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Outline of the deterministic part (Marie!)
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A little bit on Structured Population Models and our
motivation

The Direct Problem

The asymptotic behaviour
The Inverse Problem in a deterministic setting

» Case of Mitosis (division into 2 equal cells)
» General fragmentation kernel
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deterministic perspectives



Figure: Evolution of a E. Coli population.
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To model this: PDMP 7 VYes...
And also Structured Populations...

Population density: n(t, x)
can also be viewed as the law of the empirical measure of a
PDMP: ask Nathalie Krell...

x is the "structuring variable”, e.g. it may be

» for unicellular organisms: the mass / volume of the cell

v

for polymers: the number of monomers inside
the DNA content of the cell

v

v

the cell age (age-structured populations)
> a protein content: cyclin, cyclin-dependent kinases etc
a fluorescent label like CFSE

> a parasite growing inside the individuals

v

v

for stem cells: the maturity

Recent reference: B. Perthame, Transport Equations in Biology,
2007.



Some examples of structured populations
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Figure: From B. Basse et al, Modeling the flow of cytometric data
obtained from unperturbed human tumor cell lines: parameter fitting and
comparison. of Math. Bio., 2005



Some examples of structured populations

Linear Growth, CV=1
== = Exponential Gn:ulh cv 20%

FREQUENCY

CELL VOLUME IN UNITS OF Vbn Linear Growth

Figure: Cell volumes distribution for E. Coli THU in a glucose minimal
medium at a doubling time of 2 hrs. H.E. Kubitschek, Biophysical J.
9:792-809 (1969)



Some examples of structured populations

Size Distribution by Volume

Volume (%)

Size (d.nm)

Figure: Size distribution kinetic of PrP polymerization in
physico-chemical condition leading to the formation of amyloid fibrils
monitored by MWSLS technique (taken from ANR TOPPAZ,
INRA/BPCP data courtesy of H. Rezaei).



The Size-Structured Population equation
(or transport-fragmentation equation)

We consider a populations of "individuals” such that
» each particle of size x grows with a growth rate g(x),

» a particle of size y may divide with a division rate B(y)



The Size-Structured Population equation
(or transport-fragmentation equation)

We consider a populations of "individuals” such that
» each particle of size x grows with a growth rate g(x),
» a particle of size y may divide with a division rate B(y)

» for a given dividing particle of size y, the probability to give
rise to two offsprings of respective size x and y — x is given by
a probability law k(x,y) = k(y — x,y), so that

y y
E)fk(x,y)dx =1 and due to symetry 0ka(x,y)dx =%

First and probably most studied case: "equal mitosis” :
k(x,y) = Ox=1-



The Size-Structured Population equation
(or transport-fragmentation equation)

The deterministic model is obtained by a mass conservation law:

0 0
an(t,x) + &(g(x)n(t’x)) =
~B00n(e. ) +2 [ Bk(xy)n(e,)dy
with g(x = 0)n(t,x = 0) =0, t > 0 and n(0, x) = n(®(x), x > 0.
» LHS: density evolution 4+ growth (e.g. by nutrient uptake).

» RHS: exchanges by division:
loss by the division of cells of size x, income by the division of
cells of size y > x according the division law k(x, y).

For k = d,_y : 2 | B(y)k(x. y)n(t,y)dy = 4B(2x).



The Size-Structured Population equation
2 major relations, Direct vs Inverse Problem

The number of individuals only evolves by fragmentation:

jt/n(t,x)dx:/B(x)n(t,x)dx.

The total mass only evolves by growth:

% / xn(t, x)dx = / g()n(t, x)dx.
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The Size-Structured Population equation
2 major relations, Direct vs Inverse Problem

The number of individuals only evolves by fragmentation:

jt/n(t,x)dx:/B(x)n(t,x)dx.

The total mass only evolves by growth:

% / xn(t, x)dx = / g()n(t, x)dx.

Direct Problem: (g, k, B) given, what is the solution n ? Which
asymptotic behaviour ? How does it depend on the coefficients ?
Inverse Problem: estimate (g, k, B) from (partial) measures of n.
Our Inverse Problem: we suppose k known, g = cgp with gp a
known function,

¢ > 0 a constant and B are to be estimated.



The Size-Structured Population equation

Direct vs Inverse Problem
What is really observed 7 Remember:

0 ! 2 3
T T

———Linear Growth, CV=16%
== = Exponentiat Growth, CV=20%

FREQUENCY

CELL VOLUME IN UNITS OF Vh, Linear Growth

We do not observe n(t, x) but rather a DOUBLING TIME and a
STEADY DISTRIBUTION.



The Size-Structured Population equation
Long-time asymptotics
This motivated the method proposed by Perthame & Zubelli
(Inverse Problems, 2007): Use the asymptotic behaviour.

2 Seminal references on the asymptotics obtained via the General
Relative Entropy (GRE) principle:

> for the mitotic case: Perthame, Ryzhik, J. Diff. Equ., 2004
» for GRE in general: Michel, Mischler, Perthame, JMPA, 2004,

If we look at a solution under the form n(t,x) = e N(x), x >0
S (E(IN(x)) + AN(x) = =B(x)N(x) +2 [~ B(y)k(x, y)N(y)dy,,
gN(x=0)=0, N(x) >0, IS N(x)dx =1,

—g(x) 2 (6(x)) + Ap(x) = B(x)(—o(x) + 2 [o k(y, x)d(y)dy),,

[ 6(x) >0, [ d(x)N(x)dx = 1.
(1)



The Size-Structured Population equation
Long-time asymptotics

Theorem (MD, P. Gabriel, M3AS, 2010)

Under some technical assumptions on g, B and k, there exists a
unique triplet (A, N, ¢) with A\ > 0, solution of the eigenproblem
(1)

and then we have, by the GRE principle (ref. above)

/ ‘n(t,x)e*/\t — <n(0),¢>>N(x)‘¢(X)dx —0 as t— o0
Ry

(generalizes previous results by Michel, M3AS, 2004. Under some
extra assumptions, the convergence is exponential: last work M.J.
Caceres, J.A. Caiiizo, S. Mischler, JMPA, 2011)



The Direct Problem

The direct mapping is ' : (¢, B) — (A, N).
The space of interest is L2(R,) : general framework for inverse
problems

(see Engl, Hanke, Neubauer, Regularization of Inverse Problems,
1995)

In (Perthame, Zubelli, 2007):
results for mitotic division and 0 < B, < B < By < <.
Extension to the general case:

Theorem (MD, L.M. Tine, submitted, 2011)

Under the previous T.A. (and one other), if B € L?(R..), the map
I is injective and Lipschitz-continuous (and even Fréchet derivable)
from a proper definition domain to R x L2, under the strong
topology of L2.

Moreover, for g and k regular enough, if B € H*, then N € H5+1.
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The deterministic approach
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The Inverse Problem
The deterministic approach

» We postulate k(x, y) and some go(x) with g = cgo.
» We measure N and A\ with an error term modeled by

IN: — N2 <e and |[\; = A| <e.

» We seek ¢ and B such that

o

S (@UINGEAN() = ~BEING)+2 [ B KGN )dy

X

Estimate B through
L(N, ) = £(BN),
with
L(N,\)(x) = cOx(g(x)N(x)) + AN(x),

e}

&()(x) =2 / Fy)k(x, y)dy — F(x).

X

If we forget about ¢ and A : the problem N —-H = BN s linear.



The Inverse Problem
The deterministic approach

c/go(x)N(x)dx: )\/XN(x)dx,
so the following definition (or slight variants) gives good results:

J xN( dx

fgo




The Inverse Problem
The deterministic approach

c/go(x)N(x)dx: )\/XN(x)dx,
so the following definition (or slight variants) gives good results:
fo dx

fgo

Our problem is reduced to a linear one (+ some work) which
writes: find B solution of

L(N, ) = &(BN),

with
L(N,N)(x) = cox(g(x)N ())+>\N()
x)—2/ f(y)k(x,y)dy — f(x).
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The deterministic approach
2 main steps:

1. solve the dilation problem: for L in a proper space, find H
such that

2 [ HKCxey)dy - Hix) = L),

and H in a proper space - ideally, the " proper space” is L°.
For mitosis, the equation becomes:

4H(2x) — H(x) = L(x).



The Inverse Problem

The deterministic approach
2 main steps:
1. solve the dilation problem: for L in a proper space, find H
such that

2 [ HKCxey)dy - Hix) = L),

and H in a proper space - ideally, the " proper space” is L°.
For mitosis, the equation becomes:

4H(2x) — H(x) = L(x).

2. solve the derivative inverse problem: estimate
L(N,X) = c:0x(go(x)N(x)) + AN(x) from a measure
N, € 2. Classical inverse problem of degree of ill-posedness 1
for a L?>—noise: use your favorite regularization method to
treat the derivative & gain 1 degree of regularity.



The Inverse Problem
the Dilation Equation: Equal Mitosis

Proposition (MD, B. Perthame, J.P. Zubelli, 2009)

Let L € L2(R,,xPdx), with p # 3, then there exists a unique
solution H € L?(R,, xPdx) to

4H(2x) — H(x) = L(x).

For p < 3, this solution is given explicitly by HY) below, and for
p>3, by H? :

+00 +oo
HOG) =Y 27"1(27"x),  HO(x) = =) 22"L(2"x).
n=1 n=0

The solutions with L = 0 in D'(0,00) have the form "!%80D yyith
f € D'(R) alog(2)— periodic distribution.



The general case: nonlocal fragmentation kernel

[e. 9]

Hx) =2 [ HOK(xy)dy = F.

X

Proposition (MD, L.M. Tine, submitted)
Let k a fragmentation kernel and p € R satisfying:

C T kay)dy < -
=su —k(x, < -
s=sup [ Slxndy <

V F € [2(Ry, xPdx), 3! u € L2(xPdx) to (2), and

1
[[H|[2(xpax) < ?\/CT)HFHLZ(Xde)'



2nd step: Regularizing the derivative term
1st method: Quasi-Reversibility

(in Perthame, Zubelli, 2006) Add a small derivative for BN : we
obtain the following well-posed problem:

0y (BeaNe)(y) + 4Bza(y)Ne(y) — B ($) Ne (%) =
heaNe(2) +2.2 </v (;)) y >0,

(B:,aN:)(0) = 0.

Theorem (Perthame, Zubelli, 2006)
We have the error estimate, optimal for o« = O(y/e) :

1
[1Bz.aNz.a—B Nl[E2(g) C<1+ >H/V ~N[E2a+Co®lIN| e, ) -



Regularization step
2nd method: Filtering

(in MD, B. Perthame, J.P. Zubelli, Inv. Prob., 2009)
Filter the derivative with a mollifier kernel py, av > 0 :

Bl L) — B (DN(5) = o (A () + 25 (.2) )

(Ba,aNa)(O) =0,
with
pa(X) = 2p(%),  pECER), ["p(x)dx=1, p=0.
Proposition (MD, Perthame, Zubelli, 2009)
We have the error estimate, optimal for o« = O(v/2) :

8o 8 Mg < € (14 23 ) IINe- Mg+ Ca B,



Numerical Scheme
Mitotic Case

General requirements:
» avoid instability

» conserve main properties of the continuous model: laws for
the increase
» of biomass
» of number of cells, e.g. for the quasi-reversibility method:



Numerical Scheme
Mitotic Case

General requirements:
» avoid instability

» conserve main properties of the continuous model: laws for
the increase

» of biomass
» of number of cells, e.g. for the quasi-reversibility method:

1 question (possible only for the mitotic case): in
4H(2x) — H(x) = L(x),

shall we begin from the left, deducing B(2x) from B(x) or from the
right, deducing B(x) from B(2x) 7



Numerical Scheme
Mitotic Case

Recall the identity:
+00 +oo
HO) =272 (277%),  HO(x) = =) 2°"1(2"x).
n=1 n=0

Departing from large x : choose H(®
Departing from 0 : choose H(1)
H®) is " more regular” (in LP for 1 < p < oo if L is in LP)



Numerical Scheme
Mitotic Case

Recall the identity:

+o0 +o0

HO) =272 (277%),  HO(x) = =) 2°"1(2"x).

n=1 n=0

Departing from large x : choose H(®

Departing from 0 : choose H(1)

H®) is " more regular” (in LP for 1 < p < oo if L is in LP)
BEST CHOICE: departing from 0.



Numerical Scheme
Mitotic Case (with B. Perthame, J.P. Zubelli)

> departs from zero (mimics H(1))
» mass and number of cells balance laws preserved:
» stability: 4H(2x) is approximated by 4H;

4Hf = Hf +1Lf,  vo<i<l,
2 2
and we need to define the quantities Gi. We choose
2

when 1/ is even,

NI~

é
%(Gi—l + G,-+1) when / is odd.
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» solve the direct problem for a given B(x) Method: use of the
exponential convergence of n(t,x) to N(x): Finite volume
scheme to solve the time-dependent problem.
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Numerical schemes: steps

» solve the direct problem for a given B(x) Method: use of the
exponential convergence of n(t,x) to N(x): Finite volume
scheme to solve the time-dependent problem.

» Then renormalization at each time-step to reach the
asymptotic distribution
» add an artificial noise to N(x) to get a noisy data N.(x)

» Run the numerical scheme for the inverse problem to get a
birth rate B; o(x)N:(x) and compare it with the initial data
B(x) - look for the best « for a given error .



Numerical Results - Mitosis
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Numerical Results - Mitosis

09

osf j .
o7l v
06} ks
A
&
%
04}

03

—— NforB=1
o2k | |- N for B=1 for x<1.5, then linear increase to B=5
—-- Nfor B:1+exp(78(><—2)2)

01}

0 L 1 L e - e

0 05 1 15 2 25 3 35

Three related asymptotic distributions N



Numerical Results - Mitosis
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Numerical Results - Mitosis
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Numerical Results - Mitosis
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Numerical Results - Mitosis

evolution of error with 2. =0

—=—[luasi-reversibility method
—+— filtering method
—+— filtering then quasi-reversibility method

=

errors forg

Results with no noise - Error with respect to the regularization
parameter «



Numerical Results - Mitosis

evolution of error with o, £=0.01
0.5 T T

—&— Quasi-reversibility method

0.45 | | —+ Filtering method

—+— Filtering then quasi-reversibility method

error §

0.051 =

Results with noise € = 0.01 - Error with respect to the
regularization parameter «



Numerical Results - Mitosis

evolution of error with o, e=0.1
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Results with noise € = 0.1 - Error with respect to the regularization
parameter «



Numerical Results - Mitosis

£=0.01, B=exp(-8(x-2)%)+1
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Numerical Results - Mitosis
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Numerical Results - Mitosis

filter

—=—min over all « of obtained error
—— 12

—+—« giving the minimum error

e

Optimal « with respect to €, compared to /¢ and the optimal error



Numerical Results - Mitosis

quasi-reversibility

10

—=—min over all « of obtained error
_ B1.-’2

—+—« giving the minimum error
T

10"
e

Optimal « with respect to €, compared to /¢ and the optimal error



Numerical Results - Mitosis

filter+inverse

—=—min over all o of obtained error
—— 12

—+—o. giving the minimum error

107 10"

€

Optimal « with respect to €, compared to /¢ and the optimal error



The Kubitschek data
(with P. Maia, J.P. Zubelli)

» An approximate doubling time T is observed (which yields an
estimator \. of \g through Ty = log(2)/\o).

» Measurements of densities of cells of size x are given for a
given irregular grid {x;,i =1,...}.

» By spline interpolation, the curve N. is obtained.

» The growth rate is postulated to be of the form g(x) = Ax



Density N(x)
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Figure: The construction of N, for a given A,



Doubling Time: 54 minutes
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Figure: Estimation of B(x) for a given A; by numerical regularisation.



Numerical Scheme: general fragmentation kernel
(with L.M. Tine)
Quasi-Reversibility Method:

m+1 m+1
_ —m [ Xif1 HH»I_X,' Hi L ka e _ .
ax; <AX +Hi =25 Himijx = L

with Lj = —AoN; — c<g+1"’A+1X‘g’V) Vi=1,.. ka

Ho=0and H =0, YI> ka.

what gives (scheme has to depart from the upper bound):

Hika = Lia )

Aka,ka

HiZAf,,(L‘ Yk IHA,,JH), Vi=ka—1,..,1

Since Aj; > 0 for j > i + 1, we choose Ax small enough so that
Aii = 14 ai — 2k; jAx > 0 for all i. This guarantees that no

oscillations (should) appear.



Introduction to Patricia’s talk: the statistical approach
(joint with M. Hoffmann, P. Reynaud-Bouret & V.
Rivoirard)

Till now: we have supposed
[IN = Nellz < €

But why an L? norm ? What about real data ?
Kubitschek: pre-processed data. Our will: global approach to
incorporate a more realistic model for the noise.



Perspectives (coming soon...)

» Further investigation of the solution for the general
fragmentation kernel (with T. Bourgeron and M. Escobedo)

» Construct a PDMP that matches with the PDE's
approximation and that takes advantage of richer observation
schemes (with M. Hoffmann, N. Krell, L. Robert).

» Extend this framework to a more realistic biological
framework, that encompasses in particular variability in cell
growth.

» What is the real structuring variable, age, size, else 7



