.

Blue = Average of Y3, Red = non-universal, £(u,v) = quantitatively
controlled error term.



Remarks

WGDM statistics valid to leading order on all mesoscopic scales Nw < N.
Fails at macroscopic scale Nw =< N.

For 8 =1, the subleading corrections of WGDM are leading order for
Nw < V/N. For Nw > v/N, dominant subleading corrections are
non-universal. These become leading order on macroscopic scales
Nw =< N.

Result completely insensitive to size of spectral window N7 > 1. Even at
macroscopic scale Nw = 1, our result is much more precise than [Lytova,
Pastur, 2009].

After the local rescaling by Nog, the WGDM terms do not depend on F
but the non-universal ones are proportional to 9;32.



Comparison to Gustavsson's theorem

Gustavsson [2005] analyses mesoscopic correlations of eigenvalue locations
instead of densities for GUE.

Order eigenvalues A1 < Ao < -+ < Ay and introduce quantiles ; defined by
i/N = [} 0, dz. Define normalized eigenvalues

5 704, N(Ni —74)

! Viog N '

Theorem. \; ~ N(0,1) and Cov(Ai, \;) ~ 3, where 8 =1 —log (j — 7).
Locations of two mesoscopically separated eigenvalues have a covariance of the
same order as their individual variances.

Interpretation: eigenvalues fluctuate as a semi-rigid jelly on the scale
Viog N/N.

Fluctuations of eigenvalue locations and density have little to do with one
another.



Some ideas of proof

We can rewrite

1
u,v) = ——— Cov(X"(u), X"(v)),
pi(1,) = (7,53 Cov(X (), X7(0)
where X7(u) == 3, f7/27 (E + g — ;) and f*(z) :== £ f(£).
Key difficulty, appearing throughout the proof: we are computing the
covariance (to an arbitrary precision) of two weakly correlated random variables:

_ 1

Cov(X"(u), XT(v)) < ! Var(X"(u)) < 7

9
w?

with 1I/N < n<w < 1.



Main work: compute covariance of Green functions (with Fy — E5 = 2w)
G=(H-FE —in !, F=(H-FEy—in)*'.

With notations )
M::NTrM, (X) =X -EX,
we have to compute
E(G)(E7).
We do this by deriving a recursive family of self-consistent equations, indexed
by a finite tree, in polynomials in expectations of polynomials of the variables

A™, (A™), A where A =G,G*, F, F*.



Simple tools

® Resolvent identity 2G = H(H —2)™' — 1.
® Cumulant expansion [Khorunzhy, Khoruzhenko, Pastur — 1996]

1

l
=" G (MEP (R)] + (Error).
k=0

Can be viewed as a generalization of Gaussian integration by parts to
arbitrary random variables. Alternatively, a quantitative and more precise
version of Stein's method.

Very powerful for deriving recursive high moment estimates in RMT [He,
K —2016]. This strategy was subsequetly used to derive local laws [Lee,
Schnelli — 2017], [He, K, Rosenthal — 2017].



How to start

Apply resolvent identity and cumulant expansion to E(G)(F*), and get

1

E(G(F™) = . _9EG

(EGF*Q—s— NE(G2>< ")+ E(G)’ <F*>+Wl>.

Leading term of order 1/(Nw)? (will have to be computed precisely by another
self-consistent equation).

Error terms have to be estimated. Naive attempt: using the local semicircle
law, we obtain

B(G1 () = O s )

Much too big!

Reason: we did not exploit that (G)? and (F™*) are weakly correlated. Solution:
self-consistent equations for error terms.



General scheme for a term X:

® |f X is an error term and the naive bound is too large, derive a
self-consistent equation that expresses X in terms of a family of other
terms.

® |f X is a term we wish to compute, derive a self-consistent equation that
extracts its main contribution plus error terms.

At each step, every term X gives rise to a set of children S(X) of further terms
(tree).

How do we stop?

1. Ildentify a large enough set F of terms that is closed under the map
X — S(X).

2. Find bounds that allows to estimate all X € F of a sufficiently high
generation.

Algebra gets somewhat involved.



Tools for stopping

For the stopping in 2, we need much more than the local semicircle law: a

priori bounds from [He, K —2016] on (G™);;, and the estimate

EG™ = On(1) (2)
for all m € N.
(Local semicircle law gives EG™ = O(1/n™~1).)

Interpretation: expected eigenvalue density p has uniformly bounded derivatives
of all order down to all mesoscopic scales:

m—1
ImEGM:Im/ﬂd = (-1)™ 11m/ A"
- (x —z)m T —z

_ (_1)77171 /p(mfl)(x) . . E7; g dz = (—1 )mfl(p(mfl) «0")(E).

Proof: another recursive family of self-consistent equations, except that now it
is possible to stop just using the local semicircle law and [He, K — 2016].






Define

u—F v—F
) = g (5E, 2= E)
(w,v) =g Nog ' Nog
where
44+ zz + /(4 —27)(d — a3))
g1(21,22) = — > 5 2 AT
V= - a)(Vi—ad + /i a3)
2(x2 —2) (22 -2
g1, 29) = (1 2)( 3 2)7
(4*931)(4*552)
x%xQ + xlwg —2x1 — 229
93(9617552): ) 2
(4 —27)(4 — 73)
Error term
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