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Non-backtracking walks on graphs

Consider a graph G . The non-backtracking random walk traverses edges,
with the constraint that most recently traversed edge may not be again
traversed in the opposite direction.

here
Example. Key: red is current position, blue is last position.

Original graph Edge graph (connects to next allowed edge)
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Alon, Benjamini, Lubetzky and Sodin (2006): Non-backtracking walks
mix faster than simple random walks on regular expander graphs.

Ben-Hamou, Lubetzky and Peres (2018): Non-backtracking walks mix
faster than simple random walks on graphs with minimum degree 3
and degree distribution has exponential tails.

Cut-off phenomena of non-backtracking walks: Berestycki, Lubetzky,
Peres and Sly (2015), Ben-Hamou and Salez (2015) etc.
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Non-backtracking matrix B

A simple undirected graph G = (V ,E ).

Adjacency matrix A: Aij = 1 if (i , j) ∈ E and 0 otherwise.

Non-backtracking matrix: for each (i , j) ∈ E , form two directed edges
i → j and j → i . The non-backtracking matrix B is a 2|E | × 2|E |
matrix such that

Bi→j ,k→l =

{
1 if j = k and i 6= l

0 otherwise.

Non-backtracking matrix is first introduced by Hashimoto (1989).

Entries of Ak : the number of walks of length k from one vertex to
another.

Entries of Bk : the number of non-backtracking walks of length k
from one directed edge to another.
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Spectrum of the non-backtracking matrix B

Goal: Understand the eigenvalues of B.

Theorem (Ihara’s formula)

det(I − uB) = (1− u2)|E |−|V | det(I − uA + u2(D − I )).

Here D is the diagonal degree matrix, Dii = degree of vertex i .

A simple relationship between spectrum of A and B when G is regular.
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Previous results on the spectrum of B

Angel, Friedman and Hoory (2015): spectrum of B on tree cover of a
finite graph.

Bordenave, Lelarge and Massoulié (2015): top eigenvalues of B on
(very sparse) stochastic block model and Erdős-Rényi G (n, cn ).

Gulikers, Lelarge and Massoulié (2016): top eigenvalues of B on
generalized stochastic block models.

Benaych-Georges, Bordenave and Knowles (2017): spectral radius of
B on inhomogeneous Erdős-Rényi random graph.
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Ihara’s formula: det(I − uB) = (1− u2)|E |−|V | det(I − uA + u2(D − I )).

eigenvalues of B = {±1} ∪ { eigenvalues of H :=

(
A I − D
I 0

)
}.

We will call H the non-backtracking spectrum operator for the graph.
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Non-backtracking matrix of Erdős-Rényi random graphs

Erdős-Rényi random graph G (n, p) : edges are drawn independently with
probability p. Adjacency matrix A and non-backtracking spectrum
operator

H =

(
A I − D
I 0

)
.

Partial derandomization: replace D by its average, rest of H unchanged.
Let α = (n − 1)p − 1, and define

H0 =

(
A I − ED
I 0

)
=

(
A −αI
I 0

)
.

Heuristic: if p � log n/n, an Erdős-Rényi graph ≈ a regular graph.
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Figure: Spectrum of H0 (red ·) and H (blue +) for G (n, p).
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Spectrum of partly averaged matrix H0

Eigenvalues of H0 can be quantified by the eigenvalues of A.

Theorem (combining FK81,KS03,Vu07, BGBK17)

Let λ1 ≥ · · · ≥ λn be the eigenvalues of A. If p � log n
n , then the following

two facts hold a.a.s.:
λ1 = np(1 + o(1));

max
2≤i≤n

|λi | ≤ 2
√

np(1− p)(1 + o(1)).
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Theorem (W.-Wood 2018; spectrum of H0)

If p � 1√
n
, then almost surely for large n, the matrix H0 has 2 real

eigenvalues
µ1 = np(1 + o(1)) and µ2 = 1 + o(1).

All other eigenvalues µ are complex with magnitude

|µ| =
√
α =

√
(n − 1)p − 1 =

√
np(1 + o(1)),

and have real parts distributed according to the semi-circular law.

Explicit diagonalization: det(xI − H0) =
∏n

i=1(x2 − λix + α). Roots are
1
2

(
λi ±

√
λ2i − 4α

)
. Cases: |λi | ≥ 2

√
α (real eigenvals) or |λi | < 2

√
α.

Compare 2
√
α = 2

√
(n − 1)p − 1 with 2

√
np(1− p).
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Are spectra of H0 and H close in bulk?

For a matrix Mn with eigenvalues λ1, . . . , λn, the function

µMn(z) =
1

n

n∑
i=1

δλi (z)

is the empirical spectral measure.

Theorem (W.-Wood 2018; bulk convergence)

Assume np/ log n→∞. Then

µ 1√
α
H − µ 1√

α
H0
→ 0 a.s. as n→∞.
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Sketch of proof: perturbative approach

View H as a perturbation of H0 where

E =
1√
α
H − 1√

α
H0 =

(
0 I + 1

α(I − D)
0 0

)
.

Warning: eigenvalue perturbation of non-normal matrices can be tricky.

Idea: apply the Tao-Vu replacement principle as a perturbation result,
comparing

1√
α
H0 with

1√
α
H =

1√
α
H0 + E .
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The Tao-Vu replacement principle for perturbations

Theorem (Tao-Vu, with appendix by Krishnapur, 2010)

If 1
n‖Mn‖2F + 1

n‖Mn + Pn‖2F bounded a.s. and if for almost every z ∈ C
1
n log |det(Mn − zI )| − 1

n log |det(Mn + Pn − zI )| → 0
almost surely, then µMn − µMn+Pn → 0 almost surely.

1) Note that Mn and Mn + Pn can be dependent (internally, too)
2) Determinant is a product of singular values.
3) In fact, the following conditions imply converging log determinants:
There exists f (z , n) ≥ 1, a function of n and z so that
(i) f (z , n)‖Pn‖ → 0 almost surely, and
(ii) ‖(Mn − zI )−1‖ ≤ f (z , n) almost surely, for all suff. large n.
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Sketch of proof

Apply with Mn = 1√
α
H0 and Pn = E . We verify the following conditions.

Both 1
2n‖Mn‖2F and 1

2n‖Mn + Pn‖2F are almost surely bounded.

‖Pn‖ → 0 almost surely.

Construct a constant C (z) > 0 such that ‖(Mn − zI )−1‖ ≤ C (z)
almost surely.

Ke Wang (HKUST) May 22, 2018 15 / 21



Distance between eigenvalues of H and H0

Theorem (Wang-W. 2018)

Let p � log3/2 n
n1/6

. Then with probability 1− o(1), every eigenvalue of 1√
α
H

is within R = 40
√

log n
np2

of an eigenvalue of 1√
α
H0.

Eigenvalues of 1√
α
H and 1√

α
H0 when n = 100 and p = 0.3
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Sketch of Proof

Apply the Bauer-Fike theorem.

Theorem (Bauer-Fike theorem)

If H0 is diagonalizable by the matrix Y , then

max
j

min
i
|µj(H0 + E )− µi (H0)| ≤ ‖E‖ · ‖Y ‖ · ‖Y−1‖.

For eigenvalue λi of A, µ2i−1 and µ2i solutions of µ2 − λiµ+ α = 0. Let
vi be the eigenvector of A. Then Y−1H0Y = diag(µ1, . . . , µ2n) where

Y = (Y1, . . . ,Yn) and Yi =

(
µ2i−1vi µ2ivi

vi vi

)
.

The eigenvalues of Y ∗Y are unions of eigenvalues of Y ∗i Yi .

Also we show ‖E‖ ≤ 20
√

log n
np w.h.p.
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Future questions

Mixing rate of non-backtracking walks on random graphs

Consider the transition probability matrix P of size 2|E | × 2|E | of the
non-backtracking walks.

Pi→j ,k→l =

{
1

d(j)−1 if j = k and i 6= l

0 otherwise.

Top eigenvalues of P contain information of the mixing rate of
non-backtracking walks.
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Future questions

Spectrum of B for very sparse random graphs

For G (n, cn ), Bordenave, Lelarge and Massoulié (2015): λ1 = c + o(1) and
maxi 6=1 |λi | ≤

√
c + o(1). Plot of eigenvalues of B of G (n, p) with

n = 500 and p = 10
500 .
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Future questions

Properties of eigenvectors of B

Observed: top eigenvectors of B are usually robust against localization.

Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang (2013): “spectral
redemption conjecture” for stochastic block model. The second eigenvector
of B contains information on the global block structure.

Figure: taken from T. Kawamoto (2016) “Localized eigenvectors of the non-backtracking matrix”. IPR=

∑
i v

4
i

(
∑

i v
2
i
)2

.
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