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Outline of the deterministic part (Marie!)

I A little bit on Structured Population Models and our
motivation

I The Direct Problem

I The asymptotic behaviour
I The Inverse Problem in a deterministic setting

I Case of Mitosis (division into 2 equal cells)
I General fragmentation kernel

I deterministic perspectives



Figure: Evolution of a E. Coli population.
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To model this: PDMP ? Yes...
And also Structured Populations...

Population density: n(t, x)
can also be viewed as the law of the empirical measure of a
PDMP: ask Nathalie Krell...
x is the ”structuring variable”, e.g. it may be

I for unicellular organisms: the mass / volume of the cell

I for polymers: the number of monomers inside

I the DNA content of the cell

I the cell age (age-structured populations)

I a protein content: cyclin, cyclin-dependent kinases etc

I a fluorescent label like CFSE

I a parasite growing inside the individuals

I for stem cells: the maturity

Recent reference: B. Perthame, Transport Equations in Biology,
2007.



Some examples of structured populations

Figure: From B. Basse et al, Modeling the flow of cytometric data
obtained from unperturbed human tumor cell lines: parameter fitting and
comparison. of Math. Bio., 2005



Some examples of structured populations

Figure: Cell volumes distribution for E. Coli THU in a glucose minimal
medium at a doubling time of 2 hrs. H.E. Kubitschek, Biophysical J.
9:792-809 (1969)



Some examples of structured populations

Figure: Size distribution kinetic of PrP polymerization in
physico-chemical condition leading to the formation of amyloid fibrils
monitored by MWSLS technique (taken from ANR TOPPAZ,
INRA/BPCP data courtesy of H. Rezaei).



The Size-Structured Population equation
(or transport-fragmentation equation)

We consider a populations of ”individuals” such that

I each particle of size x grows with a growth rate g(x),

I a particle of size y may divide with a division rate B(y)

I for a given dividing particle of size y , the probability to give
rise to two offsprings of respective size x and y − x is given by
a probability law k(x , y) = k(y − x , y), so that
y∫
0

k(x , y)dx = 1 and due to symetry
y∫
0

xk(x , y)dx = y
2

First and probably most studied case: ”equal mitosis” :
k(x , y) = δx= y

2
.
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The Size-Structured Population equation
(or transport-fragmentation equation)

The deterministic model is obtained by a mass conservation law:

∂

∂t
n(t, x) +

∂

∂x

(
g(x)n(t, x)

)
=

−B(x)n(t, x) + 2

∞∫
x

B(y)k(x , y)n(t, y)dy

with g(x = 0)n(t, x = 0) = 0, t > 0 and n(0, x) = n(0)(x), x ≥ 0.

I LHS: density evolution + growth (e.g. by nutrient uptake).

I RHS: exchanges by division:
loss by the division of cells of size x , income by the division of
cells of size y > x according the division law k(x , y).

For k = δx= y
2

: 2
∞∫
x

B(y)k(x , y)n(t, y)dy = 4B(2x).



The Size-Structured Population equation
2 major relations, Direct vs Inverse Problem

The number of individuals only evolves by fragmentation:

d

dt

∫
n(t, x)dx =

∫
B(x)n(t, x)dx .

The total mass only evolves by growth:

d

dt

∫
xn(t, x)dx =

∫
g(x)n(t, x)dx .

Direct Problem: (g , k ,B) given, what is the solution n ? Which
asymptotic behaviour ? How does it depend on the coefficients ?
Inverse Problem: estimate (g , k,B) from (partial) measures of n.
Our Inverse Problem: we suppose k known, g = cg0 with g0 a

known function,
c > 0 a constant and B are to be estimated.
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The Size-Structured Population equation
Direct vs Inverse Problem

What is really observed ? Remember:

We do not observe n(t, x) but rather a DOUBLING TIME and a
STEADY DISTRIBUTION.



The Size-Structured Population equation
Long-time asymptotics

This motivated the method proposed by Perthame & Zubelli
(Inverse Problems, 2007): Use the asymptotic behaviour.
2 Seminal references on the asymptotics obtained via the General
Relative Entropy (GRE) principle:

I for the mitotic case: Perthame, Ryzhik, J. Diff. Equ., 2004

I for GRE in general: Michel, Mischler, Perthame, JMPA, 2004,

If we look at a solution under the form n(t, x) = eλtN(x), x ≥ 0 :

∂
∂x (g(x)N(x)) + λN(x) = −B(x)N(x) + 2

∫∞
x B(y)k(x , y)N(y)dy , ,

gN(x = 0) = 0, N(x) ≥ 0,
∫∞

0 N(x)dx = 1,

−g(x) ∂
∂x (φ(x)) + λφ(x) = B(x)(−φ(x) + 2

∫ x
0 k(y , x)φ(y)dy), ,

φ(x) ≥ 0,
∫∞

0 φ(x)N(x)dx = 1.
(1)



The Size-Structured Population equation
Long-time asymptotics

Theorem (MD, P. Gabriel, M3AS, 2010)

Under some technical assumptions on g , B and k , there exists a
unique triplet (λ,N, φ) with λ > 0, solution of the eigenproblem
(1)

and then we have, by the GRE principle (ref. above)∫
R+

∣∣n(t, x)e−λt − 〈n(0), φ〉N(x)
∣∣φ(x)dx → 0 as t →∞

(generalizes previous results by Michel, M3AS, 2004. Under some
extra assumptions, the convergence is exponential: last work M.J.
Càceres, J.A. Cañizo, S. Mischler, JMPA, 2011)



The Direct Problem

The direct mapping is Γ : (c ,B)→ (λ,N).
The space of interest is L2(R+) : general framework for inverse
problems
(see Engl, Hanke, Neubauer, Regularization of Inverse Problems,
1995)

In (Perthame, Zubelli, 2007):
results for mitotic division and 0 < Bm ≤ B ≤ BM < +∞.
Extension to the general case:

Theorem (MD, L.M. Tine, submitted, 2011)

Under the previous T.A. (and one other), if B ∈ L2(R+), the map
Γ is injective and Lipschitz-continuous (and even Fréchet derivable)
from a proper definition domain to R∗+×L2, under the strong
topology of L2.

Moreover, for g and k regular enough, if B ∈ Hs , then N ∈ Hs+1.



The Inverse Problem
The deterministic approach

I We postulate k(x , y) and some g0(x) with g = cg0.
I We measure N and λ with an error term modeled by

‖Nε − N‖L2 ≤ ε and |λε − λ| ≤ ε.

I We seek c and B such that

c
∂

∂x
(g0(x)N(x))+λN(x) = −B(x)N(x)+2

∫ ∞
x

B(y)k(x , y)N(y)dy

Estimate B through

L(N, λ) = L(BN),

with

L(N, λ)(x) = c∂x
(
g(x)N(x)

)
+ λN(x),

L(f )(x) = 2

∫ ∞
x

f (y)k(x , y)dy − f (x).

If we forget about c and λ : the problem N → H = BN is linear.
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The Inverse Problem
The deterministic approach

c

∫
g0(x)N(x)dx = λ

∫
xN(x)dx ,

so the following definition (or slight variants) gives good results:

cε := λε

∫
xNε(x)dx∫

g0(x)Nε(x)dx
.

Our problem is reduced to a linear one (+ some work) which
writes: find B solution of

L(N, λ) = L(BN),

with

L(N, λ)(x) = c∂x
(
g(x)N(x)

)
+ λN(x),

L(f )(x) = 2
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The Inverse Problem
The deterministic approach

2 main steps:

1. solve the dilation problem: for L in a proper space, find H
such that

2

∫ ∞
x

H(y)k(x , y)dy − H(x) = L(x),

and H in a proper space - ideally, the ”proper space” is L2.
For mitosis, the equation becomes:

4H(2x)− H(x) = L(x).

2. solve the derivative inverse problem: estimate
L(N, λ) = cε∂x

(
g0(x)N(x)

)
+ λN(x) from a measure

Nε ∈ L2. Classical inverse problem of degree of ill-posedness 1
for a L2−noise: use your favorite regularization method to
treat the derivative & gain 1 degree of regularity.



The Inverse Problem
The deterministic approach

2 main steps:

1. solve the dilation problem: for L in a proper space, find H
such that

2

∫ ∞
x

H(y)k(x , y)dy − H(x) = L(x),

and H in a proper space - ideally, the ”proper space” is L2.
For mitosis, the equation becomes:

4H(2x)− H(x) = L(x).

2. solve the derivative inverse problem: estimate
L(N, λ) = cε∂x

(
g0(x)N(x)

)
+ λN(x) from a measure

Nε ∈ L2. Classical inverse problem of degree of ill-posedness 1
for a L2−noise: use your favorite regularization method to
treat the derivative & gain 1 degree of regularity.



The Inverse Problem
The deterministic approach

2 main steps:

1. solve the dilation problem: for L in a proper space, find H
such that

2

∫ ∞
x

H(y)k(x , y)dy − H(x) = L(x),

and H in a proper space - ideally, the ”proper space” is L2.
For mitosis, the equation becomes:

4H(2x)− H(x) = L(x).

2. solve the derivative inverse problem: estimate
L(N, λ) = cε∂x

(
g0(x)N(x)

)
+ λN(x) from a measure

Nε ∈ L2. Classical inverse problem of degree of ill-posedness 1
for a L2−noise: use your favorite regularization method to
treat the derivative & gain 1 degree of regularity.



The Inverse Problem
the Dilation Equation: Equal Mitosis

Proposition (MD, B. Perthame, J.P. Zubelli, 2009)

Let L ∈ L2(R+, x
pdx), with p 6= 3, then there exists a unique

solution H ∈ L2(R+, x
pdx) to

4H(2x)− H(x) = L(x).

For p < 3, this solution is given explicitly by H(1) below, and for
p > 3, by H(2) :

H(1)(x) =
+∞∑
n=1

2−2nL(2−nx), H(2)(x) = −
+∞∑
n=0

22nL(2nx).

The solutions with L = 0 in D′(0,∞) have the form f (log(x))
x2 with

f ∈ D′(R) a log(2)− periodic distribution.



The general case: nonlocal fragmentation kernel

H(x)− 2

∞∫
x

H(y)k(x , y)dy = F , (2)

Proposition (MD, L.M. Tine, submitted)

Let k a fragmentation kernel and p ∈ R satisfying:

Cp = sup
x

∫ ∞
x

xp

yp
k(x , y)dy <

1

4
. (3)

∀ F ∈ L2(R+, x
pdx), ∃! u ∈ L2(xpdx) to (2), and

||H||L2(xpdx) ≤
1

1− 2
√

Cp

||F ||L2(xpdx).



2nd step: Regularizing the derivative term
1st method: Quasi-Reversibility

(in Perthame, Zubelli, 2006) Add a small derivative for BN : we
obtain the following well-posed problem:

α ∂
∂y (Bε,αNε)(y) + 4Bε,α(y)Nε(y)− Bε,α

( y
2

)
Nε

( y
2

)
=

+λε,αNε

( y
2

)
+ 2 ∂

∂y

(
Nε

( y
2

))
, y > 0,

(Bε,αNε)(0) = 0.

Theorem (Perthame, Zubelli, 2006)

We have the error estimate, optimal for α = O(
√
ε) :

||Bε,αNε,α−B N||2L2(dx) 6 C

(
1 +

1

α2

)
||Nε−N||2L2(dx)+Cα2||N||2H2(R+) ,



Regularization step
2nd method: Filtering

(in MD, B. Perthame, J.P. Zubelli, Inv. Prob., 2009)
Filter the derivative with a mollifier kernel ρα, α > 0 :

4Bε,α(y)Nε(y)− Bε,α
( y

2

)
Nε

( y
2

)
= ρα∗

(
λε,αNε

( y
2

)
+ 2 ∂

∂y

(
Nε

( y
2

)))
, y > 0,

(Bε,αNε)(0) = 0,

with
ρα(x) = 1

αρ( x
α), ρ ∈ C∞c (R),

∫∞
0 ρ(x) dx = 1, ρ > 0.

Proposition (MD, Perthame, Zubelli, 2009)

We have the error estimate, optimal for α = O(
√
ε) :

||Bε,αNε,α−B N||2L2(dx) 6 C

(
1 +

1

α2

)
||Nε−N||2L2(dx)+Cα2||N||2H2(R+) ,



Numerical Scheme
Mitotic Case

General requirements:

I avoid instability
I conserve main properties of the continuous model: laws for

the increase
I of biomass
I of number of cells, e.g. for the quasi-reversibility method:

1 question (possible only for the mitotic case): in

4H(2x)− H(x) = L(x),

shall we begin from the left, deducing B(2x) from B(x) or from the
right, deducing B(x) from B(2x) ?
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Numerical Scheme
Mitotic Case

Recall the identity:

H(1)(x) =
+∞∑
n=1

2−2nL(2−nx), H(2)(x) = −
+∞∑
n=0

22nL(2nx).

Departing from large x : choose H(2)

Departing from 0 : choose H(1)

H(1) is ”more regular” (in Lp for 1 ≤ p ≤ ∞ if L is in Lp)

BEST CHOICE: departing from 0.
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Numerical Scheme
Mitotic Case (with B. Perthame, J.P. Zubelli)

I departs from zero (mimics H(1))

I mass and number of cells balance laws preserved:

I stability: 4H(2x) is approximated by 4H2i

4H f
i = H f

i
2

+ Lf
i
2

, ∀ 0 6 i 6 I ,

and we need to define the quantities G i
2
. We choose

G i
2

=


G i

2
when i is even,

1
2

(
G i−1

2
+ G i+1

2

)
when i is odd.



Numerical schemes: steps

I solve the direct problem for a given B(x) Method: use of the
exponential convergence of n(t,x) to N(x): Finite volume
scheme to solve the time-dependent problem.

I Then renormalization at each time-step to reach the
asymptotic distribution

I add an artificial noise to N(x) to get a noisy data Nε(x)

I Run the numerical scheme for the inverse problem to get a
birth rate Bε,α(x)Nε(x) and compare it with the initial data
B(x) - look for the best α for a given error ε.
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Numerical Results - Mitosis

Three tested division rates B



Numerical Results - Mitosis

Three related asymptotic distributions N
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Numerical Results - Mitosis

Results with no noise - varying B



Numerical Results - Mitosis

Results with no noise - Error with respect to the regularization
parameter α



Numerical Results - Mitosis

Results with noise ε = 0.01 - Error with respect to the
regularization parameter α



Numerical Results - Mitosis

Results with noise ε = 0.1 - Error with respect to the regularization
parameter α



Numerical Results - Mitosis

Results with noise ε = 0.01 - BN



Numerical Results - Mitosis

Results with noise ε = 0.01 - B



Numerical Results - Mitosis

Optimal α with respect to ε, compared to
√
ε and the optimal error
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The Kubitschek data
(with P. Maia, J.P. Zubelli)

I An approximate doubling time Tε is observed (which yields an
estimator λε of λ0 through T0 = log(2)/λ0).

I Measurements of densities of cells of size x are given for a
given irregular grid {xi , i = 1, . . .}.

I By spline interpolation, the curve Nε is obtained.

I The growth rate is postulated to be of the form g(x) = λx



Figure: The construction of Nε for a given λε



Figure: Estimation of B(x) for a given λε by numerical regularisation.



Numerical Scheme: general fragmentation kernel
(with L.M. Tine)

Quasi-Reversibility Method:
−αx−mi

(
xm+1
i+1 Hi+1−xm+1

i Hi

∆x

)
+ Hi − 2

∑ka
j=i Hjκi ,j∆x = Li

with Li = −λ0Ni − c

(
gi+1Ni+1−giNi

∆x

)
, ∀ i = 1, ..., ka

H0 = 0 and Hl = 0, ∀ l > ka.

what gives (scheme has to depart from the upper bound):
Hka = Lka

Aka,ka
;

Hi = 1
Ai,i

(
Li −

∑ka
j=i+1 Ai ,jHj

)
; ∀ i = ka− 1, ..., 1

Since Aij > 0 for j ≥ i + 1, we choose ∆x small enough so that
Aii = 1 + αi − 2κi ,i∆x > 0 for all i . This guarantees that no
oscillations (should) appear.



Introduction to Patricia’s talk: the statistical approach
(joint with M. Hoffmann, P. Reynaud-Bouret & V.
Rivoirard)

Till now: we have supposed

||N − Nε||L2 ≤ ε

But why an L2 norm ? What about real data ?
Kubitschek: pre-processed data. Our will: global approach to
incorporate a more realistic model for the noise.



Perspectives (coming soon...)

I Further investigation of the solution for the general
fragmentation kernel (with T. Bourgeron and M. Escobedo)

I Construct a PDMP that matches with the PDE’s
approximation and that takes advantage of richer observation
schemes (with M. Hoffmann, N. Krell, L. Robert).

I Extend this framework to a more realistic biological
framework, that encompasses in particular variability in cell
growth.

I What is the real structuring variable, age, size, else ?


