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A graph G = (V, E) can be represented by its adjacency matrix:

Aij{ 1 if{i,j} €E

0 otherwise.

Eigenvalues \; > ... > Ay capture essential information about G.

>> It is convenient to encode them into a probability measure:
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Question: how does i typically look when G is large?
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Sparse graphs: the need for a theory

Wigner's universality is restricted to the dense regime [E| > |V/|,
but real-world networks are embarassingly sparse: |E| =< |V/|.

» Real-world graphs: beyond the semicircle law (Farkas 2001).
» Graph spectra for complex networks (Piet van Mieghem 2010).

In the sparse regime, the spectrum i typically concentrates
around a model-dependent limit ., about which little is known.

Main challenge: understand the fundamental decomposition
= Hpp + Hac + Hsc
in terms of the geometry of the underlying graph model.

Conjectures were proposed by Bordenave, Sen, Virdg (JEMS 2017).
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Local convergence of rooted graphs

Write Br(G, o) for the ball of radius R around the vertex o in G:

Say that (G, 0,) — (G, 0) if for each fixed R and n large enough,

BR(Gn, On) = BR(G7 O).

G, := {locally finite, connected rooted graphs} is a Polish space.
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Benjamini-Schramm convergence

Goal: capture the local geometry around all vertices.

Given a finite graph G = (V/, E), consider the empirical
distribution of all its possible rootings:

1
Lg:= m Z 5(G,o) € P(G4)-

oeV

Say that a sequence of finite graphs (G,) has local weak limit £ if
Lg, = L

in the usual weak sense for probability measures on Polish spaces.

Intuition: £ describes the local geometry around a typical vertex.
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Examples of local weak limits

» G, : Random d—regular graph
L : Infinite d—regular rooted tree
» G, : Erd6s-Rényi model with edge probability p, = ©
L : Galton-Watson tree with degree Poisson with mean ¢
» G, : Configuration model with empirical degree distribution 7
L : Unimodular Galton-Watson tree with degree law 7
» G, : Uniform random tree
L : Infinite Skeleton Tree (Grimmett, 1980)
» G, : Preferential attachment graph
L : Polya-point tree (Berger-Borgs-Chayes-Sabery, 2009)

Fact: uniform rooting confers to every local weak limit £ a
powerful form of stationarity known as unimodularity.
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The spectral convergence theorem for sparse graphs

Theorem (Bordenave-Lelarge-Abért-Thom-Virdg):
1. If (G,) admits a limit £, then (ig,) admits a weak limit zi..

su
N

P l16, (=00, Al) = e (=00, Al

2. The convergence holds in the Kolmogorov-Smirnov sense:

— 0
n—oo
3. We have jip = E[j1(6 0)] where (G, 0) ~ L and
Vz e C\R,

1
/R N~ M(G,o)(d/\)

~1
(AG - Z)oo :
Note: in general, the existence of (Ag — z) ! is a delicate issue...
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The case of trees

1 *1

(AT*Z)(;O - —
Z+ Z?:l(AT,- - Z)iil

» Explicit resolution for infinite regular trees
» Recursive distributional equation for Galton-Watson trees
» In principle, this equation contains everything about 1,

» See the wonderful survey by Bordenave for details.
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The eigenspace &) = ker(Ag — \)

Given A € R and a locally finite graph G = (V/, E), consider

S = Usupport(f).
fe&y

Lemma (Finite trees). If G is a finite tree, then )\ is a simple
eigenvalue of each connected component of S. Consequently,

dim(&x) = S| —[E(S) - [9S].

Theorem (Main result). On a unimodular random tree, the
connected components of S are almost-surely finite. Moreover,

we(fA)) = Ploes)— %IE [degs(0)1(ocs)] — P (0 € 05).
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Consequences for the pure-point support

Tpp(L) = {A € R: pe({A}) > 0},

Corollary. If L is supported on trees, then

Y p(L£) C {eigenvalues of finite trees} =: A.

Corollary. ¥ ,,(£) = A for many "natural” limits £, including:

» The Poisson-Galton-Watson tree.

» Unimodular Galton-Watson trees with supp(n) = Z..
» Their “conditioned on non-extinction” versions.

» The Infinite Skeleton tree.

Remark. A is dense in R, so these graphs have “rough” spectrum.
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Write 7(\) for the size of the smallest tree having ) as eigenvalue.

Corollary. If £ is supported on trees with degrees in {0,..., A},

A—2
Yop(L) C {)\: T(A) <
In particular,

=

> If 2-2 <2, then ¥,,(£) C {0}.

> if £=2 < 3 then ¥,,(L) C {—1,0,+1}.




Pure-point spectrum and degrees

Write 7(\) for the size of the smallest tree having A as eigenvalue

Corollary. If £ is supported on trees with degrees in {0,..., A},

A—2
Yop(L) C {)\: T(A) <
In particular,

=

> If 2-2 <2, then ¥,,(£) C {0}.
> if 22 < 3 then ¥,,(L

> If =2 < 4 then ¥,,(L

~— ~—

C {~1,0,+1}.

C{-v2,-1,0,+1,V2}
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Anchored isoperimetric constant:

T— oA
1+(G,0): nlngolnf{m.

Corollary. If L is supported on trees with anchored isoperimetric

o€ S,S connected, n < || < oo}

constant > ¢ and degrees in {2,... A}, then
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Pure-point spectrum and isoperimetric profile

Anchored isoperimetric constant:

1+(G,0) := lim inf{05| :0€S,S connected, n < || < oo}.

n—00 |S ’

Corollary. If L is supported on trees with anchored isoperimetric
constant > ¢ and degrees in {2,... A}, then

Y op(L) C {)\: () < Az}.

9

Remark. The anchored isoperimetric constant of a GWT
conditioned on non-extinction is positive (Chen & Peres, 2004).
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A striking dichotomy in the Galton-Watson case

Corollary. When L is the unimodular GWT with degree
distribution m € P(Z ), we have the following dichotomy:

» If 71 = 0 (no leaves) then ¥ ,,(L) is a finite set.
» If 71 > 0 then X,,(L) is dense in [-2/A — 1, +2/A —1].
This was conjectured by Bordenave, Sen & Virdg (JEMS 2017).
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Three specific open problems

He

Hpp + Hac + Hsc

» For which degree m does UGWT () satisfy pip,(R) =07

» Does the Infinite Skeleton Tree satisfy jipp(R) =17

» When 7 = Poisson(c), does ji,c(R) > 0 as soonas ¢ > 17



Thank you !
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