Two-periodic Aztec diamond and matrix valued orthogonal polynomials

Arno Kuijlaars (KU Leuven, Belgium) with Maurice Duits (arXiv 1712:05636) and Christophe Charlier, Maurice Duits, Jonatan Lenells (in preparation)

Random Matrices and their Applications Kyoto University Kyoto, Japan, 21 May 2018

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Outline

- 1. Aztec diamond
- 2. Hexagon tilings
- 3. The two periodic model
- 4. Non-intersecting paths
- 5. Determinantal point processes
- 6. New result for periodic T_m
- 7. Matrix Valued Orthogonal Polynomials (MVOP)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- 8. Results for the Aztec diamond
- 9. Results for the hexagon

1. Aztec diamond

Aztec diamond

Tiling of an Aztec diamond

• Tiling with 2×1 and 1×2 rectangles (dominos)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Four types of dominos

Large random tiling

Recent development

• Two-periodic weighting Chhita, Johansson (2016) Beffara, Chhita, Johansson (2018 to appear)

Two-periodic weights

• A new phase within the liquid region: gas region

Phase diagram

2. Hexagon tilings

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Lozenge tiling of a hexagon

three types of lozenges

Arctic circle phenomenon

Two periodic hexagon (size 6)

 $\alpha = \mathbf{0}$

 $\alpha = 0.1$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Two periodic hexagon (size 30)

 $\alpha = 0.1$

 $\alpha = 0.18$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─

Two periodic hexagon (size 50)

 $\alpha = 0.1$

 $\alpha = 0.15$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Phase Diagrams

lpha < 1/9,

lpha=1/9,

 $\alpha > 1/9$

・ロト・四ト・モート ヨー うへの

3. The two periodic model

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Oblique hexagon and weights

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

• Vertices are on the integer lattice \mathbb{Z}^2

Oblique hexagon and weights

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Vertices are on the integer lattice \mathbb{Z}^2

Weight

- Weight of a tiling T is the product of the weights of the lozenges in the tiling.
- Probability is proportional to the weight

$$\mathsf{Prob}(T) = \frac{w(T)}{Z_N}$$

where $Z_N = \sum_T w(T)$ is the normalizing constant (partition function)

4. Non-intersecting paths

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Non-intersecting paths

Non-intersecting paths

Non-intersecting paths on a graph

Paths fit on a graph

Weights on the graph

Red edges carry weight α , Other edges have weight 1

0 1 2 3 4 5 6 7 8 9 1011 12 = 10 = 10 = 1000

Two periodic hexagon (size 30)

• For $0 < \alpha < 1$: punishment to cover the red edges.

• Appearance of the staircase region in the middle.

5. Determinantal point process : known results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Particle configuration

Focus on positions of particles along the paths.

0 1 2 3 4 5 6 7 8 9 101112 => (=> => = -990

Transitions and LGV theorem

Particles at level
$$m$$
: $x_j^{(m)}$, $j=0,\ldots,N-1$.

Proposition

$$\mathsf{Prob}\left((x_{j}^{(m)})_{j=0,m=1}^{N-1,2N-1}\right) = \frac{1}{Z_{n}}\prod_{m=0}^{2N-1}\det\left[T_{m}(x_{j}^{(m)},x_{k}^{(m+1)})\right]_{j,k=0}^{N-1}$$

with
$$x_j^{(0)} = j$$
, $x_j^{(2N)} = N + j$ and transition matrices

$$egin{aligned} &\mathcal{T}_m(x,x) = 1 \ &\mathcal{T}_m(x,x+1) = egin{cases} lpha, & ext{if} \ m+x \ ext{is even}, \ &1, & ext{if} \ m+x \ ext{is odd}, \ &\mathcal{T}_m(x,y) = 0 & ext{otherwise}, & x,y \in \mathbb{Z} \end{aligned}$$

This follows from Lindström Gessel Viennot lemma.Lindström (1973)Gessel-Viennot (1985)

Determinantal point process

Such a product of determinants defines a determinantal point process on $\mathcal{X} = \{0, \dots, 2N\} \times \mathbb{Z}$:

Corollary

There is a correlation kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that for every finite $\mathcal{A} \subset \mathcal{X}$

Prob [\exists particle at each $(m, x) \in \mathcal{A}$]

 $= \det \left[K((m,x),(m',x')) \right]_{(m,x),(m',x') \in \mathcal{A}}$

Eynard Mehta formula

Notation for m < m'

$$T_{m,m'} = T_{m'-1} \cdot \cdot \cdot T_{m+1} \cdot T_m$$

is transition matrix from level m to level m', and

$$G = [T_{0,2N}(i,j)]_{i,j=0}^{2N-1}$$

is finite section of $T_{0,2N}$.

Eynard-Mehta (1998) formula for correlation kernel

$$K((m, x), (m', x')) = -\chi_{m > m'} T_{m', m}(x', x) + \sum_{i,j=0}^{2N-1} T_{0,m}(i, x) [G^{-1}]_{j,i} T_{m', 2N}(x', j)$$

• How to invert the matrix G?

6. Determinantal point process: new result for periodic T_m

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Periodic transition matrices

$$T_{m} \text{ is 2-periodic: } T_{m}(x+2, y+2) = T_{m}(x, y) \text{ for } x, y \in \mathbb{Z}$$

Block Toeplitz matrix $T_{m} = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots \\ \ddots & B_{0} & B_{1} & \ddots & \ddots \\ \ddots & B_{-1} & B_{0} & B_{1} & \ddots \\ & \ddots & B_{-1} & B_{0} & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \end{pmatrix}$
with block symbol
$$A_{m}(z) = \sum_{j=-\infty}^{\infty} B_{j} z^{j} = B_{0} + B_{1} z = \begin{cases} 1 & \alpha \\ z & 1 \end{pmatrix} \text{ if } m \text{ is even}, \\ \begin{pmatrix} 1 & \alpha \\ z & 1 \end{pmatrix} \text{ if } m \text{ is odd}. \end{cases}$$

• Notation $A(z) = A_1(z)A_0(z)$

(ロ)、(型)、(E)、(E)、 E) の(()

Theorem (Duits + K for this special case)

Suppose hexagon of size 2N. Then

 $\begin{pmatrix} K(2m, 2x; 2m', 2y) & K(2m, 2x+1; 2m', 2y) \\ K(2m, 2x; 2m', 2y+1) & K(2m, 2x+1, 2m', 2y+1) \end{pmatrix}$ = $-\frac{\chi_{m > m'}}{2\pi i} \oint_{\gamma} A^{m-m'}(z) z^{y-x} \frac{dz}{z}$ + $\frac{1}{(2\pi i)^2} \oint_{\gamma} \oint_{\gamma} A^{2N-m'}(w) R_N(w, z) A^m(z) \frac{w^y}{z^{x+1} w^{2N}} dz dw$

where $R_N(w, z)$ is a reproducing kernel for matrix valued polynomials with respect to weight matrix

$$W_N(z) = \frac{A^{2N}(z)}{z^{2N}} = \frac{1}{z^{2N}} \begin{pmatrix} 1+z & 1+\alpha\\ (1+\alpha)z & 1+\alpha^2z \end{pmatrix}^{2N}$$

 $\mathcal{O} \land \mathcal{O}$

7. Matrix Valued Orthogonal Polynomials (MVOP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MVOP

- Matrix valued polynomial $P_j(z) = \sum_{i=0}^j C_i z^i$
- Orthogonality

$$\frac{1}{2\pi i} \oint_{\gamma} P_j(z) W_N(z) P_k^t(z) \, dz = H_j \delta_{j,k}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ
MVOP

- Matrix valued polynomial $P_j(z) = \sum_{i=1}^{j} C_i z^i$
- Orthogonality

$$\frac{1}{2\pi i} \oint_{\gamma} P_j(z) W_N(z) P_k^t(z) \, dz = H_j \delta_{j,k}$$

Definition

Reproducing kernel for matrix polynomials

$$R_N(w,z) = \sum_{j=0}^{N-1} P_j^t(w) H_j^{-1} P_j(z)$$

• If Q has degree $\leq N - 1$, then

$$\frac{1}{2\pi i} \oint_{\gamma} Q(w) W_N(w) R_N(w, z) dw = Q(z)$$

Riemann-Hilbert problem

- There is a Christoffel-Darboux formula for *R_N* and a Riemann Hilbert problem for MVOP
- $Y:\mathbb{C}\setminus\gamma\rightarrow\mathbb{C}^{4\times4}$ satisfies
 - Y is analytic,

•
$$Y_{+} = Y_{-} \begin{pmatrix} I_{2} & W_{N} \\ 0_{2} & I_{2} \end{pmatrix}$$
 on γ ,
• $Y(z) = (I_{4} + O(z^{-1})) \begin{pmatrix} z^{N}I_{2} & 0_{2} \\ 0_{2} & z^{-N}I_{2} \end{pmatrix}$ as $z \to \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Riemann-Hilbert problem

- There is a Christoffel-Darboux formula for *R_N* and a Riemann Hilbert problem for MVOP
- $Y: \mathbb{C} \setminus \gamma \to \mathbb{C}^{4 imes 4}$ satisfies
 - Y is analytic,

•
$$Y_{+} = Y_{-} \begin{pmatrix} I_{2} & W_{N} \\ 0_{2} & I_{2} \end{pmatrix}$$
 on γ ,
• $Y(z) = (I_{4} + O(z^{-1})) \begin{pmatrix} z^{N}I_{2} & 0_{2} \\ 0_{2} & z^{-N}I_{2} \end{pmatrix}$ as $z \to \infty$.

Christoffel Darboux formula

$$R_N(w,z) = \frac{1}{z-w} \begin{pmatrix} 0_2 & l_2 \end{pmatrix} Y^{-1}(w) Y(z) \begin{pmatrix} l_2 \\ 0_2 \end{pmatrix}$$

Delvaux (2010) $\mathcal{D}_{\mathcal{O}_{\mathcal{O}}}$

Lozenge tiling of hexagon

•
$$A(z) = \begin{pmatrix} 1+z & 1+\alpha \\ (1+\alpha)z & 1+\alpha^2z \end{pmatrix}$$
 has eigenvalues

$$1 + \frac{1+\alpha^2}{2}z \pm \frac{1-\alpha^2}{2}\sqrt{z(z+\frac{4}{(1-\alpha)^2})^2}$$

that "live" on $y^2 = z(z + \frac{4}{(1-\alpha)^2}) \rightarrow$ genus zero

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Lozenge tiling of hexagon

•
$$A(z) = \begin{pmatrix} 1+z & 1+\alpha \\ (1+\alpha)z & 1+\alpha^2z \end{pmatrix}$$
 has eigenvalues

$$1 + \frac{1+\alpha^2}{2}z \pm \frac{1-\alpha^2}{2}\sqrt{z(z+\frac{4}{(1-\alpha)^2})^2}$$

that "live" on
$$y^2 = z(z + \frac{4}{(1-\alpha)^2}) \longrightarrow$$
 genus zero

Two periodic Aztec diamond

• Similar analysis leads to $\begin{pmatrix} 2\alpha z & \alpha(z+1)\\ \alpha^{-1}z(z+1) & 2\alpha^{-1}z \end{pmatrix}$ with eigenvalues

$$(\alpha + \alpha^{-1})z \pm \sqrt{z(z + \alpha^2)(z + \alpha^{-2})}$$

8. Results for Aztec diamond

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Explicit formulas

• MVOP of degree *N* is explicit for *N* even

$$P_N(z) = (z-1)^N z^{N/2} A^{-N}(z)$$

• Explicit formula for correlation kernel (double contour part only)

$$\frac{1}{(2\pi i)^2} \oint_{\gamma_{0,1}} \frac{dz}{z} \oint_{\gamma_1} \frac{dw}{z - w} A^{N-m'}(w) F(w) A^{-N+m}(z) \\ \times \frac{z^{N/2}(z-1)^N}{w^{N/2}(w-1)^N} \frac{w^{(m'+n')/2}}{z^{(m+n)/2}}$$

with
$$F(w) = \frac{1}{2}I_2$$

+ $\frac{1}{2\sqrt{w(w+\alpha^2)(w+\alpha^{-2})}} \begin{pmatrix} (\alpha-\alpha^{-1})w & \alpha(w+1) \\ \alpha^{-1}w(w+1) & -(\alpha-\alpha^{-1})w \end{pmatrix}$

Steepest descent

• Classical steepest descent for integrals on the Riemann surface explains the phases and transitions between phases

・ロト・西ト・ヨト・ヨー うらぐ

9. Results for hexagon

Scalar orthogonality

MVOP for two periodic hexagon are expressed in terms of scalar OP of degree 2N

$$\frac{1}{2\pi i} \oint_{\gamma_1} P_{2N}(\zeta) \left(\frac{(\zeta - \alpha)^2}{\zeta(\zeta - 1)^2} \right)^{2N} \zeta^k d\zeta = 0,$$

$$k = 0, 1, \dots, 2N - 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Non-hermitian orthogonality with respect to varying weight

Scalar orthogonality

MVOP for two periodic hexagon are expressed in terms of scalar OP of degree 2*N*

$$\frac{1}{2\pi i} \oint_{\gamma_1} P_{2N}(\zeta) \left(\frac{(\zeta - \alpha)^2}{\zeta(\zeta - 1)^2} \right)^{2N} \zeta^k d\zeta = 0,$$

$$k = 0, 1, \dots, 2N - 1.$$

- Non-hermitian orthogonality with respect to varying weight
- We can see the phase transition at α = 1/9 in the behavior of the zeros of P_{2N} as N → ∞.

Zeros

• Curve closes for $\alpha = 1/9$.

• Analysis uses logarithmic potential theory, *S*-curves in external field, and the Riemann-Hilbert problem

Thank you for your attention

