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Dunkl jump processes

Dunkl processes are generalizations of multidimensional Brownian motion
obtained through the use of differential-difference operators (Dunkl operators) to
construct the infinitesimal generator (Dunkl Laplacian). They are associated to
root systems, and have discontinuities.

Continuous part: radial Dunkl processes.

AN−1: Dyson model (β > 0)
BN : Wishart-Laguerre processes / interacting Bessel processes (β > 0,
ν > −1/2)

Discontinuous part: Dunkl Jump processes
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Example: process of type AN−1

Figure: Sample of the Dunkl process of type AN−1 and its jump count for N = 10,
β = 8. The horizontal lines represent jumps.
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Problems we study

Dunkl jump process

Dynamics → master equation
Relaxation → behavior at long times and convergence to equilibrium

Jump counting process

Long-time behavior and jump rate
Phase transition in the bulk scaling limit (t ∼ N) for the processes of type
AN−1 and BN at βc = 1

For details, please come see the poster!
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Description of the Model

D a diagonal deterministic matrix of size N with some
assumptions on its density of states.

t a scaling parameter.

W a centered symmetric or Hermitian Wigner matrix of size N
such that E[|W 2

ij |] = N−1.

We will consider the model:

D +
√
tW
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Different Phases

Good model for phase transitions for eigenvalues and eigenvectors

t� N−1 N−1 � t� 1 t > 1
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Non-ergodic Delocalized States

Eigenvectors are delocalized over Nt sites: a growing number of
sites but a vanishing fraction of the spectrum.

Projections of eigenvectors are asymptotically Gaussian with an
explicit variance localizing on Nt entries.

A form of quantum unique ergodicity holds: the probability mass
of a single eigenvector is concentrated around this specific variance.

Thank you!
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Problem: Edge Fluctuations of β-ensembles

Given β > 0, let λβ1 ≥ λ
β
2 ≥ · · · ≥ λ

β
N be sampled from

1

Zβ
·
∏
i<j

(xj − xi)β · exp

(
−β

4

N∑
i=1

x2i

)
, x1 ≥ · · · ≥ xN .

Problem

Given k ∈ N, understand the fluctuations of (λβ1 , . . . , λ
β
k) as N →∞.
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Operator Limit

Define the stochastic Airy opterator (SAO) with parameter β > 0 as

[Hβf ](x) := −f ′′(x) + xf(x) +
2√
β
W ′xf(x), f : R+ → R, f(0) = 0,

where (Wx)x≥0 is a Brownian motion.

Theorem (Dumitriu-Edelman (2002); Edelman-Sutton (2007);
Ramı́rez-Rider-Virág (2011))

Let Λβ1 ≤ Λβ2 ≤ · · · be the eigenvalues of Hβ. For every k ∈ N fixed,

N1/6(2
√
N − λβi )1≤i≤k ⇒ (Λβi )1≤i≤k.

Advantages of operator limit approach.

1 Unified method (i.e., for all β > 0) of studying β-ensembles.

2 Study limiting fluctuations through functional analysis, as they
arise as the spectrum of a differential operator.
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Stochastic Semigroup Approach

Idea. Study the asymptotic extreme value fluctuations of Gaussian
β-ensembles through the semigroups generated by the SAOs:

UβT := e−T ·H
β/2, T ≥ 0.

1 Feynman-Kac formulas for UβT .

2 Novel connections between edge fluctuations of β-ensembles and
stochastic calculus.

3 Yet another manifestation of the special structure present for
β = 2 in β-ensembles.

Theorem

Let (et)t∈[0,1] be a Brownian excursion, and let (`a)a≥0 be its local
time process on [0, 1].∫ 1

0

et dt− 1

2

∫ ∞
0

(`a)2 da ∼ N(0, 1/12)
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Cauchy noise loss for

stochastic optimization of random matrix models

via free deterministic equivalents

arXiv:1804.03154, github.com/ThayaFluss/cnl

Tomohiro Hayase

May, 2018

The University of Tokyo
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Parameter Estimation of Random Matrix Models

Random Matrix Models

• Compound Wishart Model: WCW(B) = Z ∗BZ

• Information-plus-noise Model: WIPN(A, σ) = (A + σZ )∗(A + σZ )

where Z is a Gaussian random matrix on a probability space (Ω,P).

Question

Estimate a parameter ϑ0 from a single-shot observation W (ϑ0)(ω), ω ∈ Ω.

Our method is based on

• Free Probability Theory (FDE, Subordination, Linearization, etc.)

• Stochastic Optimization (Stochastic (online) Gradient Descent )

Tomohiro Hayase (The University of Tokyo) Cauchy Noise Loss (arXiv:1804.03154) May, 2018 2 / 3



Example

(CW) A “mollified” spectral distribution of a model WCW(B) gets close to

that of a true model WCW(B0) as the iteration progresses;

(IPN) Rank reduction: our algorithm estimated the true rank of the signal

part (i.e. rank A) even if the true rank is not low.

More general random matrix models are in the scope of our method.
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The Euler characteristic method for the
largest eigenvalues of random matrices
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The Euler characteristic method

▶ X(t), t ∈ M : random field with smooth sample path
▶ Excursion set

Mx = {t ∈ M | X(t) ≥ x}

x

t0 t1

M = [t0, t1], χ(Mx) = 3 (Euler characteristic)

▶ The Euler characteristic method

Pr

(
sup
t∈M

X(t) ≥ x

)
≈ E[χ(Mx)] when x is large

▶ Useful in statistical testing hypothesis, i.e., p-value.
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The largest eigenvalue of a Wishart matrix

▶ The largest eigenvalue is the maximum of a random field:

λ1(A) = max
U∈M

tr(UA), M =

{
{hh⊤ | ∥h∥ = 1} (real Wishart)

{hh∗ | ∥h∥ = 1} (complex W)

Lemma (Morse’s theorem)

The Euler characteristic of the excursion set
Mx = {U ∈ M | tr(UA) ≥ x} is

χ(Mx) =


∑n

k=1(−1)k−11{λk(A) ≥ x} (real Wishart)∑n
k=1 1{λk(A) ≥ x} (complex Wishart)
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EC method

Theorem
Let A ∼ Wn(N, In) or CWn(N, In). Let α = N − n.

E[χ(Mx)] =


√
π(−1)n−1(n−1)!

2
N+n−1

2 Γ(N
2
)Γ(n

2
)

∫∞
x λ

N−n−1
2 e−

λ
2 dλL

(α)
n−1(λ) (real)

n!
Γ(N)

∫∞
x λN−ne−λdλ

×
{
L
(α)
n−1(λ)L

(α+1)
n−1 (λ)− L

(α)
n (λ)L

(α+1)
n−2 (λ)

}
(complex)

▶ Upper prob of λ1(A) (blue) and the EC method (orange)
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Edge asymptotics

Theorem
Let A ∼ Wn(N, In) or CWn(N, In). As N,n → ∞ s.t. N/n → γ,

E[χ(Mx)]
∣∣∣
x=µ++σs

→


1
2

∫∞
x Ai(x)dx (real)∫∞

x {Ai′(x)2 −Ai(x)2}dx (complex)

▶ Tracy-Widom (blue) and the EC method (orange)
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Other applications

1. Gaussian and beta (MANOVA) matrices can be dealt with in
the same way.

2. By changing the index manifold M ,

max
U∈M

tr(AU)

represents various functions of A, e.g.,
▶ The range of eigenvalues

λ1(A)− λn(A)

▶ Partial sum of the largest eigenvalues

λ1(A) + · · ·+ λr(A) (r < n)

▶ The largest singular-value σ1(A)
(when A is not real symmetric/Hermitian).

The EC method works for them.
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Large permutation invariant matrices are
asymptotically free over the diagonal

Camille Male

Institut de Mathématiques de Bordeaux & CNRS

16 mai 2018
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Free probability probability :

1 Generalizes classical probability : Free independence and associated
CLT, cumulants, entropy, harmonic analysis...

2 Robust for the spectral analysis of large random multi-matrix models :
e.g. unitarily invariant random matrices and Wigner matrices.

Traffic probability : to accommode models beyond this scope.

1 Generalizes non-commutative probability : a single independence
which unifies the three non-commutative notions.

2 Permutation invariance is the canonical model of traffic independence
in the large N limit.

We show in the context of large random matrices that Voiculescu’s notion
of conditional expectation provides an analytic tool for traffic
independence.

Camille Male (Univ. Bordeaux, CNRS) Traffic Indep. ⇒ Amalgamated Freeness 16 mai 2018 2 / 4



We write MN for the set of N by N matrices, DN ⊂MN for the subset of
diagonal matrices, ∆ :MN → DN for the diagonal map.

Theorem ( Au, Cébron, Dahlqvist, Gabriel, M.)

Let AN,1 = (A
(k)
N,1)k∈K , . . . ,AN,L = (A

(k)
N,L)k∈K be independent families of

random matrices which are uniformly bounded in operator norm and
permutation invariant. Then AN,1, . . . ,AN,L are asymptotically free over
the diagonal in the operator valued non-commutative probability space
(MN ,DN ,∆).

Diagonal version of the usual fixed point equations remains valid ⇒
numerical method

Camille Male (Univ. Bordeaux, CNRS) Traffic Indep. ⇒ Amalgamated Freeness 16 mai 2018 3 / 4
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Stochastic Higher Spin Six Vertex Model [Corwin-Petrov ’15]
Boltzmann vertex weights
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In its stationary state the HS6VM
can be defined on the full lattice Z2

x

t

m(x, t)

Stationary product measure

P(m(x, t) = M) /
⇣

⇢
s

x

⇠
x

⌘
M (s2

x

;q)
M

(q;q)
M

An important observable is the
stationary height H

H(x, t) �H(x + �x, t) = # of paths in [x, x + �x] at time t,

H(x, t + �t) �H(x, t) = # of paths crossing x

during the time interval [t, t + �t].

Exact formulas for the statistics of H
are a consequence of

I Yang Baxter equation
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We obtain

D
1

(⇣q

H(x, t);q)1

E

= 1

(q;q)1
Õ

k�0

(�1)kq

(k
2

)
(q;q)

k

det

⇣
1 � f⇣q

�k

A

⌘
G(⇣q�k),

with

f (n) = 1

1�q

n/⇣ ,

A(n,m) = 1

(2⇡ i)2
Ø

D

dw

w

Ø
C

dz

z

m

w

n

exp{xg(z)}
exp{xg(w)}

(q v

w

;q)1
(q v

z

;q)1
1

z�w

,

and G has a more complicated
expression.

Our formulas are good for
asymptotic analysis!

Theorem (IMS)

H(x,x)�⌘x

�x

1/3

D����!
x!1 F

BR

.

Here F

BR

is the Baik-Rains
distribution [Baik-Rains’00].
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Random Matrix Theory

Let ⇢(�) be the eigenvalue density or empirical spectral measure.

W
1

(x) :=
1X

k=0

mk

xk+1

, mk :=

Z

R
�k⇢(�) d�

is the resolvent. Along with analogues Wn(x1, . . . , xn), satisfies
recursion:

Wn+2

(x , x , I ) + 
X

J✓I

W|J|+1

(x , J)W|I�J|+1

(x , I � J)

+

nX

i=1

@

@xi

Wn(x , I � {xi})�Wn(I )

x � xi
+ (� 1)

@

@x
Wn+1

(x , I )

= N
�
V 0

(x)Wn+1

(x , I )� Pn(x ; I )
�
, I = (x

1

, . . . , xn).
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And Beyond

Inverse Stieltjes Transform ! Smoothed density

⇢̃(�) =
1

2⇡i
lim

✏!0

[W
1

(�� i✏)�W
1

(�+ i✏)]

What makes it topological?

Accessible derivation for Gaussian, Laguerre, Jacobi

(Aomoto’s method: integration by parts, etc.)

Spectral curves and enumerative geometry

(The Eynard-Orantin generalisation, Seiberg-Witten
representation, pairs-of-pants decomposition, etc.)

Anas A. Rahman Topological Recursion



Quantized Vershik–Kerov Theory and
q-deformed Gelfand–Tsetlin Graph

Ryosuke Sato

Graduate School of Mathematics, Kyushu university, Fukuoka, Japan
E-mail : ma217052@math.kyushu-u.ac.jp

Abstract
We propose natural quantized character theory for inductive systems of
compact quantum groups. Also, we provided a q-deformation of the
approximation theorem for ordinary characters of group due to
Vershik–Kerov. This relate to Gorin’s analysis on q-Gelfand–Tsetlin graph
explicitly when the given quantum groups are quantum unitary groups.



Character theory of inductive limit groups G∞

A continuous function χ : G → C is a character if it is
▶ positive-type ([χ(gi g

−1
j )]i,j ≥ 0, ∀g1, . . . , gn ∈ G),

▶ central (χ(gh) = χ(hg), ∀g, h ∈ G),
▶ normalized (χ(e) = 1).

G∞ := lim−→N
GN , GN : compact group, G0 = {e}

Examples: S(∞), U(∞), O(∞), SO(∞), . . .

Branching Graph:

Ĝ0 Ĝ1 · · · ĜN ĜN+1
. . .

...
ω

...

∗ ρ

π

. . .
dim(ω)

m(ρ,π) (π|GN
∼⊕ρ′m(ρ′,π)ρ′)



character theory of
inductive groups

χ : G∞ → C ; character

probability theory on
branching graphs

(PN)N ; coherent system
(PN ; probability on ĜN

with a certain relation)

P ; central measure
(probability on the path space

with a certain invariance)

⋆Ct is the cylinder set of a

finite path t from ∗ to ρ ∈ ĜN

χ|GN =
∑

ρ PN(ρ)χρ

P(Ct) =
PN(ρ)
dim(ρ)

A character χ is extremal if and only if the corresponding central probability measure

P is ergodic with respect to the group of finite permutations of paths.



For every extremal character χ on G∞ there exists a sequence
π1 ≺ π2 ≺ · · · such that πN ∈ ĜN , πN ⊂ πN+1|GN and

χ|GN = lim
L→∞
L≥N

χπL |GN ,

where χπL is the irreducible character of the representation πL.

This is called the ergodic method.

The set of extremal characters (and ergodic central measures) of:
▶ S(∞) (resp. the Young graph) are parametrized by(α, β)

∣∣∣∣∣∣α = (α1 ≥ α2 ≥ · · · ≥ 0),
β = (β1 ≥ β2 ≥ · · · ≥ 0),

∑
i≥1

(αi + βi) ≤ 1


▶ U(∞) (resp. the Gelfand–Tsetlin graph) are parametrized by(α+, β+, α−, β−, δ+.δ−)

∣∣∣∣∣∣∣∣
α± = (α±

1 ≥ α±
2 ≥ · · · ≥ 0),

β± = (β±
1 ≥ β±

2 ≥ · · · ≥ 0),∑
i≥1(α

±
i + β±

i ) ≤ δ±,

β+
1 + β−

1 ≤ 1


This is called the boundary theorem.



q-Deformed Gelfand–Tsetlin Graph (Gorin, 2012)
the q-Gelfand–Tsetlin graph = the Gelfand–Tsetlin graph + the weights on edges

Û(0) Û(1) · · · Û(N) ̂U(N + 1) . . .

...

−1

0

1

...

∗

λ

ν

· · ·1
1
1

q(N+1)|λ|−N|ν|

λ = (λ1 ≥ λ2 ≥ · · · ≥ λN) joins ν = (ν1 ≥ ν2 ≥ · · · ≥ νN+1) by an edge if
ν1 ≥ λ1 ≥ ν2 · · · ≥ νN ≥ λN ≥ νN+1.

There exists q-coherent systems and q-central measures which are
q-deformations for coherent systems and central measures on the
Gelfand–Tsetlin graph.



The q-Deformation v.s. Character theory of CQGs

Compact quantum group(=CQG) is a q-deformation of the
ring C(G) of continuous functions on a compact group G.

⋆ Quantum unitary group Uq(N) is a q-deformation of the ring
generated by the continuous functions

uij : U(N) ∋ U 7→ Uij ∈ C, i , j = 1, . . . ,N,

where Uij is the (i , j)-entry of U ∈ U(N).

The Uq(N) and the U(N) have the same representation theory.
In particular, the inductive system of Uq(N) has the same
branching graph : the Gelfand–Tsetlin graph.

At first glance, it looks like “character theory of CQGs” does not provide the

q-deformation of its branching graph. However, we can obtain representation-theoretic

interpretation of the q-deformation of the Gelfand–Tsetlin graph from Uq(N).



Let G be a CQG.

In general, for unitary irreducible representation ρ of G ρ and ρcc are not
unitary equivalent, but there exists a unique positive invertible intertwiner Fρ

from ρ to ρcc such that Tr(Fρ) = Tr(F−1
ρ ).

The trace Tr(Fρ) is called the quantum dimension of ρ. When a given
quantum group is the quantum unitary group Uq(N), we have

Tr(Fρ) =
∑

(e1,...,eN ):
finite path from ∗ to ρ

on the Gelfand–Tsetlin graph

w(e1) · · · e(eN),

where w(·) is the weight of an edge of the Gelfand–Tsetlin graph.

→ The irreducible quantized character is defined by Tr(Fρ ·)/Tr(Fρ).
→ A general quantized characters are defined by states which are invariant
under the action given by

∏
ρ∈Ĝ Ad(F it

ρ ) on
⊕

ρ∈Ĝ B(Hρ), that is, KMS states.

This definition is compatible with an inductive system of CQGs.

∴ We can find the correspondence quantized characters of inductive system
of Uq(N) and q-central measures on the Gelfand–Tsetlin graph.



Approximation theorem (S. 2018):
For every extremal quantized character χ of an inductive system of compact quantum
group there exists a sequence π1 ≺ π2 ≺ · · · such that πN ∈ ĜN , πN ⊂ πN+1|GN
and

χ|GN
= lim

L→∞
L≥N

χπL |GN
,

where χπL is the irreducible quantized character of the representation πL.

Boundary theorem (Gorin 2012, S. 2018):
The set of extremal quantized characters of the inductive system of quantum unitary
groups Uq(N) (and ergodic q-central measures on q-Gelfand–Tsetlin graph) are
parametrized by

{θ = (θi )
∞
i=1 ∈ Z∞ | θ1 ≤ θ2 ≤ · · · }.

Reference:
V. Gorin, The q-Gelfand–Tsetlin graph, Gibbs measures and q-Toeplitz matrices, Adv. Math 229 (2012), no. 1,
201–266

R. Sato, Quantized Vershik–Kerov theory and quantized central measures on branching graphs, arXiv:1804.02644



Random-matrix behavior
in the energy spectrum of the Sachdev-Ye-Kitaev model 
and in the Lyapunov spectra of classical chaos systems

Masaki Tezuka
(Department of Physics, Kyoto University)

SYK model

[A. Kitaev: talks at KITP (Apr 7 and May 27, 2015)]

 𝐻 =
3!

𝑁3/2
 

1≤𝑎<𝑏<𝑐<𝑑≤𝑁

𝐽𝑎𝑏𝑐𝑑  𝜒𝑎  𝜒𝑏  𝜒𝑐  𝜒𝑑

1. Solvable at large-N (strong coupling when βJ>>1),
finite entropy / N at T0 

2. Holographically corresponds to 1+1D black holes
3. Satisfies the chaos bound 
“Fast quantum information scrambler”
(Conjectured upper bound of the Lyapunov exponent
𝜆L =  2𝜋𝑘B𝑇 ℏ realized, as in black holes)

J. S. Cotler, …, MT, JHEP 1705, 118 (2017) 

(arXiv:1611.04650)



Random-matrix behavior
in the energy spectrum of the Sachdev-Ye-Kitaev model 
and in the Lyapunov spectra of classical chaos systems

Masaki Tezuka
(Department of Physics, Kyoto University)

Dip-ramp-plateau structure similar to
𝑔 𝛽, 𝑡 for 𝑁 ≡ 2 mod 8

𝐺 𝑡 = 𝜒𝑎 𝑡 𝜒𝑎 0

𝑍 𝛽, 𝑡 = Tr e−𝛽  𝐻−i  𝐻𝑡𝑔 𝛽, 𝑡 =
𝑍 𝛽, 𝑡 2

𝐽

𝑍 𝛽 𝐽
2

~ 𝑡1 ramp: strong rigidity

Spectral form factor
[You, Ludwig, Xu 2017]



Random-matrix behavior
in the energy spectrum of the Sachdev-Ye-Kitaev model
and in the Lyapunov spectra of classical chaos systems

Masaki Tezuka
(Department of Physics, Kyoto University)

𝛿𝜙𝑖 𝑡 = 𝑇𝑖𝑗𝛿𝜙𝑗 0
Deviation at t initial infinitesimal deviation

Singular values of 𝑇𝑖𝑗: 𝑎𝑘 𝑡 𝑘=1
𝐾

Time-dependent Lyapunov spectrum

𝜆𝑘 𝑡 =
log 𝑎𝑘 𝑡

𝑡
𝑘=1,2,…,𝐾

M. Hanada, H. Shimada, and MT,

Phys. Rev. E 97, 022224 (2018) (arXiv:1702.06935)

Spectral correlation in 𝜆𝑘 𝑡 observed for
various classical chaos systems:
Logistic map, Lorenz attractor, etc.

𝐾 × 𝐾 matrix

Width ℎ

Random matrix product

Ongoing work
Quantum chaos systems e.g. the SYK model:

Definition of Lyapunov spectra and study of its behavior



Unbounded largest eigenvalues of sample covariance matrices:
Asymptotics, fluctuations and applications to long memory

stationary processes

Peng TIAN

Paris East University

based on a joint work with F. Merlevède and J. Najim

Kyoto University - 22 May 2018
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I We consider

SN :=
1

n
T

1
2
NZNZ

∗
NT

1
2
N

where ZN is a N × n matrix with i.i.d centered, reduced entries, and TN is a
nonnegative definite hermitian matrix.

I As N,n→∞, N/n→ r ∈ (0,∞), what are the asymptotics and fluctuations of
the top eigenvalues of SN , if

µTN :=
1

N

N∑
i=1

δλi(TN )
D−→ µ with sup suppµ =∞ ?

I This question was raised in the study of long memory stationary process. If a
process (Xt)t∈Z satisfies

EXt = 0, Cov(Xt+h,Xt) = γ(h), ∀t, h ∈ Z

with the autocovariance function γ satisfying∑
h∈Z
|γ(h)| =∞.

Then (Xt)t∈Z is a (centered) long memory stationary process.
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I People are initially interested in the asymptotics and fluctuations of top
eigenvalues of

QN :=
1

n

n∑
j=1

~Xj ~X
∗
j ,

where ~Xi are i.i.d obersations of
(
X1 · · · XN

)>
drawn from a centered long

memory stationary process (Xt)t∈Z.

I These questions are tightly related to the asymptotic properties of the population
covariance matrix, which is the following Toeplitz matrix:

TN := Cov

X1

...
XN

 = (γ(i− j))Ni,j=1 ,

with µTN
D−→ µ and sup suppµ =∞ as natural properties due to the long

memory of the process.
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I To answer the above questions, we study the following additional properties of
Toeplitz matrices:

I the asymptotic behavior of top eigenvalues and associated eigenvectors,
I the spectral gaps between the top eigenvalues.

I After these, the asymptotics and joint fluctuations of any p (a fixed integer) top
eigenvalues of

SN =
1

n
T

1
2
NZNZ

∗
NT

1
2
N

are studied.

I In the general model SN , the fluctuations depend not only on the entry
distribution but also on the eigenvectors of TN . But for some Toeplitz TN , the
universality holds.
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Recent Developments for the Singular Values of
Skew-Symmetric Gaussian Random Matrices

Donald Richards
Penn State University and the Institute of Statistical Mathematics

A: The space of p× p, real, skew-symmetric matrices.

A = (aij) ∈ A: A noncentral Gaussian random matrix with p.d.f.

f(A) = (2π)−p(p+1)/4 exp
[

−1
4 tr (A−M)(A−M)′

]

,

where M = E(A).

The singular values of A: σ1 > · · · > σq > 0

– p. 1/3



J =

(

0 1

−1 0

)

Dσ =

{

σ1J ⊕ · · ·⊕ σqJ, if p is even, p = 2q

σ1J ⊕ · · ·⊕ σqJ ⊕ 0, if p is odd, p = 2q + 1

Kuriki (2010) considered the singular value decomposition:

A = HDσH
′, where H ∈ SO(p).

The motivation: Problems in mathematical statistics, and a
statistical analysis of a Japanese league’s baseball scores.

– p. 2/3



Kuriki was led to Harish-Chandra’s integral for SO(p):

Ip(σ, ν) =

∫

SO(p)
exp

(

1
2 tr HDσH

′D′

ν

)

dH

Note the remarkable connection:

Baseball scores←→ Harish-Chandra’s integral!

My poster will raise open problems concerning the total positivity
properties of Ip(σ, ν).

– p. 3/3


