Deterministic models and statistical aspects to model growth and division

Marie Doumic, Patricia Reynaud-Bouret

INRIA, CNRS \& Nice

PDMP Days, 26-28 March 2012, Marne-la-Vallée

Outline of the deterministic part (Marie!)

- A little bit on Structured Population Models and our motivation
- The Direct Problem
- The asymptotic behaviour
- The Inverse Problem in a deterministic setting
- Case of Mitosis (division into 2 equal cells)
- General fragmentation kernel
- deterministic perspectives

Figure: Evolution of a E. Coli population.

Figure: Evolution of a E. Coli population.

To model this: PDMP ? Yes...
 And also Structured Populations...

Population density: $n(t, x)$
can also be viewed as the law of the empirical measure of a PDMP: ask Nathalie Krell...
x is the "structuring variable", e.g. it may be

- for unicellular organisms: the mass / volume of the cell
- for polymers: the number of monomers inside
- the DNA content of the cell
- the cell age (age-structured populations)
- a protein content: cyclin, cyclin-dependent kinases etc
- a fluorescent label like CFSE
- a parasite growing inside the individuals
- for stem cells: the maturity

Recent reference: B. Perthame, Transport Equations in Biology, 2007.

Some examples of structured populations

Figure: From B. Basse et al, Modeling the flow of cytometric data obtained from unperturbed human tumor cell lines: parameter fitting and comparison. of Math. Bio., 2005

Some examples of structured populations

Figure: Cell volumes distribution for E. Coli THU in a glucose minimal medium at a doubling time of 2 hrs. H.E. Kubitschek, Biophysical J. 9:792-809 (1969)

Some examples of structured populations

Size Distribution by Volume

Figure: Size distribution kinetic of PrP polymerization in physico-chemical condition leading to the formation of amyloid fibrils monitored by MWSLS technique (taken from ANR TOPPAZ, INRA/BPCP data courtesy of H. Rezaei).

The Size-Structured Population equation (or transport-fragmentation equation)

We consider a populations of "individuals" such that

- each particle of size x grows with a growth rate $g(x)$,
- a particle of size y may divide with a division rate $B(y)$

The Size-Structured Population equation

 (or transport-fragmentation equation)We consider a populations of "individuals" such that

- each particle of size x grows with a growth rate $g(x)$,
- a particle of size y may divide with a division rate $B(y)$
- for a given dividing particle of size y, the probability to give rise to two offsprings of respective size x and $y-x$ is given by a probability law $k(x, y)=k(y-x, y)$, so that $\int_{0}^{y} k(x, y) d x=1$ and due to symetry $\int_{0}^{y} x k(x, y) d x=\frac{y}{2}$
First and probably most studied case: "equal mitosis" :
$k(x, y)=\delta_{x=\frac{y}{2}}$.

The Size-Structured Population equation

 (or transport-fragmentation equation)The deterministic model is obtained by a mass conservation law:

$$
\begin{gathered}
\frac{\partial}{\partial t} n(t, x)+\frac{\partial}{\partial x}(g(x) n(t, x))= \\
-B(x) n(t, x)+2 \int_{x}^{\infty} B(y) k(x, y) n(t, y) d y
\end{gathered}
$$

with $g(x=0) n(t, x=0)=0, t>0$ and $n(0, x)=n^{(0)}(x), x \geq 0$.

- LHS: density evolution + growth (e.g. by nutrient uptake).
- RHS: exchanges by division:
loss by the division of cells of size x, income by the division of cells of size $y>x$ according the division law $k(x, y)$.
For $k=\delta_{x=\frac{y}{2}}: 2 \int_{x}^{\infty} B(y) k(x, y) n(t, y) d y=4 B(2 x)$.

The Size-Structured Population equation

2 major relations, Direct vs Inverse Problem
The number of individuals only evolves by fragmentation:

$$
\frac{d}{d t} \int n(t, x) d x=\int B(x) n(t, x) d x
$$

The total mass only evolves by growth:

$$
\frac{d}{d t} \int x n(t, x) d x=\int g(x) n(t, x) d x
$$

The Size-Structured Population equation

2 major relations, Direct vs Inverse Problem
The number of individuals only evolves by fragmentation:

$$
\frac{d}{d t} \int n(t, x) d x=\int B(x) n(t, x) d x
$$

The total mass only evolves by growth:

$$
\frac{d}{d t} \int x n(t, x) d x=\int g(x) n(t, x) d x
$$

Direct Problem: (g, k, B) given, what is the solution n ? Which asymptotic behaviour ? How does it depend on the coefficients ?

The Size-Structured Population equation

2 major relations, Direct vs Inverse Problem
The number of individuals only evolves by fragmentation:

$$
\frac{d}{d t} \int n(t, x) d x=\int B(x) n(t, x) d x
$$

The total mass only evolves by growth:

$$
\frac{d}{d t} \int x n(t, x) d x=\int g(x) n(t, x) d x
$$

Direct Problem: (g, k, B) given, what is the solution n ? Which asymptotic behaviour ? How does it depend on the coefficients ? Inverse Problem: estimate (g, k, B) from (partial) measures of n.

The Size-Structured Population equation

2 major relations, Direct vs Inverse Problem
The number of individuals only evolves by fragmentation:

$$
\frac{d}{d t} \int n(t, x) d x=\int B(x) n(t, x) d x
$$

The total mass only evolves by growth:

$$
\frac{d}{d t} \int x n(t, x) d x=\int g(x) n(t, x) d x
$$

Direct Problem: (g, k, B) given, what is the solution n ? Which asymptotic behaviour ? How does it depend on the coefficients ? Inverse Problem: estimate (g, k, B) from (partial) measures of n. Our Inverse Problem: we suppose k known, $g=c g_{0}$ with g_{0} a known function, $c>0$ a constant and B are to be estimated.

The Size-Structured Population equation Direct vs Inverse Problem

What is really observed ? Remember:

We do not observe $n(t, x)$ but rather a DOUBLING TIME and a STEADY DISTRIBUTION.

The Size-Structured Population equation

Long-time asymptotics

This motivated the method proposed by Perthame \& Zubelli (Inverse Problems, 2007): Use the asymptotic behaviour.
2 Seminal references on the asymptotics obtained via the General Relative Entropy (GRE) principle:

- for the mitotic case: Perthame, Ryzhik, J. Diff. Equ., 2004
- for GRE in general: Michel, Mischler, Perthame, JMPA, 2004, If we look at a solution under the form $n(t, x)=e^{\lambda t} N(x), x \geq 0$:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x}(g(x) N(x))+\lambda N(x)=-B(x) N(x)+2 \int_{x}^{\infty} B(y) k(x, y) N(y) d y, \\
g N(x=0)=0, \quad N(x) \geq 0, \quad \int_{0}^{\infty} N(x) d x=1, \\
-g(x) \frac{\partial}{\partial x}(\phi(x))+\lambda \phi(x)=B(x)\left(-\phi(x)+2 \int_{0}^{x} k(y, x) \phi(y) d y\right), \\
\phi(x) \geq 0, \quad \int_{0}^{\infty} \phi(x) N(x) d x=1 \tag{1}
\end{array}\right.
$$

The Size-Structured Population equation Long-time asymptotics

Theorem (MD, P. Gabriel, M3AS, 2010)

Under some technical assumptions on g, B and k, there exists a unique triplet (λ, N, ϕ) with $\lambda>0$, solution of the eigenproblem (1)
and then we have, by the GRE principle (ref. above)

$$
\int_{\mathbb{R}_{+}}\left|n(t, x) e^{-\lambda t}-\left\langle n^{(0)}, \phi\right\rangle N(x)\right| \phi(x) d x \rightarrow 0 \text { as } t \rightarrow \infty
$$

(generalizes previous results by Michel, M3AS, 2004. Under some extra assumptions, the convergence is exponential: last work M.J. Càceres, J.A. Cañizo, S. Mischler, JMPA, 2011)

The Direct Problem

The direct mapping is $\Gamma:(c, B) \rightarrow(\lambda, N)$.
The space of interest is $L^{2}\left(\mathbb{R}_{+}\right)$: general framework for inverse problems
(see Engl, Hanke, Neubauer, Regularization of Inverse Problems, 1995)

In (Perthame, Zubelli, 2007):
results for mitotic division and $0<B_{m} \leq B \leq B_{M}<+\infty$.
Extension to the general case:
Theorem (MD, L.M. Tine, submitted, 2011)
Under the previous T.A. (and one other), if $B \in L^{2}\left(\mathbb{R}_{+}\right)$, the map Γ is injective and Lipschitz-continuous (and even Fréchet derivable) from a proper definition domain to $\mathbb{R}_{+}^{*} \times L^{2}$, under the strong topology of L^{2}.
Moreover, for g and k regular enough, if $B \in H^{s}$, then $N \in H^{s+1}$.

The Inverse Problem

The deterministic approach

The Inverse Problem

The deterministic approach

- We postulate $k(x, y)$ and some $g_{0}(x)$ with $g=c g_{0}$.

The Inverse Problem

The deterministic approach

- We postulate $k(x, y)$ and some $g_{0}(x)$ with $g=c g_{0}$.
- We measure N and λ with an error term modeled by

$$
\left\|N_{\varepsilon}-N\right\|_{L^{2}} \leq \varepsilon \text { and }\left|\lambda_{\varepsilon}-\lambda\right| \leq \varepsilon .
$$

The Inverse Problem

The deterministic approach

- We postulate $k(x, y)$ and some $g_{0}(x)$ with $g=c g_{0}$.
- We measure N and λ with an error term modeled by

$$
\left\|N_{\varepsilon}-N\right\|_{L^{2}} \leq \varepsilon \text { and }\left|\lambda_{\varepsilon}-\lambda\right| \leq \varepsilon .
$$

- We seek c and B such that

$$
c \frac{\partial}{\partial x}\left(g_{0}(x) N(x)\right)+\lambda N(x)=-B(x) N(x)+2 \int_{x}^{\infty} B(y) k(x, y) N(y) d y
$$

Estimate B through

$$
L(N, \lambda)=\mathfrak{L}(B N)
$$

with

$$
\begin{aligned}
L(N, \lambda)(x) & =c \partial_{x}(g(x) N(x))+\lambda N(x), \\
\mathfrak{L}(f)(x) & =2 \int_{x}^{\infty} f(y) k(x, y) d y-f(x) .
\end{aligned}
$$

If we forget about c and $\lambda:$ the problem $N \rightarrow H \Rightarrow B N$ is linear.

The Inverse Problem

The deterministic approach

$$
c \int g_{0}(x) N(x) d x=\lambda \int x N(x) d x
$$

so the following definition (or slight variants) gives good results:

$$
c_{\varepsilon}:=\lambda_{\varepsilon} \frac{\int x N_{\varepsilon}(x) d x}{\int g_{0}(x) N_{\varepsilon}(x) d x} .
$$

The Inverse Problem

The deterministic approach

$$
c \int g_{0}(x) N(x) d x=\lambda \int x N(x) d x
$$

so the following definition (or slight variants) gives good results:

$$
c_{\varepsilon}:=\lambda_{\varepsilon} \frac{\int x N_{\varepsilon}(x) d x}{\int g_{0}(x) N_{\varepsilon}(x) d x} .
$$

Our problem is reduced to a linear one (+ some work) which writes: find B solution of

$$
L(N, \lambda)=\mathfrak{L}(B N)
$$

with

$$
\begin{aligned}
L(N, \lambda)(x) & =c \partial_{x}(g(x) N(x))+\lambda N(x) \\
\mathfrak{L}(f)(x) & =2 \int_{x}^{\infty} f(y) k(x, y) d y-f(x)
\end{aligned}
$$

The Inverse Problem

The deterministic approach
2 main steps:

The Inverse Problem

The deterministic approach
2 main steps:

1. solve the dilation problem: for L in a proper space, find H such that

$$
2 \int_{x}^{\infty} H(y) k(x, y) d y-H(x)=L(x)
$$

and H in a proper space - ideally, the "proper space" is L^{2}. For mitosis, the equation becomes:

$$
4 H(2 x)-H(x)=L(x)
$$

The Inverse Problem

The deterministic approach

2 main steps:

1. solve the dilation problem: for L in a proper space, find H such that

$$
2 \int_{x}^{\infty} H(y) k(x, y) d y-H(x)=L(x)
$$

and H in a proper space - ideally, the "proper space" is L^{2}. For mitosis, the equation becomes:

$$
4 H(2 x)-H(x)=L(x)
$$

2. solve the derivative inverse problem: estimate $L(N, \lambda)=c_{\varepsilon} \partial_{x}\left(g_{0}(x) N(x)\right)+\lambda N(x)$ from a measure $N_{\varepsilon} \in L^{2}$. Classical inverse problem of degree of ill-posedness 1 for a L^{2}-noise: use your favorite regularization method to treat the derivative \& gain 1 degree of regularity.

The Inverse Problem

the Dilation Equation: Equal Mitosis

Proposition (MD, B. Perthame, J.P. Zubelli, 2009)

Let $L \in L^{2}\left(\mathbb{R}_{+}, x^{p} d x\right)$, with $p \neq 3$, then there exists a unique solution $H \in L^{2}\left(\mathbb{R}_{+}, x^{p} d x\right)$ to

$$
4 H(2 x)-H(x)=L(x)
$$

For $p<3$, this solution is given explicitly by $H^{(1)}$ below, and for $p>3$, by $H^{(2)}$:

$$
H^{(1)}(x)=\sum_{n=1}^{+\infty} 2^{-2 n} L\left(2^{-n} x\right), \quad H^{(2)}(x)=-\sum_{n=0}^{+\infty} 2^{2 n} L\left(2^{n} x\right)
$$

The solutions with $L=0$ in $\mathcal{D}^{\prime}(0, \infty)$ have the form $\frac{f(\log (x))}{x^{2}}$ with $f \in \mathcal{D}^{\prime}(\mathbb{R})$ a $\log (2)$ - periodic distribution.

The general case: nonlocal fragmentation kernel

$$
\begin{equation*}
H(x)-2 \int_{x}^{\infty} H(y) k(x, y) d y=F, \tag{2}
\end{equation*}
$$

Proposition (MD, L.M. Tine, submitted)
Let k a fragmentation kernel and $p \in \mathbb{R}$ satisfying:

$$
\begin{equation*}
C_{p}=\sup _{x} \int_{x}^{\infty} \frac{x^{p}}{y^{p}} k(x, y) d y<\frac{1}{4} . \tag{3}
\end{equation*}
$$

$\forall F \in L^{2}\left(\mathbb{R}_{+}, x^{p} d x\right), \exists!u \in L^{2}\left(x^{p} d x\right)$ to (2), and

$$
\|H\|_{L^{2}\left(x^{p} d x\right)} \leq \frac{1}{1-2 \sqrt{C_{p}}}\|F\|_{L^{2}\left(x^{p} d x\right)}
$$

2nd step: Regularizing the derivative term

1st method: Quasi-Reversibility

(in Perthame, Zubelli, 2006) Add a small derivative for $B N$: we obtain the following well-posed problem:

$$
\left\{\begin{array}{l}
\alpha \frac{\partial}{\partial y}\left(B_{\varepsilon, \alpha} N_{\varepsilon}\right)(y)+4 B_{\varepsilon, \alpha}(y) N_{\varepsilon}(y)-B_{\varepsilon, \alpha}\left(\frac{y}{2}\right) N_{\varepsilon}\left(\frac{y}{2}\right)= \\
+\lambda_{\varepsilon, \alpha} N_{\varepsilon}\left(\frac{y}{2}\right)+2 \frac{\partial}{\partial y}\left(N_{\varepsilon}\left(\frac{y}{2}\right)\right), \quad y>0, \\
\left(B_{\varepsilon, \alpha} N_{\varepsilon}\right)(0)=0 .
\end{array}\right.
$$

Theorem (Perthame, Zubelli, 2006) We have the error estimate, optimal for $\alpha=O(\sqrt{\varepsilon})$:
$\left\|B_{\varepsilon, \alpha} N_{\varepsilon, \alpha}-B N\right\|_{L^{2}(d x)}^{2} \leqslant C\left(1+\frac{1}{\alpha^{2}}\right)\left\|N_{\varepsilon}-N\right\|_{L^{2}(d x)}^{2}+C \alpha^{2}\|N\|_{H^{2}\left(\mathbb{R}_{+}\right)}^{2}$,

Regularization step

2nd method: Filtering

(in MD, B. Perthame, J.P. Zubelli, Inv. Prob., 2009)
Filter the derivative with a mollifier kernel $\rho_{\alpha}, \alpha>0$:

$$
\left\{\begin{array}{l}
4 B_{\varepsilon, \alpha}(y) N_{\varepsilon}(y)-B_{\varepsilon, \alpha}\left(\frac{y}{2}\right) N_{\varepsilon}\left(\frac{y}{2}\right)=\rho_{\alpha} *\left(\lambda_{\varepsilon, \alpha} N_{\varepsilon}\left(\frac{y}{2}\right)+2 \frac{\partial}{\partial y}\left(N_{\varepsilon}\left(\frac{y}{2}\right)\right)\right), \\
\left(B_{\varepsilon, \alpha} N_{\varepsilon}\right)(0)=0
\end{array}\right.
$$

with
$\rho_{\alpha}(x)=\frac{1}{\alpha} \rho\left(\frac{x}{\alpha}\right), \quad \rho \in \mathcal{C}_{c}^{\infty}(\mathbb{R}), \quad \int_{0}^{\infty} \rho(x) d x=1, \quad \rho \geqslant 0$.
Proposition (MD, Perthame, Zubelli, 2009)
We have the error estimate, optimal for $\alpha=O(\sqrt{\varepsilon})$:
$\left\|B_{\varepsilon, \alpha} N_{\varepsilon, \alpha}-B N\right\|_{L^{2}(d x)}^{2} \leqslant C\left(1+\frac{1}{\alpha^{2}}\right)\left\|N_{\varepsilon}-N\right\|_{L^{2}(d x)}^{2}+C \alpha^{2}\|N\|_{H^{2}\left(\mathbb{R}_{+}\right)}^{2}$,

Numerical Scheme Mitotic Case

General requirements:

- avoid instability
- conserve main properties of the continuous model: laws for the increase
- of biomass
- of number of cells, e.g. for the quasi-reversibility method:

Numerical Scheme Mitotic Case

General requirements:

- avoid instability
- conserve main properties of the continuous model: laws for the increase
- of biomass
- of number of cells, e.g. for the quasi-reversibility method:

1 question (possible only for the mitotic case): in

$$
4 H(2 x)-H(x)=L(x)
$$

shall we begin from the left, deducing $B(2 x)$ from $B(x)$ or from the right, deducing $B(x)$ from $B(2 x)$?

Numerical Scheme

Mitotic Case

Recall the identity:

$$
H^{(1)}(x)=\sum_{n=1}^{+\infty} 2^{-2 n} L\left(2^{-n} x\right), \quad H^{(2)}(x)=-\sum_{n=0}^{+\infty} 2^{2 n} L\left(2^{n} x\right)
$$

Departing from large x : choose $H^{(2)}$
Departing from 0 : choose $H^{(1)}$
$H^{(1)}$ is "more regular" (in L^{p} for $1 \leq p \leq \infty$ if L is in L^{p})

Numerical Scheme

Mitotic Case

Recall the identity:

$$
H^{(1)}(x)=\sum_{n=1}^{+\infty} 2^{-2 n} L\left(2^{-n} x\right), \quad H^{(2)}(x)=-\sum_{n=0}^{+\infty} 2^{2 n} L\left(2^{n} x\right)
$$

Departing from large x : choose $H^{(2)}$
Departing from 0 : choose $H^{(1)}$ $H^{(1)}$ is "more regular" (in L^{p} for $1 \leq p \leq \infty$ if L is in L^{p}) BEST CHOICE: departing from 0 .

Numerical Scheme

Mitotic Case (with B. Perthame, J.P. Zubelli)

- departs from zero (mimics $H^{(1)}$)
- mass and number of cells balance laws preserved:
- stability: $4 H(2 x)$ is approximated by $4 H_{2 i}$

$$
4 H_{i}^{f}=H_{\frac{i}{2}}^{f}+L_{\frac{i}{2}}^{f}, \quad \forall 0 \leqslant i \leqslant 1,
$$

and we need to define the quantities $G_{\frac{i}{2}}$. We choose

$$
G_{\frac{i}{2}}= \begin{cases}G_{\frac{i}{2}} & \text { when } i \text { is even } \\ \frac{1}{2}\left(G_{\frac{i-1}{2}}+G_{\frac{i+1}{2}}\right) & \text { when } i \text { is odd }\end{cases}
$$

Numerical schemes: steps

Numerical schemes: steps

- solve the direct problem for a given $B(x)$ Method: use of the exponential convergence of $n(t, x)$ to $N(x)$: Finite volume scheme to solve the time-dependent problem.

Numerical schemes: steps

- solve the direct problem for a given $B(x)$ Method: use of the exponential convergence of $n(t, x)$ to $N(x)$: Finite volume scheme to solve the time-dependent problem.
- Then renormalization at each time-step to reach the asymptotic distribution

Numerical schemes: steps

- solve the direct problem for a given $B(x)$ Method: use of the exponential convergence of $n(t, x)$ to $N(x)$: Finite volume scheme to solve the time-dependent problem.
- Then renormalization at each time-step to reach the asymptotic distribution
- add an artificial noise to $N(x)$ to get a noisy data $N_{\varepsilon}(x)$

Numerical schemes: steps

- solve the direct problem for a given $B(x)$ Method: use of the exponential convergence of $n(t, x)$ to $N(x)$: Finite volume scheme to solve the time-dependent problem.
- Then renormalization at each time-step to reach the asymptotic distribution
- add an artificial noise to $N(x)$ to get a noisy data $N_{\varepsilon}(x)$
- Run the numerical scheme for the inverse problem to get a birth rate $B_{\varepsilon, \alpha}(x) N_{\varepsilon}(x)$ and compare it with the initial data $B(x)$ - look for the best α for a given error ε.

Numerical Results - Mitosis

Three tested division rates B

Numerical Results - Mitosis

Three related asymptotic distributions N

Numerical Results - Mitosis

Results with no noise - constant B

Numerical Results - Mitosis

Results with no noise - step B

Numerical Results - Mitosis

Results with no noise - varying B

Numerical Results - Mitosis

Results with no noise - Error with respect to the regularization parameter α

Numerical Results - Mitosis

Results with noise $\varepsilon=0.01$ - Error with respect to the regularization parameter α

Numerical Results - Mitosis

Results with noise $\varepsilon=0.1$ - Error with respect to the regularization parameter α

Numerical Results - Mitosis

Results with noise $\varepsilon=0.01-B N$

Numerical Results - Mitosis

Results with noise $\varepsilon=0.01-B$

Numerical Results - Mitosis

Optimal α with respect to ε, compared to $\sqrt{\varepsilon}$ and the optimal error

Numerical Results - Mitosis

Optimal α with respect to ε, compared to $\sqrt{\varepsilon}$ and the optimal error

Numerical Results - Mitosis

Optimal α with respect to ε, compared to $\sqrt{\varepsilon}$ and the optimal error

The Kubitschek data

(with P. Maia, J.P. Zubelli)

- An approximate doubling time T_{ε} is observed (which yields an estimator λ_{ε} of λ_{0} through $\left.T_{0}=\log (2) / \lambda_{0}\right)$.
- Measurements of densities of cells of size x are given for a given irregular grid $\left\{x_{i}, i=1, \ldots\right\}$.
- By spline interpolation, the curve N_{ε} is obtained.
- The growth rate is postulated to be of the form $g(x)=\lambda x$

Relative size ($x=2$: mean doubling size)
Figure: The construction of N_{ε} for a given λ_{ε}

Doubling Time: 54 minutes

Figure: Estimation of $B(x)$ for a given λ_{ε} by numerical regularisation.

Numerical Scheme: general fragmentation kernel

 (with L.M. Tine)Quasi-Reversibility Method:

$$
\left\{\begin{array}{l}
-\alpha x_{i}^{-m}\left(\frac{x_{i+1}^{m+1} H_{i+1}-x_{i}^{m+1} H_{i}}{\Delta x}\right)+H_{i}-2 \sum_{j=i}^{k a} H_{j} \kappa_{i, j} \Delta x=L_{i} \\
\text { with } L_{i}=-\lambda_{0} N_{i}-c\left(\frac{g_{i+1} N_{i+1}-g_{i} N_{i}}{\Delta x}\right), \quad \forall i=1, \ldots, k a \\
H_{0}=0 \text { and } H_{l}=0, \quad \forall I>k a .
\end{array}\right.
$$

what gives (scheme has to depart from the upper bound):

$$
\left\{\begin{array}{l}
H_{k a}=\frac{L_{k a}}{A_{k a, k a}} ; \\
H_{i}=\frac{1}{A_{i, i}}\left(L_{i}-\sum_{j=i+1}^{k a} A_{i, j} H_{j}\right) ; \quad \forall i=k a-1, \ldots, 1
\end{array}\right.
$$

Since $A_{i j}>0$ for $j \geq i+1$, we choose Δx small enough so that $A_{i j}=1+\alpha i-2 \kappa_{i, i} \Delta x>0$ for all i. This guarantees that no oscillations (should) appear.

Introduction to Patricia's talk: the statistical approach (joint with M. Hoffmann, P. Reynaud-Bouret \& V. Rivoirard)

Till now: we have supposed

$$
\left\|N-N_{\varepsilon}\right\|_{L^{2}} \leq \varepsilon
$$

But why an L^{2} norm ? What about real data ? Kubitschek: pre-processed data. Our will: global approach to incorporate a more realistic model for the noise.

Perspectives (coming soon...)

- Further investigation of the solution for the general fragmentation kernel (with T. Bourgeron and M. Escobedo)
- Construct a PDMP that matches with the PDE's approximation and that takes advantage of richer observation schemes (with M. Hoffmann, N. Krell, L. Robert).
- Extend this framework to a more realistic biological framework, that encompasses in particular variability in cell growth.
- What is the real structuring variable, age, size, else ?

