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This question was raised in the study of long memory stationary process. If a
process (Xi)icz satisfies
EX; =0, Cov(Xiqp,Xt) =~(h), Vt,heZ

with the autocovariance function ~ satisfying

D ()| = oo

heZ

Then (Xt)iez is a (centered) long memory stationary process.
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» These questions are tightly related to the asymptotic properties of the population
covariance matrix, which is the following Toeplitz matrix:

Xy
) . . \WN
Ty := Cov : = (y(i - ]))i,j:l )
XN

with pT~ o, 1 and sup supp 4 = oo as natural properties due to the long
memory of the process.
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> In the general model Sy, the fluctuations depend not only on the entry
distribution but also on the eigenvectors of T. But for some Toeplitz Ty, the
universality holds.



