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1. Introduction: Tracy-Widom distributions
GUE (Gaussian unitary ensemble). For H:N-dim hermitian matrix

P(H)dH x e ™ qH

GUE Tracy-Widom distribution for the largest e.v. Ty ax

: Tmax — V2N
i P R <] = Pl =0 AP

where P;: projection onto [s,o0) and Ky is the Airy kernel

Ko(x,y) = /OOO dAAi(z + M) Ai(y + )

The joint eigenvalue (x;) density is (with A(z) Vandelmonde)

1 2 — 2
EA(I‘) H e i



Determinantal process

e The point process (random point field) whose correlation
functions are written in the form of determinants are called a

determinantal process.

e Once we have a measure in the form of a product of two
determinants (in many cases related to non-intersecting
paths), there is an associated determinantal process and the
Fredholm determinant appears naturally.

e Eigenvalues of the GUE is determinantal.



ASEP
ASEP = asymmetric simple exclusion process

q p q p q
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e TASEP(Totally ASEP, ¢ = 0,p = 1). Bernoulli is stationary.

e N(z,t): Integrated current at (x,x + 1) up to time ¢

& height for surface growth
e ASEP is in the KPZ universality class /\/\1/\

for surface growth




TASEP current fluctuations

Theorem. ( )
For the step i.c. (only all negative sites are occupied at ¢t = 0)
, N(0,t) —t/4
< ol —
M P s =8| = 1208)

where F5(s) is the GUE Tracy-Widom distribution.

TASEP is related to the Schur measure
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s can be written as a single det (= determinantal process).

Stationary case was also studied (

based on
). The limit distribution is Baik-Rains dist. The
stationary TASEP and Schur measure don't coincide for finite t¢.




where

(
\

Vi(s) = Fa(s)

Baik-Rains distribution

F,(s) := %Vw(s)
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where Fy = det(1 — A) is the GUE Tracy-Widom distribution,

“A(ga C) — KQ(S? C)lzsa PA = (1 R “’4)—17

BIO(€) = '/, B = — [ dzeai(e + ),

0

B.,(¢) = B (&) + BY(€).
for PNG model (a different representation).
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g-TASEP
A version of TASEP. 0 < ¢ < 1. x;(t): the ith particle position.

Hopping rate is 1 — ¢&°P with "gap” = ;1 — x; — 1.

—~
Step i c (:EZ(O) S 1) W

found a connection to Macdonald measure (or
g-Whittaker) of the form, 1

EPA(CL)QA(Z?)-

Py(a),Qx(b) are Macdonald functions for which a single det
formula is not known. But using their properties one can find a
formula for g-moment (¢*@~(+N)Y and the ¢-Laplace transform

1 . . . .
<(quN(t)+N;q)oo> is written as a Fredholm determinant, from which

one can show Tracy-Widom limit in the long time limit.

Stationary: (¢"@~®+N)Y diverges and determinant is invisible.
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Our approach: Basic idea and two formulas

Instead of relying on the moments, we study the distribution

of a particle position directly.

We first reduce the problem to that of N-particle ¢-TASEP
with two sets of parameters {a;}, {a;}. We still use (a

two-sided version of) the g-Whittaker measure.
To study a particle position, we rewrite the Cauchy identity.

We use two formulas: Ramanujan’s sum formula and Cauchy

determinant for theta function (next slide).



Ramanujan’s sum formula and
Cauchy determinant for theta function

Ramanujan’s sum formula

Theorem. For |q| < 1,[b/al < |z]| < 1,

> (bg"; @)oo _ (32 @)oo (555 oo (4 @)oo (3 D)oo
neZ (ag™; @) o (CL;q)OO(%;CI)oo(ZQQ)oo(a—Z;Q)oo

We introduce a modified Jacobi theta function
0(2) = (2,4/2%; Q) oo-

Also 6(1/z) = —=0(z) which satisfies 0(1/z) = 0(z).
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Cauchy determinant

Let |z] satisfy |—x] = —[x] and the Riemann relation

[z + yllr — yllu + v][u — 0]
= |z +ul[r — ully +v]ly —v] = [z + v][z — ][y + u]ly — ]

[x] satisfying the above two relations is necessarily in the form
¥+ f(cx) where f(z) is either f(z) = z, sin7z or o(z), the
Weierstrass sigma function. 6(¢%) is an example of [z].

Theorem. ( ) For [x] above, the Cauchy
determinant formula holds. With B => . b;,C =) . ¢;,

A+ B—=Cl]]c;lbi = bjlleg —ci] o (AT bi = ¢l
AT, (b — ¢ _dt<um1cﬂ>

14 17,7 [
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Result: Fredholm det for the g-Laplace transform
Theorem. For N particle ¢-TASEP with parameters {a;},{a;},

1
<(CQ$N(t)+N; Q)oo> = detll = [K) 2z,

where ¢ # ¢",n € Z,(---) is the expectation and

) N-1
f(n) = Ty K(n,m) = Z ¢1(m)r(n)
=0
B @_Ut 1 : U — Oy (qak/va Q)OO
P1(n) = \/al+1 — 41 /D dvanrN UV — Qj41 j—lil1 (Y 1;[ (qv/ak; q)o
B ety N 2 — a; (gz/ak; @)oo
pi(n) = Va1 — am /Cr dzz — Qg ]:1_[1 Z— Oy 1;[ (g /25 q)oo

Here C,, D is around {0, a;¢’ }, {a;} respectively.
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Result: Long time limit for stationary ¢-TASEP

Thm. For the stationary ¢-TASEP, with the parameter

a = q?,0 > 0, by which one can control the density, we have

lim P(zy(kN) > (n —1)N —yN3s) = F,_o(s), Vs e R,

N —00

where k, 1,y are given by

i qn i q29—|—2n
R = y T = ;
_ A0+n)\2 _ A40+n)\2
n=0 (1 q n) n=0 (1 q n)
5 )”
T — 0+n)\3
n=0 <1 q n)
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Some comments

The stationary ASEP was independently studied by
The approach is different. He uses analytic continuation at
the level of higher spin six vertex model and takes a limiting

procedure.

A big advantage of our approach is that the same calculation

can be directly applied to various cases in a parallel way.

One can generalize our approach to study higher spin model
(See the poster by )

An important step is the mutliple integral formula.
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Mutliple integral formula
In a derivation of our formula, we find a mutliple integral formula,

t

( 1 ) — (4;9)% / ﬂ dz; 9(%) Hi;,gj(zqg/zj;q)oo ....j(ai/aj;q)ooezi

e Various cases can be studied in a parallel fashion. For

example the stationary TASEP can be studied simply by
setting ¢ = 0 in the formulas and in our approach one can
study the stationary TASEP directly for finite ¢ (without

approximation as in previous works).

e Instead of trying to find a determinantal process, one may try
to find a quantity which can be written in this type of
multiple integral.

e ¢ = 0 case was also useful for studying a two species model.
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An analysis of a two species exclusion process

Arndt-Heinzel-Rittenberg (AHR) model
B 1 o
N N PN 2aWa
- +—0-0-0-0—8-O-O0—0O0-00 a+pf=1
Nonlinear fluctuating hydrodynamics predicts that long time
fluctuations of its "normal modes” are described by Tracy-Widom

type distributions.

We have given a confirmation by exact calculation using Bethe
ansatz. This is also the first result for multi-species model at the

level of distribution.
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p— 1 Step i.c.

Infinite + particles (e) with density p on the left and infinite —
particles (o) packed on the right.

time t
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Multiple-integral formula for current distribution

A step i.c. in which there are N + particles on the left with
density p and M — particles are packed on the right.

When o = 8 = 5, for the currents Ny (¢) at the origin

l\le—\

dz dwk

N - z)? H (wl—’wk)2

1<i<j<N 1<k<I<M

N M N M 1
[16; - ¥ =gz [Tme - 0" T (52 +wr)
k=1 j=1k=1

J=1

with A =50 3(1/2 — 1)+ 3ty 5(1/wy, — 1),
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2. Analysis of ¢-TASEP: 2.1 Stationary measure

e For 0 < a <1, "gaps' between the neighboring particles,

x;_1 — x; — 1, are independent and

an

Pla gap = n| = (Q;Q)Oom

qP(a) qP(a) qP(a)
oofooYoYoo?ooo

e p = p(«) and average current j(p) are calculated explicitly.

(q-Poisson)

e \We can assume that there is a particle 1 at the origin initially
at t = 0. We are interested in the distribution of the Nth
particle position 2\ (2).
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2.2 Reduction to N particle ¢-TASEP with q;

The problem is reduced to the N-particle ¢-TASEP with hopping
rates, a;(1 — ¢®%),1 < ¢ < N, with the initial condition that the
position of the first particle x1(0) and the gaps of the particles,
z;—1(0) —x;(0) — 1,2 < i < N, are independent and distributed
as g-Poisson with parameter a/a;, 1 < i < N with a; > a.

an/a3 \ a/az\ﬂan/a
O O a3o @) [j; O O

X3
e Note xn(t) = :cg\(;)(t) — X — 1, X ~ qPo(al/a).

e To study :1:58) (t) for stationary case, we set

ar =a,a; = 1,2 <1 < N and then take a — o limit.
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Arguments to see the reduction

e When a; = 1, in the stationary measure with parameter «, the
hopping rate of each particle is . The right half can be
replaced by a particle with hopping rate o (Burke theorem).

qP(a) qP(a) @
oofooYoWoooooo
X3 X2 O
X1
e In TASEP particles can not affect the particles ahead and
hence it is enough to consider N particle g-TASEP with the
first particle with hopping rate « starting at the origin and the

gaps are independent and ¢-Poisson distributed with

parameter «.
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We generalize the particle hopping rates to a;(1 — ¢&°P)
1> 1. a1 = a,a; = 1,1 > 2 corresponds to the stationary
g- TASEP. The gaps are independent and distributed as
g-Poisson with parameter a/a;,i > 2 with a; > «.

Algebraically it is useful to study the case in which the
position of the first particle is also random. The gaps are
independent and distributed as g-Poisson with parameter

a/a;, i > 1 with a; > a. Note a; — « is singular.
The Nth particle positions X (t) and X](\(,)) (t) are simply
related as X (t) = X](\?) (t) —x —1, x ~ qPo(a1/a).

To summarize. One can study the stationary fluctuation by
setting a1 = a,a; = 1,2 < i < N (N-particle ¢-TASEP with
2 parameters a, ) and then taking a — « limit.
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2.3 Dynamics on Gelfand-Tsetlin cone

Stochastic dynamics of A§k) cZ,1 <j<k<N, satisfying

A A IS
S & ¥ ¥ .L/
.. L.' L.'v L/
S 7 ¥ 7 N\
(3) (3) 3)
As A, A
NS ()L/
2
4 A
>~ 5
ﬂ(l)
1
- (k).
Hopping rate of )\j ; 1) () &)
(1= g 7)1 — g Tt
Tjk = Ak m_ (-1
1_q,uj —Hy +

Dynamics of x;(t) := A§j)(t) — N is ¢-TASEP with a;.
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2.4 Two-sided ¢g-Whittaker process

The skew g-Whittaker function (with 1 variable)

n n—1

Pyt =TT 1T B o

i=1 )\ — g ((:Z7 Q) )‘i-l-l

g-Whittaker function with N variables

N
P)\ (CL) — Z H P)\(j)/)\(j—l) (CL]')
AR 1<i<k<n-—1 I=1
k+1 k k+1
/\,ij1 )<>\( )<ttt
where the sum is over GT with A = A™) and a = (a1, ..., an).
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Another function with N variables o« = (a1, ..., an).

N Nz 1
0@ = [T o [ TT5 1 (3) a0t (2
i=1 i=1 "
where
N ] N
II(a; o, t) = ] et
( ) 7;,]1__[1 (Oéz'/aj;Q)oo j_l:Il

()= w1 il /0
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Two-sided ¢-Whittaker process

Definition. For two sets of NV parameters a, «, set

H?]ﬂ PAU)/)\(j—l) (aj) ' QA(N) (04, 75)
FAy) = I(a; a,t)

Proposition.

Pi(A\p) satisfies the Kolmogorov forward equation for the Markov

dynamics introduced before on GT cone.

One can also check the half-stationary initial condition on the
qg- TASEP marginal )\,SZ) when a1 = a,;, = 0,2 <7 < N.

To summarize, if we can study the g-Whittaker process, we can

study the N-particle g-TASEP with two parameters a, a.
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2.5 Two-sided ¢-Whittaker measure

rN(t)(= )\g\J]V) — N) can be studied by focusing on AV (¢).

Marginal for A(N)(¢) is given by two-sided g-Whittaker measure:

IP’[)\(N) (1) =\ = P/\I(ICE)CZQ;(?), t)

Let us recall the Cauchy identity

ZPA )Qx(y :ﬂ

AEPN

xzy]7

where @ (y) is the ordinary ¢-Whittaker function.
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Nth particle position

By writing Py (z) = XV Ry(z), £; = A\j — \j41 the Cauchy

identity can be rewritten as

00 N—1
1 (XY:q) o
> Ro)Re(y) ]] e TN .
01, In_1=0 j=1 q;4)¢; Hij:1(ﬂ7z‘yj79)oo

with X = X1 ---2n,Y =y1---yn. Using this we have

. V-1 dzj (A l ¢ 11z 0, t) (A/Z; 1)
= (¢:9)5% /TN 1= (Z) mN(Z)H(a3avt) T/ 0

where A = Hf\il a; and Z = Hf\il ;.
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2.6 Multiple integral formula for g-Laplace transform

By definition of the expectation value,

L ! rda (A N(Eent) (@)Y (A/Zi0)x
<(Cq>\N§Q)oo>_Z(<ql§Q)oo /’[FNZI_Jl: % <Z) mN(z)H(a;q,t) [L; ;(ai/zj5 4)oo

le
Using the Ramanujan’s formula with a = (, 06 =0,z = A/Z,

1 A" (005 DG Do 0(52) (g5 9)o
Z( ( ) B (C7Q)oo(%5Q)oo(%§Q)oo B 6(C)(%§Q)oo

Y

— (Cq"5q)00 \ 2

we find
L (q;Q)éVo/ ﬂdzie(%)nz'#j(zi/zj5Q)oo I1(z; o, t)
(Ca;5 @)oo Nt Jpy =2z 0(0) 11 j(ai/z55 0o Ta;q,t)
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2.7 Fredholm determinant for the g-Laplace transform
Theorem. For ( # q¢",n € Z

<( : > = det(l — fK)r2(z)

Cqu J+N Q)oo

where (- --) is the expectation and

1
f(n) = mpryrd K(n,m) = ; dr(m

et 1 v — o 17 (29%/5 @)oo
pr(n) = az1—0411/d”0 ]
() \/ + + Un+NU—al+1]]‘_‘Ev_a]H qv/a’kﬁq
e?t ;ntN : Z—a (9z/ak; @)oo
Yi(n) = CL11—0411/ dz :
(n) = Vi + C. z—&z+1HZ_ajg(qak/zq

Here C,., D is around {0, a;¢’ }, {a;} respectively.
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Proof

After some calculations form the multiple integral formula, we find

1 Q7 de Z<] ) Hz'<j(zi - Zj)
<(CqAN /EN H 2i H ,j(az - 2j)
y [lic; (az'/aj) [Tic; 0(2i/2)
Hij é(ai/zj)

(% a; | 1x(2i/ak; @)oog(2i; v, )
é H Hk;;éz ai/a; q)oog(ai; @, t)

~

where

ezt

g(z;,t) = T

j Oéj/Z; Q)oo
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By the Cauchy determinant formula,

dz; 0(Ca; 2;
<(CQAN NI ANH—det —zj)det( (¢ /' ). )

[Using the Cauchy-Binet identity]

— det (/ dz a; 0(Ca;/z) (¢;0) Hk(z/ak;q)oog(z;@,t)>
T

z ai —20(¢)0(ai/z) ]lpsi(ai/ar; @)ocg(as; o t)
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By making the contour smaller and taking the pole at z = q;

— det (52.]._/ dz a; H(Cai/z) (Q;Q)oo Hk(z/ak;q)oog(z;cx,t)>
Cr

z ai —20(0)0(ai/z)  [lpzi(ai/ar; ) ocglais a,t)

Here using the Ramanujan’s formula again with
a=1/C,b=14q/(,z = z/a;,

1 2\" ()00 (L243 @)oo (45 )2
7% 1 — qn/c (aj) B (1/C§ Q)OO(QCE Q>oo(z/aj§ q)oo(qaj/z; Q)oo

_ H(é) ( . )2
T 0(1/0)b(z/az) D
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we see
1 1 dz a;
—det | 0;; — :
<(Cq/\NSQ)oo> < / él—qn/C C. 2 Q4 —2Z2

9 2" [k (2/ak; @) oog(2; s t) )

a%(q; @)oo | [jzi(ai/ar; @) oglai; @, t)

— det(éij — Z A(Z, n)B(nvj))

nez
with
1 dz a;
Cm) ==t Jo T a2 1;[<z/ak,q> 9(z 0, 1)
. 1
B(n,j) =

(45 @)oo(ai/ak; @)sog(ai; o, t)
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Here use det(1 — AB) = det(1 — BA). We see

N
= ZB(m,i)A )
i=1

N

1 1
- ; a;ﬂ(q; q)OO(a'i/ak; q)oog(az-; Ck,t) 1 — qn/g=
dZ a”i
h 4 ) oo cant
% /Cr Z Q; _ZZ H(Z/Clk Q) g(Z (@87 )

a,t)

_ / dv/ 2" [11(2/ak; @) oog(2;
1 — Q”/C o, 2 v—2v" ][ (v/ag; q)ocg(v;
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where the contour D is around {a;}. Here

[1.(2/ak; @)sog(z; s t)

[T (v/ak; @)oo g(v; a, t)

_ i(az/ak; @)oo (qv/a; @)oce™ (2 — ag) (v — ay) (z)N
[.(qv/ar; @)oo (q2/ ks @)ooe? (v — ap)(z — o)

U

Hence

: 1 / dv/ dz 2" TN e T, (q2/ ak; @)oo (qu/ak; @)
T 1- Q”/C C,

(€5 q) oo z 0"t e [T, (qu/ak; @)oo (92 / 0tk @) oo

9 (z —ag)(v—ag)
(z — v 1;[ (v—ar)(z— ag) 1)
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we arrive at the desired Fredholm determinant expression.
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2.8 Stationary limit: Xy and X](\?)
For the two parameter ¢-TASEP with

aj=a,ap,=0k#7 a=aam=-=ay=1 0<a<a<l,

1
o) = <(CqXN(t>+N;Q)oo>’ lo) <(Cqu(€)(t)+N15q>°o>

are related by

or
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Long time limit for stationary ¢-TASEP

By taking a — « limit carefully and performing asymptotic

analysis, one finally arrives at

Thm. For the stationary ¢-TASEP, with the parameter
a=q’(14+w/(YNY3)),0 > 0,w € R, we have, for Vs € R,

Jim P(ay(sN) > (= 1N - YN13s) = F,(s)
— 00

where k,n,y are given by
0 n o0 20+4-2n

q q
R = y T = 3
L i 1 LTy
( 0 q29—|—2n ) 1/3
7= Z — _0tfn\3
n=0 (1 q n>
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Summary
We have explained how to study the stationary KPZ models,

in particular for the case of ¢g-TASEP.

In our approach, instead of using the so-far standard method
of g-moments, which diverge for random initial conditions, we
use (a two-sided version of ) the g-Whittaker process and
directly study the distribution of a particle position.

Two technically essential ingredients were the Ramanujan’s
summation formula, Cauchy determinant for theta functions.

Our approach can be applied to more general case of higher

spin vertex model (see the poster by ).

Multiple integral appearing in our analysis unifies various
cases and have many applications.
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