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Sample covariance matrix and problem

of high-dimensionality



Sample variance/covariances from a multivariate population

I Let x, . . . , x1, . . . , xn, . . . an i.i.d. sequence of Rp-valued random vectors

with common distribution µ (population);

I Sample variance/covariance matrix: (assuming E(x) = 0)

Sn =
1

n

n∑
k=1

xkxT
k .

That is, if we write xk = (ξ1k , . . . , ξpk)T ,

Sn(i , j) =
1

n

n∑
k=1

ξikξjk , 1 ≤ i , j ≤ p.

[sample cross-moments between dimensions/variables i and j .]

I The population variance/covariance matrix is

Σ = E[xxT ], (p × p).

Both Sn and Σ are nonnegative definite and trivially,

ESn = Σ.
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Is Sn a “good enough” estimator of Σ ?

Large sample theory

Holding the dimension p while letting the sample size n→∞:

1. Law of large numbers: Sn
a.s.→ Σ = E[xxT ], [once E[‖x‖2] <∞]

2. Central limit theorem:
√

n [Sn −Σ] ⇒ N(0,Λ),

with some asymptotic variance/covariance matrix Λ.

[once E[‖x‖4] <∞]

I A fundamental issue in statistics:

When analyzing a real “high-dimensional” data set with given (p, n)

such that p/n� 0, for example (p = 100, n = 500),

approximation from this classical large sample theory becomes

biased and inefficient!
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(a). High-dimensional data is now common

I Many sources to high-dimensional data: electronic trading in finance;

genomics;

I typical data dimensions and sample sizes:

# variables p sample size n ratio p/n Small / Big
portfolio ∼ 100 500 0.2 S

climate survey 320 600 0.21 S

speech analysis ∼ 103 ∼ 103 ∼ 1 S

ORL face data base 1440 320 4.5 B

micro-arrays 10000 1000 10 B
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(b). Example illustrating inefficiency of classical large sample limits

Consider

I a “white”/unit Gaussian populaiton x ∼ N(0, Ip), that is,

x = (ξ1, . . . , ξp)T , ξ` are i.i.d. N(0, 1).

I given a sample x1, . . . , xn from x, the sample covariance matrix is,

Sn =
1

n

n∑
i=1

xix
T
i =

1

n
Wn,

Here

Wn =
n∑

i=1

xix
T
i = (x1, . . . , xn)(x1, . . . , xn)T ∼ Wishart(n, Ip)

I let λ1 ≥ · · · ≥ λp ≥ 0 be eigenvalues of Sn.
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Example (cont.)

Large sample limits: p fixed while n→∞

1. LLN: Sn
a.s.→ Ip; by continuity, (λ1, . . . , λp)

a.s.→ 1 .

2. CLT: √
n (Sn − Ip) ⇒ N(0, ∗),

By delta method,

√
n
{

(λ2
1 + · · ·+ λ2

p)− p
}
⇒ N(0, ∗).

Random-matrix-theory (RMT) limits:

n→∞, p = pn →∞ such that pn/n→ c > 0

1. LLN: Sn 6∼ Ip;
1

p

p∑
k=1

δλk ⇒ Marčenko-Pastur law

2. CLT:

(λ2
1 + · · · ,+λ2

p)− p − p2/n⇒ N(m, ∗).
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Example (cont.)
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1. Histogram of 40 eigenvalues of Sn simulated with p = 40 and n = 160

2. blue curve = RMT limit: Marčenko-Pastur law with index p
n

= 1
4

f (x) = 1
2πcx

√
(b − x)(x − a), x ∈ [a, b] = [0.25, 2.25]

3. large sample limit: sample eigenvalues ' 1
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(c) Marčenko-Pastur paradigm for high-dimensional statistics

I Both the large sample limits and random matrix theory limits are

mathematical theorems, are thus theoretically correct;

I But the question from a responsible statistician (now “data scientist”)

would be:

Which theory to follow if data table has (p, n) = (40, 160)?

I Previous simulation shows clearly that

RMT Marčenko-Pastur limit � classical large sample limit !
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Empirical performance of the Marčenko-Pastur limiting scheme
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Random matrix theory for large sample

covariance matrix



The Marčenko-Pastur distribution

Theorem. Assume : Marčenko & Pastur, 1967

I Population x = (ξ1, . . . , ξp)T has i.i.d. components with mean 0 and

variance 1; (so Σ = Ip);

I x1, . . . , xn is an i.i.d. sample of x;

I n→∞, p = p(n)→∞ and p/n→ y ∈ (0, 1];

Then, the eigenvalue distribution of

Sn =
1

n

n∑
k=1

xkxT
k =

1

n
XXT =

1

n
(x1, . . . , xn)(x1, . . . , xn)T

converges to the distribution with density function

f (x) =
1

2πyx

√
(x − a)(b − x), a ≤ x ≤ b,

where

a = (1−√y)2, b = (1 +
√

y)2 .
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The Marčenko-Pastur distribution

f (x) =
1

2πyx

√
(x − a)(b − x), (1−√y)2 = a ≤ x ≤ b = (1 +

√
y)2.

y ∼ p/n a b

1/8 0.42 1.83

1/4 0.25 2.25

1/2 0.09 2.91
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The generalized Marčenko-Pastur distribution

Theorem. Assume : Marčenko & Pastur, (1967); Silverstein (1995)

I X = p × n i.i.d. variables (0, 1);

I n→∞, p = p(n)→∞ and p/n→ y ∈ (0, 1];

I (Tp)p≥1 is a sequence of non-negative Hermitian matrices whose

eigenvalue distributions (Hp)p tend to a deterministic probability

distribution H;

Then, the eigenvalue distribution of Sn = 1
n

T
1/2
p XXTT

1/2
p converges to a

deterministic distribution Fy,H characterized by its Stieltjes transform m which

solves the following Marčenko-Pastur equation

m =

∫
1

t(1− y − yzm)− z
dH(t).

This solution is unique in the set {m ∈ C+ : −(1− y)/z + ym ∈ C+}.
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An example of generalized Marčenko-Pastur distribution

Assuming that Tp = diag{1, . . . , 1︸ ︷︷ ︸
1/3

, 4, . . . , 4︸ ︷︷ ︸
1/3

, 10, . . . , 10︸ ︷︷ ︸
1/3

}.

Then the limiting Stieltjes transform m solves:

m =
1/3

1− y − yzm − z
+

1/3

4(1− y − yzm)− z
+

1/3

10(1− y − yzm)− z
.

By inversion of Stieltjes transform, density function is:
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Example of stock data

I SP 500 daily stock prices ; p = 488 stocks;

I n = 1000 daily returns rt(i) = log pt(i)/pt−1(i) from 2007-09-24 to

2011-09-12;
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The sample correlation matrix

I Let the SCM (488× 488)

Sn =
1

n

n∑
t=1

(rt − r)(rt − r)T .

I We consider the sample correlation matrix Rn with

Rn(i , j) =
Sn(i , j)

[Sn(i , i)Sn(j , j)]1/2
.

I The 10 largest and 10 smallest eigenvalues of Rn are:

237.95801 4.8568703 ... 0.0212137 0.0178129

17.762811 4.394394 ... 0.0205001 0.0173591

14.002838 3.4999069 ... 0.0198287 0.0164425

8.7633113 3.0880089 ... 0.0194216 0.0154849

5.2995321 2.7146658 ... 0.0190959 0.0147696
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Sample eigenvalues of stock returns

[excluding the 10 largest: λ11, . . . , λ488]

I Two important questions:

I Explanation the largest sample eigenvalues (spikes, perturbation);

I Provide a model for bulk correlation structure between the 488 returns.

I Both successfully analysed using

Genelized Marčenko-Pastur distribution + spiked outliers
19



CLT for linear spectral staistics

General issue:

I Assume that for a sequence of E.S.D Fn Fn =
1

p

p∑
j=1

δλj , we have

proved the existence of a limiting distribution F ;

I Given a “smooth” function g , e.g. g(x) = x − 1− log x , consider the

linear spectral statistic (LSS):

Fn(g) =
1

p

p∑
j=1

g(λj)

I Problem: find an, bn s.t.

an [Fn(g)− bn] =⇒ N (m,V )

for some asymptotic mean m and variance V .
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CLT for LSS of sample covariance matrices

I Consider a sequence of sample covariance matrices Sn s.t F Sn =⇒ Fy , the

Marcčenko-Pastur distribution of index y ;

I CLT’s for regular functions g have a long history

Arharov (1971); Jonsson (1982) ; Johnsson (1998); Sinai & Soshnikov

(1998);

Bai & Silverstein (2004); Bai and Y. (2005); Lytova & Pastur (2009)

Following Bai & Silverstein ’04, let

I an open set U of C including the support [a, b] = [(1−√y)2, (1 +
√

y)2]

of the LSD

I for any g analytic on U : Gn(g) = p [Fn(g)− µyn (g)]

where µyn is the MP distribution of index yn ∈ (0, 1).
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A CLT for LSS

Bai and Silverstein (2004)

Theorem

Assume that

I g1, · · · , gk are k analytic functions on U ;

I the matrix entries xij are i.i.d. real-valued random variables such that

Exij = 0, Ex2
ij = 1, Exij

4 = 3.

I as n, p →∞, yn =
p

n
→ y ∈ (0, 1);

Then,

(Gn(g1), · · · ,Gn(gk))⇒ Nk(m,V ),

with a given mean vector m = m(g1, . . . , gk) and asymptotic covariance matrix

V = V (g1, . . . , gk).
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CLT for LSS of random Fisher matrices

I two independent samples:

x1, . . . , xn1 ∼ (0, Ip), y1, . . . , yn2 ∼ (0, Ip)

with i.i.d coordinates of mean 0 and variance 1

I Associated sample covariance matrices:

S1 =
1

n1

n1∑
i=1

xix
T
i , S2 =

1

n2

n2∑
j=1

yjy
T
j .

I Fisher matrix: Vn = S1S−1
2 where n2 > p.
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LSD of random Fisher matrices

I Assume

yn1 =
p

n1
→ y1 ∈ (0, 1), yn2 =

p

n2
→ y2 ∈ (0, 1) .

I Under mild moment conditions, the ESD FVn
n of Vn has a LSD Fy1,y2 with

density (Wachter distribution):

`(x) =


(1− y2)

√
(b − x)(x − a)

2πx(y1 + y2x)
, a ≤ x ≤ b,

0, otherwise

where

a = (1−y2)−2 (1−√y1 + y2 − y1y2

)2
, b = (1−y2)−2 (1 +

√
y1 + y2 − y1y2

)2
.
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CLT for LSS of random Fisher matrices

I let Ũ ⊂ C be an open set including the interval[
I(0,1)(y1)

(1−√y1)2

(1 +
√

y2)2
,

(1 +
√

y1)2

(1−√y2)2

]
,

I for an analytic function f on Ũ , define

G̃n(f ) = p
[
FVn
n (g)− Fyn1

,yn2
(g)
]
,

where Fyn1
,yn2

is the LSD with indexes ynk , k = 1, 2.
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CLT for LSS of random Fisher matrices

Zheng (2008)

Theorem

Assume E x4
11 = E y4

11 <∞ and let β = E |x11|4 − 3. Then for any analytic

functions f1, · · · , fk defined on Ũ ,[
G̃n(f1), · · · , G̃n(fk)

]
=⇒ Nk(m, υ) .
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CLT for LSS of random Fisher matrices

Zheng (2008)

Limiting mean function m

m(fj) = lim
r→1+

[(2.1) + (2.2) + (2.3)]

1

4πi

∮
|ζ|=1

fj(z(ζ))

[
1

ζ − 1
r

+
1

ζ + 1
r

− 2

ζ + y2
hr

]
dζ (2.1)

+
β · y1(1− y2)2

2πi · h2

∮
|ζ|=1

fj(z(ζ))
1

(ζ + y2
hr

)3
dζ (2.2)

+
β · y2(1− y2)

2πi · h

∮
|ζ|=1

fj(z(ζ))
ζ + 1

hr

(ζ + y2
hr

)3
dζ, (2.3)

where

z(ζ) = (1− y2)−2
[
1 + h2 + 2hR(ζ)

]
, h =

√
y1 + y2 − y1y2. (2.4)
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CLT for LSS of random Fisher matrices

Zheng (2008)

Limiting covariance function υ

υ(fj , f`) = lim
1<r1<r2→1+

[(2.5) + (2.6))]

− 1

2π2

∮
|ζ2|=1

∮
|ζ1|=1

fj(z(r1ζ1))f`(z(r2ζ2))r1r2

(r2ζ2 − r1ζ1)2
dζ1dζ2, (2.5)

−β · (y1 + y2)(1− y2)2

4π2h2

∮
|ζ1|=1

fj (z(ζ1))

(ζ1 + y2
hr1

)2
dζ1

∮
|ζ2|=1

f` (z(ζ2))

(ζ2 + y2
hr2

)2
dζ2(2.6)

j , ` ∈ {1, · · · , k}.
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Problem 1: testing on high-dimensional

covariance matrices



Testing structure of a large covariance matrix

I a sample x1, . . . , xn ∼ Np(µ,Σ)

I want to test hypothesis about structure of Σ:

• Σ = Ip (identity test)

• Σ = c × Ip , c unknown (sphericity test)

• Σ is diagonal, block diagonal, Toeplitz, band, etc.

I in high-dimensional case, several previous work exist:

Ledoit & Wolf ’02; Schott ’07; Srivastava ’05 . . .

I we focus on the simplest case of identity test H0 : Σ = Ip

I LR statistic:

Tn = n [trSn − log |Sn| − p] , Sn =
1

n

n∑
i=1

(xi − x)(xi − x)′,

Classical LRT -large sample limit:

I when n→∞ , Tn =⇒ χ2
p(p+1)/2 (data dimension p is fixed)

I Procedure based on this limit is rapidly deficient when p is not “small”.
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RMT Corrected LRT:

Bai, Jiang, Y. and Zheng (2009)

Theorem

Assume p/n→ y ∈ (0, 1) and let g(x) = x − log x − 1. Then, under H0 and

when n→∞ [
Tn

n
− p · F yn (g)

]
⇒ N (m(g), υ(g)),

where F yn is the Marčenko-Pastur law of index yn and

m(g) = − log (1− y)

2
,

υ(g) = −2 log (1− y)− 2y .
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Comparison of LRT and Corrected LRT by simulation

I nominal test level α = 0.05 ;

I for each (p, n), 10,000 independent replications with real Gaussian

variables.

I Powers are estimated under the alternative H1:

Σ = diag(1, 0.05, 0.05, 0.05, . . . , 0.05).

CLRT LRT

(p, n ) Size Difference with 5% Power Size Power

(5, 500) 0.0803 0.0303 0.6013 0.0521 0.5233

(10, 500) 0.0690 0.0190 0.9517 0.0555 0.9417

(50, 500) 0.0594 0.0094 1 0.2252 1

(100, 500) 0.0537 0.0037 1 0.9757 1

(300, 500) 0.0515 0.0015 1 1 1
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Problem 2: testing in high-dimensional

regressions



A general linear hypothesis in a multivariate regression

A p-th dimensional regression model:

xi = Bzi + εi , i = 1, . . . , n

where

εi ∼ Np(0,Σ), xi ∈ Rp, zi ∈ Rq, n ≥ p + q.

A general linear hypothesis:

I Write a bloc decomposition B = (B1,B2) with q1 and q2 columns

(q = q1 + q2)

I To test

H0 : B1 = M ,

with a given M.
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Wilk’s Λ

I Let Σ̂0 and Σ̂1 be the likelihood “estimator” of Σ under H0 and the

alternative, respectively

I LRT statistic equals

L0/L1 = (Λn)n/2, Λn =
|Σ̂|
|Σ̂0|

,

where Λn is the celebrated Wilk’s Λ: Wilks ’32, ’34 ; Bartlett ’34.

I Classic (low dimensional) approximation of LRT: for fixed p and q,

n→∞ and under H0:

Un = −n log Λn ⇒ χ2
pq1
.

I Less biased Bartlett’s correction:

Ũn = −k log Λn, k = n − q − 1

2
(p − q1 + 1) .
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Large-dimensional correction of Wilk’s Λ

Bai, Jiang, Y. and Zheng (2010)

Theorem

Let p →∞, q1 →∞, n − q →∞ and

yn1 =
p

q1
→ y1 ∈ (0, 1), yn2 =

p

n − q
→ y2 ∈ (0, 1).

Then, under H0,

Tn = υ(f )−
1
2
[
− log Λn − p · Fyn1

,yn2
(f )−m(f )

]
⇒ N (0, 1) ,

where m(f ), υ(f ) and Fyn1
,yn2

(f ) are suitable constants computed from

f (x) = log(1 +
yn2

yn1

x) .
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The centering term:

Fyn1
,yn2

(f ) =
yn2 − 1

yn2

log cn +
yn1 − 1

yn1

log(cn − dnhn)

= +
yn1 + yn2

yn1 yn2

log

(
cnhn − dnyn2

hn

)
,

where

hn =
√

yn1 + yn2 − yn1 yn2

an, bn =
(1∓ hn)2

(1− yn2 )2

cn, dn =
1

2

[√
1 +

yn2

yn1

bn ±
√

1 +
yn2

yn1

an

]
, cn > dn,
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The limiting parameters:

m(f ) =
1

2
log

(c2 − d2)h2

(ch − y2d)2
,

υ(f ) = 2 log

(
c2

c2 − d2

)
,

where

h =
√

y1 + y2 − y1y2

a0, b0 =
(1∓ h)2

(1− y2)2

c, d =
1

2

[√
1 +

y2

y1
b0 ±

√
1 +

y2

y1
a0

]
, c > d .
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A simulation experiment
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I Gaussian entries,

I non central parameter c0 ∼ d(H,H0).
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An example where Marčenko-Pastur law

does not hold



Multivariate normal mixture

I p-dimensional multivariate normal mixture (MNM):

f (x) =
K∑
j=1

αjφ(x; µj ,Σj), (5.1)

where

• (αj ): K mixing weights

• (µj ,Σj ): parameters of the jth Gaussian component (φ is the multivariate

Gaussian density function)

I high-dimensional situations: p is large compared to the sample size n.
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Statistical testing problem

I Test for the covariance matrix in the MNM model

f (x) =
K∑
j=1

αjφ(x; µj , σ
2
j T2

p) with µj = 0 (5.2)

in high-dimensional situations.

I This model is a special case of a p-dimensional scale mixture,

x = wTpz, (5.3)

where

• z = (z1, . . . , zp)′ are i.i.d. E(zi ) = 0, E(z2
i ) = 1;

• w > 0 is a random scale, independent of z;

• Tp ∈ Rp×p , Tp > 0, tr(T2
p)/p = 1;

Indeed: (5.3) =⇒ (5.2) if z ∼ N(0, Ip), Tp = Ip and P(w 2 = σ2
j ) = αj .

I Terminology: distribution of w 2, denoted G , referred as Population Mixing

Distribution (PMD).
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Introduction

I Let x1, . . . , xn be a sample from the mixture x, with population covariance

matrix Σ = E[x1xT
1 ]

I Sample covariance matrix: Sn =
1

n

n∑
i=1

xix
′
i .

I Random matrix theory: for p, n large,

eigenvalues of Σ  eigenvalues of Sn

Terminology. Empirical spectral distribution (ESD) of a p × p symmetric

matrix A:

µA =
1

p

p∑
j=1

δλj ,

where (λj)1≤j≤p are the eigenvalues of A, (δb: the Dirac mass at b).
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Introduction

Existing random matrix theory

population eigenvalues sample eigenvalues

µΣ : ESD of Σ  µSn : ESD Sn

Findings

Mixtures are not a usual high-dimensional population:

normal population with Σ = Ip : µSn ∼ Marčenko-Pastur law

mixture of normals with Σ = Ip : µSn 6= Marčenko-Pastur law

( Both populations have uncorrelated components! )
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Case of uncorrelated population I

I Consider the simplest case of x = z: E(x) = 0, cov(x) = Ip.

I Assume the Marčenko-Pastur regime:

p = pn, and pn/n→ c > 0 as n→∞.

I We have that

µSn

a.s.−−→
w

ν (MP law).

I ν(dx) =

f (x)dx +(1−1/c)δ0(dx)1{c>1}

where

f (x) =

√
(b − x)(x − a)

2πcx
1[a,b](x),

where a = (1−
√

c)2 and

b = (1 +
√

c)2.

MP Law

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0
f (x)

The Marčenko-Pastur law (red line). The

dimensions are (p, n, c) = (500, 1000, 0.5) and

rep = 100.
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Case of uncorrelated population II

I Consider a simple mixture x = wz where E(w 2) = 1;

we have E(x) = 0, cov(x) = Ip.

I Assume again the Marčenko-Pastur regime: pn/n→ c > 0.

I We have that

µSn

a.s.−−→
w

F c,G 6= MP law.

I Example: The MNM is

f (x) = 0.25φ(x; 0, 2.5Ip) +

0.75φ(x; 0, 0.5Ip) with

c = 1/2.

Mixture
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1.4
f (x)

The LSD (blue line) from the MNM. The dimensions are

(p, n, c) = (500, 1000, 0.5) and rep = 100. The support

interval is [0.0576, 4.0674].

45



Comparison between the two cases

Uncorrelated populaitons: x = z versus x = w z

MP Law
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Figure 1: The Marčenko-Pastur law (red line) v.s. the LSD (blue line) from an MNM

with identity covariance. The dimensions are (p, n, c) = (500, 1000, 0.5) and

rep = 100. The support intervals are [0.0858, 2.9142] and [0.0576, 4.0674],

respectively.
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High-dimensional mixtures needs new random matrix theory

Why mixtures are different?

I Main reason: coordinates of x could be uncorrelated but strongly

dependent in the sense that:

var(‖x‖2) ∝ p2, p →∞.

I Consequence: much we have done so far for high-dimensional covariance

matrices do not apply to high-dimensional mixtures.

I Remark

I It is known that if for any bounded sequence (in spectral norm) (Ap), we

have

varxTApx = o(p2),

then the corresponding sample covariance Sn satisfies the

Marčenko-Pastur law. Bai and Zhou (2008)

Also called “good vector” by Pastur and Pajor (2009)
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Setting of a general scale mixture

Assumption (a). The sample and population sizes n, p both tend to infinity

with their ratio cn = p/n→ c ∈ (0,∞).

Assumption (b). There are two independent arrays of i.i.d. random variables

(zij)i,j≥1 and (wi )i≥1, satisfying

E(z11) = 0, E(z2
11) = 1, E(z4

11) <∞, (5.4)

such that for each p and n the observation vectors can be represented as

xi = wiTpzi with zi = (zi1, . . . , zip)′, i = 1, . . . , n.

Assumption (c). The spectral distribution Hp of the matrix T2
p weakly

converges to a probability distribution H, as p →∞, referred as Population

Spectral Distribution (PSD).

Assumption (d). The support set SG of the MD G is bounded above and from

below, that is SG ⊂ [a, b] for some 0 < a < b <∞.
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Global limit of sample eigenvalues

Theorem

Suppose that Assumptions (a)-(c) hold. Then, almost surely, the empirical

spectral distribution µn := µSn converges in distribution to a probability

distribution F c,G ,H whose Stieltjes transform m = mF c,G,H (z) is a solution to

the following system of equations, defined on the upper complex plane C+,
zm(z) = −1 +

∫ p(z)t
1+cp(z)t

dG(t),

zm(z) = −
∫

1
1+q(z)t

dH(t),

zm(z) = −1− zp(z)q(z),

(5.5)

where p(z) and q(z) are two auxiliary analytic functions. The solution is also

unique in the set

{m(z) : −(1− c)/z + cm(z) ∈ C+, zp(z) ∈ C+, q(z) ∈ C+, z ∈ C+}.

Li and Y. (2017)
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Some special cases of limiting spectral distributions

I When the distributions H and/or G degenerate to some Dirac mass, the
system (5.5) simplifies to a single equation leading to several well-known
LSDs.

• Case 1. If H = G = δ1, then the equations become

z = −
1

m
+

1

1 + cm
,

which defines the standard MP law (Marčenko-Pastur, 1969).

• Case 2. If G = δ1, then the equations turn into

m =

∫
1

t(1− c − cmz)− z
dH(t) ,

which defines the generalized MP law (Silverstein 1995).

• Case 3. If H = δ1, then the equations reduce to

z = −
1

m
+

∫
t

1 + ctm
dG(t) , (5.6)

which defines an LSD corresponding to a scale-mixture population with

spherical covariance matrix.
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Fluctuations of eigenvalue statistics

I We study the fluctuation of linear spectral statistics (LSS) of Sn under the

simplest spherical mixture model:

x = wz,

that is Tp = Ip and the PSD H = δ1.

I By the previous theorem, µn := µSn

D−→ F c,G .

I Linear spectral statistics (LSS) are of the form

1

p

p∑
j=1

f (λj) =

∫
f (x)dµSn (x) =

∫
fdµSn

where f is a function on [0,∞).

I In Bai and Silverstein (2004), the LSS under their settings are proved to

be asymptotically normal distributions:
p∑

j=1

f (λj)− p · κ(n, p)
D−→ N(a, s2)

However, we show that this CLT does not apply to the present model of

scale mixtures.
51



Fluctuations of eigenvalue statistics

I Express the sample as xj = wjzj , j = 1, . . . , n, and let

Gn =
1

n

n∑
j=1

δw2
j
, ESD µn ≈


F c,G cn → c,Gn

w−→ G ,

F cn,G c is replaced with cn,

F cn,Gn (c,G) is replaced with (cn,Gn)

I The aim here is to study the fluctuation of

1

p

p∑
j=1

f (λj)−
∫

f (x)dF cn,G (x) =

∫
f · d(µn − F cn,G )

through the decomposition∫
f · d(µn − F cn,G ) =

∫
f · d(µn − F cn,Gn ) +

∫
f · d(F cn,Gn − F cn,G )

Write it as: ∫
f · dFn =

∫
f · dFn1 +

∫
f · dFn2.
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A central limit theorem

Theorem

Suppose that Assumptions (a)-(d) hold. Let f1, . . . , fk be functions on R
analytic on an open interval containing[
aI(0,1)(1/c)(1−

√
1/c)2, b(1 +

√
1/c)2

]
. Write ∆ = E(z4

11)− 3, then the

random vectors

n

(∫
f1 · dFn1, . . . ,

∫
fk · dFn1

)
D−→ Nk(µ, Γ1),

√
n

(∫
f1 · dFn2, . . . ,

∫
fk · dFn2

)
D−→ Nk(0, Γ2).

Li and Y. (2017)

I Notice that

Fn1 = Fn − F cn,Gn is “asymptotically independent” of Fn2 = F cn,Gn − F cn,G ,

which leads to a finite-sample corrected CLT

√
n

(∫
f1 · dFn, . . . ,

∫
fk · dFn

)
·∼ Nk(µ/

√
n, Γ1/n + Γ2). (5.7)
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Applications to empirical moments

I Example: For β̂n2 =
∑p

j=1 λ
2
j /p,

√
n
(
β̂n2 − β2

)
·∼ N

(
v2/
√

n, ψ122/n + ψ222

)
(5.8)

where the parameters are respectively

β2 = cnγ2 + γ2
1 , v2 = (1 + ∆)γ2,

ψ122 = 4((2 + ∆)γ2
1γ2/c + 8(2 + ∆)γ1γ2 + 4(γ2

2 + c(2 + ∆)γ4)),

ψ222 = c2(γ4 − γ2
2 ) + 4cγ1γ3 + 4(1− c)γ2

1γ2 − 4γ4
1 .

Here, γj =
∫

t jdG(t) are the moments of the limiting mixing distribution

G (not observed in a mixture !)

I Numerical results: PMD G = 0.4δ1 + 0.6δ3, zij ∼
√

1/6 · (χ2
3 − 3).

Statistic (p, n) limiting distribution correction
√

n(β̂n2 − β̃2) (200,400) N(0, 39.32) N(3.48, 48.88)
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