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Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges,
with the constraint that most recently traversed edge may not be again
traversed in the opposite direction.
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Consider a graph G. The non-backtracking random walk traverses edges,
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Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges,
with the constraint that most recently traversed edge may not be again
traversed in the opposite direction.

Example. Key: red is current position, blue is last position.

Original graph Edge graph (connects to next allowed edge)
1—2 12523 —=31=——43<—14
43 Ne 3 B3
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@ Alon, Benjamini, Lubetzky and Sodin (2006): Non-backtracking walks
mix faster than simple random walks on regular expander graphs.

@ Ben-Hamou, Lubetzky and Peres (2018): Non-backtracking walks mix
faster than simple random walks on graphs with minimum degree 3
and degree distribution has exponential tails.
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@ Alon, Benjamini, Lubetzky and Sodin (2006): Non-backtracking walks
mix faster than simple random walks on regular expander graphs.

@ Ben-Hamou, Lubetzky and Peres (2018): Non-backtracking walks mix
faster than simple random walks on graphs with minimum degree 3
and degree distribution has exponential tails.

o Cut-off phenomena of non-backtracking walks: Berestycki, Lubetzky,
Peres and Sly (2015), Ben-Hamou and Salez (2015) etc.
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Non-backtracking matrix B

A simple undirected graph G = (V, E).
o Adjacency matrix A: A;j =1if (i,j) € E and 0 otherwise.

@ Non-backtracking matrix: for each (i,j) € E, form two directed edges
i — j and j — i. The non-backtracking matrix B is a 2|E| x 2|E]|
matrix such that

5 )1 ifj=kandi#l
k=l = 0 otherwise.

Non-backtracking matrix is first introduced by Hashimoto (1989).
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Non-backtracking matrix B

A simple undirected graph G = (V, E).
o Adjacency matrix A: A;j =1if (i,j) € E and 0 otherwise.

@ Non-backtracking matrix: for each (i,j) € E, form two directed edges
i — j and j — i. The non-backtracking matrix B is a 2|E| x 2|E]|
matrix such that

B. .. )1 ifj=kandi#l
k=l = 0 otherwise.

Non-backtracking matrix is first introduced by Hashimoto (1989).

@ Entries of AX: the number of walks of length k from one vertex to
another.

o Entries of BX: the number of non-backtracking walks of length k
from one directed edge to another.
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Spectrum of the non-backtracking matrix B

Goal: Understand the eigenvalues of B.
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Goal: Understand the eigenvalues of B.

Theorem (Ihara’s formula)

det(/ — uB) = (1 — u?)IE-VIdet( — uA + (D - 1)).

Here D is the diagonal degree matrix, D;; = degree of vertex i.
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Spectrum of the non-backtracking matrix B

Goal: Understand the eigenvalues of B.

Theorem (Ihara’s formula)

det(/ — uB) = (1 — u?)IE-VIdet( — uA + (D - 1)).

Here D is the diagonal degree matrix, D;; = degree of vertex i.

@ A simple relationship between spectrum of A and B when G is regular.
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Previous results on the spectrum of B

@ Angel, Friedman and Hoory (2015): spectrum of B on tree cover of a
finite graph.

@ Bordenave, Lelarge and Massoulié (2015): top eigenvalues of B on
(very sparse) stochastic block model and Erdés-Rényi G(n, £).

o Gulikers, Lelarge and Massoulié (2016): top eigenvalues of B on
generalized stochastic block models.

@ Benaych-Georges, Bordenave and Knowles (2017): spectral radius of
B on inhomogeneous Erdés-Rényi random graph.
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lhara's formula: det(/ — uB) = (1 — u?)/EI=IVIdet(l — uA 4 ?(D - 1)).
. . A I-D
eigenvalues of B = {+1} U { eigenvalues of H := <I 0 >}

We will call H the non-backtracking spectrum operator for the graph.
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Non-backtracking matrix of Erdés-Rényi random graphs

Erdés-Rényi random graph G(n, p) : edges are drawn independently with
probability p. Adjacency matrix A and non-backtracking spectrum

operator
A I-D
i (4 150).

Partial derandomization: replace D by its average, rest of H unchanged.
Let « = (n—1)p — 1, and define

e — A I-ED\ (A —al
°=\r o )" \u o)
Heuristic: if p > log n/n, an Erd8s-Rényi graph = a regular graph.
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Figure: Spectrum of Hy (red -) and H (blue +) for G(n, p).
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Spectrum of partly averaged matrix Hj

Eigenvalues of Hy can be quantified by the eigenvalues of A.

Theorem (combining FK81,KS03,Vu07, BGBK17)

Let \y > --- > X\, be the eigenvalues of A. If p > 'c’%, then the following
two facts hold a.a.s.:

A1 = np(1+o(1));

max |Aj| <2+/np(1—p)(1+ o(1)).

2<i<n
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Theorem (W.-Wood 2018; spectrum of Hp)
Ifp> % then almost surely for large n, the matrix Hy has 2 real

eigenvalues
p1 =np(l+o(1)) and px =1+ o(1).

Ke Wang (HKUST) May 22, 2018 11 /21



Theorem (W.-Wood 2018; spectrum of Hp)
Ifp> f then almost surely for large n, the matrix Hy has 2 real

eigenvalues
p1 =np(l+o(1)) and px =1+ o(1).

All other eigenvalues . are complex with magnitude

Il = va=/(n=Dp—1=/Ap(1+o(1)),

and have real parts distributed according to the semi-circular law.

Explicit diagonalization: det(x/ — Hp) = []"_;(x®> — Aix + «). Roots are
: ()\,- + /22— 4a>. Cases: |\j| > 2y/a (real elgenvals) or [\i] <2/«
Compare 2y/a =24/(n—1)p — 1 with 24/np(1 —
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Are spectra of Hy and H close in bulk?

For a matrix M,, with eigenvalues A1, ..., Ap, the function
1 n
= - Ox.
) = 5 300 )
1=

is the empirical spectral measure.

Theorem (W.-Wood 2018; bulk convergence)

Assume np/logn — oo. Then

1 — 1
NﬁH Mﬁ/—/o
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Sketch of proof: perturbative approach

View H as a perturbation of Hy where
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Sketch of proof: perturbative approach

View H as a perturbation of Hy where

]

Warning: eigenvalue perturbation of non-normal matrices can be tricky.
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Sketch of proof: perturbative approach

View H as a perturbation of Hy where

1 1
E=—H-——Hy= a
Ja  Ja (0 0

Warning: eigenvalue perturbation of non-normal matrices can be tricky.

Idea: apply the Tao-Vu replacement principle as a perturbation result,
comparing

1 1
—H=—Hy+E.
Ja Ja o +

Ho with

L
Ja
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The Tao-Vu replacement principle for perturbations

Theorem (Tao-Vu, with appendix by Krishnapur, 2010)

If LMy |12 + L||M,, + Pn||% bounded a.s. and if for almost every z € C
Llog|det(M, — zI)| — L log |det(M, + P, — zI)| = 0
almost surely,
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Theorem (Tao-Vu, with appendix by Krishnapur, 2010)

If LMy |12 + L||M,, + Pn||% bounded a.s. and if for almost every z € C
Llog|det(M, — zI)| — L log |det(M, + P, — zI)| = 0

almost surely, then pp, — pip,+p, — 0 almost surely.

1) Note that M, and M, + P, can be dependent (internally, too)
2) Determinant is a product of singular values.
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The Tao-Vu replacement principle for perturbations

Theorem (Tao-Vu, with appendix by Krishnapur, 2010)

If LMy |12 + L||M,, + Pn||% bounded a.s. and if for almost every z € C
Llog|det(M, — zI)| — L log |det(M, + P, — zI)| = 0
almost surely, then pp, — pip,+p, — 0 almost surely.

1) Note that M, and M, + P, can be dependent (internally, too)

2) Determinant is a product of singular values.

3) In fact, the following conditions imply converging log determinants:
There exists f(z,n) > 1, a function of n and z so that

(i)  f(z,n)||Pn]| — 0 almost surely, and

(i) [[(May—2)7Y < f(z, n) almost surely, for all suff. large n.

Ke Wang (HKUST) May 22, 2018
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Sketch of proof

Apply with M, = ﬁHo and P, = E. We verify the following conditions.

e Both 5-||M,[|% and 5= ||M, + P,||# are almost surely bounded.

@ ||Pn|l — 0 almost surely.

e Construct a constant C(z) > 0 such that ||[(M, — zI) || < C(z2)
almost surely.
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Distance between eigenvalues of H and H,

Theorem (Wang-W. 2018)

Let p>> _gW Then with probability 1 — o(1), every eigenvalue of \/iaH

is within R = 40,/ =83 of an eigenvalue of THO
: 1 1 _ _
Eigenvalues of ﬁH and ﬁ/‘/o when n =100 and p =0.3
vl :
0.5 £y N
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Sketch of Proof

Apply the Bauer-Fike theorem.

Theorem (Bauer-Fike theorem)

If Hy is diagonalizable by the matrix Y, then

maxmin |uj(Ho + E) — pi(Ho)l < [[E[l - I[Y1] -l Y.

For eigenvalue \; of A, 12j_1 and jup; solutions of u? — \ju + o = 0.
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Sketch of Proof

Apply the Bauer-Fike theorem.

Theorem (Bauer-Fike theorem)

If Hy is diagonalizable by the matrix Y, then

maxmin |uj(Ho + E) — pi(Ho)l < [[E[l - I[Y1] -l Y.

For eigenvalue \; of A, uo;—1 and up; solutions of ,u2 —Aipp+a=0. Let
vi be the eigenvector of A. Then Y~1HyY = diag(u1, ..., tan) Where

Y=(Y4,...,Y,) and n:(“zf—}"’ ”2"‘”).

Vi Vi

The eigenvalues of Y*Y are unions of eigenvalues of Y;*Y;.

|
Also we show [|E|| < 204/ w.h.p.
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Future questions

@ Mixing rate of non-backtracking walks on random graphs

Consider the transition probability matrix P of size 2|E| x 2|E| of the
non-backtracking walks.

1 - . -
—— ifj=kandi#]
Pisjk—s1 = {do) ! _
0 otherwise.

Top eigenvalues of P contain information of the mixing rate of
non-backtracking walks.
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Future questions

@ Spectrum of B for very sparse random graphs

For G(n, 1), Bordenave, Lelarge and Massoulié (2015): A\; = ¢ + o(1) and
max;-1 |Ai] < v/c+ o(1). Plot of eigenvalues of B of G(n, p) with

n =500 and p = &;.
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Future questions

@ Properties of eigenvectors of B
Observed: top eigenvectors of B are usually robust against localization.
@ Krzakala, Moore, Mossel, Neeman, Sly, Zdeborova, Zhang (2013): “spectral

redemption conjecture” for stochastic block model. The second eigenvector
of B contains information on the global block structure.
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