Un modèle PDMP multi-classes pour le contrôle de congestion implémenté par les connexions dans un grand réseau

Carl Graham, CNRS, École polytechnique

Travail effectué avec

Philippe Robert, INRIA Roquencourt

Travail effectué avec

Philippe Robert, INRIA Roquencourt

- 1. Interacting multi-class transmissions in large stochastic networks (AAP 2009)
- 2. Self-adaptive congestion control for multi-class intermittent connections in a communication network (QUES 2011)

et pour une étude poussée sur les lois invariantes pour 1.,

Maaike Verloop, CWI Amsterdam

3. Stability properties of networks with interacting TCP flows (Proceedings of NET-COOP 2009)

1 Modeling the Internet

The Internet is a vast, complex, and ill-known structure in perpetual evolution. Undisciplined users access it for varied purposes and have vastly different characteristics and QoS (quality of service) requirements.

Connections (initiated by users) have to self-adapt to the packet losses due to the congestion they create by regulating their output using algorithms such as the congestion control part of TCP (Transmission Control Protocol).

It is important to understand better this feedback loop.

Highly nonlinear behavior is expected.

The situation is a fairly well understood for a

single node

with asymptotic formulæ for throughput, etc., even if

many problems remain open

depending on the level of precision and detail sought (delayed information ...)

Much less

is understood about the true issue,

Stochastic Networks,

i.e., the **coexistence**, and hence the **interaction**,

of varied data flows

(file transfers, telephony, video streaming, web browsing, MMORPG, P2P, ...)

with varied characteristics

(routes, QoS requirements, rates, ...)

each using in its own fashion limited common resources

- constituted of varied nodes

 (links, routers, processors, buffers, ...)
- with varied purposes.

It is natural to regroup data flows into a

reasonable number of classes,

according to their characteristics, and we focus on such

interacting multi-class network models.

One approach:

Introduced and studied by several distinguished authors, *e.g.*,

Kelly, Maulloo, and Tan (JORS 1998) Massoulié and Roberts (INFOCOM 1999) Kelly and Williams (AAP 2004) Massoulié (AAP 2007) Kang, Kelly, Lee, and Williams (AAP 2009) Kelly, Massoulié, and Walton (QS 2009). **Optimisation problem**: if there are x_k connections of class $k \in \{1, ..., K\}$, then class k obtains throughput λ_k^* such that (λ_k^*) achieves

$$\max_{\lambda \in \mathscr{C}} \sum_{k=1}^{K} x_k U_k(\lambda_k/x_k)$$

where U_k is some utility function, and \mathscr{C} depends on the capacity of the resources.

The utility function is used to summarize in an idealized fashion the effect of TCP on the network.

This is a very high level macroscopic approach,

perhaps akin to Thermodynamics.

Our approach:

to devise a microscopic model and then derive its macroscopic limit.

The idealization of TCP takes place at the micro level.

Akin to kinetic models in Statistical Physics.

2 Markovian modeling of user interaction

We propose

a Markovian model for a stochastic network

- constituted of $J \ge 1$ nodes,
- hosting $K \ge 1$ classes of users (or connections),
- with $N_k \ge 1$ users in class k for $1 \le k \le K$.

 $N = (N_1, ..., N_K)$ class size vector, $|N| = N_1 + \dots + N_K$ total number of users. Each user (or connection) alternates between being

- active, or on, when it has data to transmit
- and inactive, or off, when it has none

and thus generates

intermittent (intermittent) transmissions.

Markov model and Itô-Skorohod equations

This model corresponds to a Markov process

$$W^N(t) = \left(W_{n,k}^N(t), 1 \le n \le N_k, 1 \le k \le K\right), \quad t \ge 0,$$

where

$$W_{n,k}^N(t) \in \mathbb{R}_+ \cup \{-1\}$$

is the state (output, window) of the *n*-th transmission of class k at time t, with -1 corresponding to an inactive user.

We choose to represent it (in law) by the following

Itô-Skorohod SDE:

$$dW_{n,k}^{N}(t) = \mathbb{1}_{\left\{W_{n,k}^{N}(t-)=-1\right\}} \int (1+w) \mathbb{1}_{\left\{0 < z < \lambda_{k}(U^{N}(t-))\right\}} \mathscr{A}_{n,k}(dw, dz, dt)$$

$$+ \mathbb{1}_{\left\{W_{n,k}^{N}(t-) \ge 0\right\}} \left[a_{k}(W_{n,k}^{N}(t-), U^{N}(t-)) dt$$

$$-(1-r_{k})W_{n,k}^{N}(t-) \int \mathbb{1}_{\left\{0 < z < b_{k}(W_{n,k}^{N}(t-), U^{N}(t-))\right\}} \mathscr{N}_{n,k}(dz, dt)$$

$$-(1+W_{n,k}^{N}(t-)) \int \mathbb{1}_{\left\{0 < z < \mu_{k}(W_{n,k}^{N}(t-), U^{N}(t-))\right\}} \mathscr{D}_{n,k}(dz, dt) \right]$$
with $U^{N}(t) = (U_{j}^{N}(t), 1 \le j \le J), \quad U_{j}^{N}(t) = \sum_{k=1}^{K} A_{jk} \sum_{n=1}^{N_{k}} W_{n,k}^{N}(t)^{+},$

where the $\mathscr{A}_{n,k}$ are Poisson point processes with intensity $\alpha_k(dw)dzdt$, and the $\mathscr{N}_{n,k}$ and $\mathscr{D}_{n,k}$ are Poisson point processes with intensity dzdt.

The following can be proved using standard arguments.

If the functions a_k are Lipschitz and b_k , λ_k , and μ_k are locally bounded,

then there is pathwise existence and uniqueness of solution for the SDE,

and the corresponding Markov process is well defined.

The mean-field asymptotic regime

This SDE constitutes

a coupled system in very high dimension

and an asymptotic study is performed to render it tractable, which reduces

the dimension to the number of classes *K*.

For $1 \le k \le K$, we assume that

$$N_k \to \infty$$
, $\frac{N_k}{|N|} := \frac{N_k}{N_1 + \cdots + N_K} \to p_k$,

and, so as to scale the resource capacities adequately, that a factor $\frac{1}{|N|}$ is introduced inside the coefficients by

replacing
$$\boldsymbol{U}^N$$
 by $\overline{\boldsymbol{U}}^N = \frac{1}{|N|} \boldsymbol{U}^N$.

This yields the following mean-field rescaled SDE:

$$dW_{n,k}^{N}(t) = \mathbb{1}_{\left\{W_{n,k}^{N}(t)=-1\right\}} \int (1+w) \mathbb{1}_{\left\{0 < z < \lambda_{k}\left(\overline{U}^{N}(t)\right)\right\}} \mathcal{A}_{n,k}(dw, dz, dt) \\ + \mathbb{1}_{\left\{W_{n,k}^{N}(t)\geq 0\right\}} \left[a_{k}\left(W_{n,k}^{N}(t-), \overline{U}^{N}(t-)\right)dt \\ -(1-r_{k})W_{n,k}^{N}(t-)\int \mathbb{1}_{\left\{0 < z < b_{k}\left(W_{n,k}^{N}(t-), \overline{U}^{N}(t-)\right)\right\}} \mathcal{N}_{n,k}(dz, dt) \\ -(1+W_{n,k}^{N}(t-))\int \mathbb{1}_{\left\{0 < z < \mu_{k}\left(W_{n,k}^{N}(t-), \overline{U}^{N}(t-)\right)\right\}} \mathcal{D}_{n,k}(dz, dt)\right]$$
with $\overline{U}^{N}(t) = \frac{1}{|N|}U^{N}(t) = \left(\overline{U}_{j}^{N}(t), 1 \leq j \leq J\right),$
 $\overline{U}_{j}^{N}(t) = \frac{1}{|N|}U_{j}^{N}(t) = \sum_{k=1}^{K}A_{jk}\frac{N_{k}}{|N|}\overline{W}_{k}^{N}(t), \quad \overline{W}_{k}^{N}(t) = \frac{1}{N_{k}}\sum_{n=1}^{N_{k}}W_{n,k}^{N}(t)^{+}.$

This system is in multi-class mean-field interaction through

$$\left(\overline{W}_{k}^{N}(t), 1 \leq k \leq K\right)$$
 via $\overline{U}^{N}(t) = \frac{1}{|N|}U^{N}(t),$

the vector of the empirical means of the class outputs via

the rescaled throughput vector.

For $1 \le k \le K$, a natural quantity is the class k empirical measure

$$\Lambda_k^N = \frac{1}{N_k} \sum_{n=1}^{N_k} \delta_{\left(W_{n,k}^N(t), t \ge 0\right)}$$

where $\delta_{(x(t),t\geq 0)}$ denotes the Dirac mass at the sample path $(x(t),t\geq 0)$.

Notably

$$\overline{W}_{k}^{N}(t) = \langle w^{+}, \Lambda_{k}^{N}(t)(dw) \rangle.$$

3 Limit nonlinear Markov process and class interaction

In the mean-field asymptotic regime,

under adequate assumptions for the initial conditions,

a propagation of chaos phenomenon is expected:

- the processes $W_{n,k}^N$ should become independent, and each converge in law to a process W_k ,
- the empirical measures Λ_k^N (random laws on path space) should converge in law (and in probability) to the law of the same process W_k ,

where the limit process

$$W(t)=(W_k(t),1\leq k\leq K), \qquad t\geq 0,$$

solves the (adequately started) following equation:

McKean-Vlasov Itô-Skorohod SDE (Nonlinear Markov process)

$$dW_{k}(t) = \mathbb{1}_{\{W_{k}(t-)=-1\}} \int (1+w) \mathbb{1}_{\{0 < z < \lambda_{k}(u_{W}(t))\}} \mathscr{A}_{k}(dw, dz, dt)$$

+ $\mathbb{1}_{\{W_{k}(t-) \ge 0\}} \left[a_{k}(W_{k}(t-), u_{W}(t)) dt$
- $(1-r_{k})W_{k}(t-) \int \mathbb{1}_{\{0 < z < b_{k}(W_{k}(t-), u_{W}(t))\}} \mathscr{N}_{k}(dz, dt)$
- $(1+W_{k}(t-)) \int \mathbb{1}_{\{0 < z < \mu_{k}(W_{k}(t-), u_{W}(t))\}} \mathscr{D}_{k}(dz, dt) \right]$

with

$$u_W(t) = (u_{W,j}(t), 1 \le j \le J), \quad u_{W,j}(t) = \sum_{k=1}^K A_{jk} p_k \mathbb{E}(W_k(t)^+).$$

The interaction between coordinates depends on the mean throughput vector

 $(u_W(t), t \ge 0)$

which is a linear functional of the mean class output vector

 $\mathbb{E}(W(t)^+) = \mathbb{E}(W_k(t)^+, 1 \le k \le K) = \langle w^+, \mathscr{L}(W(t)) \rangle.$

Notably, the infinitesimal generator of the Markov process $(W(t), t \ge 0)$ depends, at time t, on the

law $\mathscr{L}(W(t))$ of W(t) itself

and not only on the value of the sample path.

Actually, only on the class marginals of $\mathscr{L}(W(t))$.

The Kolmogorov equations are nonlinear integro-differential equations and a nonlinear martingale problem

can be associated to this process.

This is why it is called a

Nonlinear Markov process.

Using this **SDE** representation, we have adapted

contraction and **coupling** techniques developed for **exchangeable** systems by **Sznitman** (1980's, 1989)

to this multi-class setting (technical), and

obtained existence and uniqueness for this fixed-point problem, as well as propagation of chaos. This was done in G. and Robert (AAP 2009) for

persistent transmissions

and has been extended to the general case of

on-off users with intermittent transmissions

in G. and Robert (QUES 2011)

There were many difficulties, e.g.,

• lack of symmetry of multi-class systems w.r.t. exchangeable ones:

$$N_1! \cdots N_K! \ll |N|! = (N_1 + \cdots + N_K)!$$

and rigorous results are rare for multi-class systems,

- quadratic behavior of $b_k(w, u) = w \beta_k(u)$,
- **On-off users** introduce discontinuities. Smart choices may simplify computations (-1 as cemetery state, ...).

The assumptions, notably on initial conditions, reflect this. These must not be too stringent since

long-time and stationary behavior are essential.

Gaussian moment assumptions were used.

4 Fixed points and invariant laws for the limit

Recall that solution $(W(t), t \ge 0)$ has in general

an infinitesimal generator at time t

depending not only on the state, but also, through $u_W(t)$, on $\mathbb{E}(W(t)^+)$

and thus on the law $\mathscr{L}(W(t))$ itself.

This nonlinearity is an important complication in studying the behavior of $(W(t), t \ge 0)$, in particular for

existence and uniqueness of invariant laws.

Note that, starting from an invariant law,

 $(\mathbb{E}(W(t)^+), t \ge 0)$ and hence $(u_W(t), t \ge 0)$ are constant,

and $(W(t), t \ge 0)$ corresponds to a

homogeneous Markov process in equilibrium.

Interesting results on the invariant laws were obtained in G. and Robert (AAP 2009, QUES 2011) by reducing the corresponding

infinite-dimensional fixed-point problem to a finite-dimensional one.

The results for **ON-Off USERS** being still preliminary, we concentrate now on

users or connections which emit persistently

and thus can be identified with their transmissions.

Assume that, for $1 \le k \le K$,

$$a_k(w,u) = a_k(u), \ b_k(w,u) = w \beta_k(u), \quad w \in \mathbb{R}_+, \ u \in \mathbb{R}_+',$$

where

 $a_k : \mathbb{R}^J_+ \to \mathbb{R}_+$ is Lipschitz bounded $\beta_k : \mathbb{R}^J_+ \to \mathbb{R}_+$ is Lipschitz.

Then, the invariant laws for the nonlinear SDE are in

one-to-one relation with

the solutions of the

finite-dimensional fixed-point problem

$$u=(u_j,1\leq j\leq J)\in\mathbb{R}_+^J,\quad u_j=\sum_{k=1}^K A_{jk}p_k\psi(r_k)\sqrt{\frac{a_k(u)}{\beta_k(u)}},$$

where

$$\psi(r) = \sqrt{\frac{2}{\pi}} \prod_{n=1}^{\infty} \frac{1-r^{2n}}{1-r^{2n-1}}.$$

Such a solution *u*^{*} corresponds to a **product-form invariant law** with density

$$\prod_{k=1}^{\kappa} H_{r_k,\rho_k}(w_k), \qquad w = (w_k, 1 \le k \le K) \in \mathbb{R}_+^K,$$

where
$$\rho_k = rac{a_k(u^*)}{eta_k(u^*)}$$
 and, for $x \in \mathbb{R}_+$,

 \boldsymbol{V}

$$H_{r,\rho}(x) = \frac{\sqrt{2\rho/\pi}}{\prod_{n=0}^{\infty} (1-r^{2n+1})} \sum_{n=0}^{\infty} \frac{r^{-2n}}{\prod_{k=1}^{n} (1-r^{-2k})} e^{-\rho r^{-2n} x^{2}/2}.$$

Note that the decay is appropriate for

Gaussian moment conditions.

The limit equilibrium throughput for class k users is given by

$$\mathcal{L}_{k} = \mathbb{E}(\overline{W}_{k}) = \int_{\mathbb{R}_{+}} x H_{r_{k},\rho_{k}}(x) dx$$
$$= \psi(r_{k}) \sqrt{\rho_{k}} = \psi(r_{k}) \sqrt{\frac{a_{k}(u^{*})}{\beta_{k}(u^{*})}}$$

with *u** solving a **fixed-point problem** which can be written as

$$H(u^*)=0.$$

Back to an optimisation problem ?

Class $k \in \{1, ..., K\}$ receives throughput λ_k^* , such that (λ_k^*) achieves

$$\max_{\lambda \in \mathscr{C}} \sum_{k=1}^{K} p_k U_k(\lambda_k/p_k)$$

which can be put (under some conditions) in the form

 $\nabla G(\lambda^*/p) = 0.$

How many solutions for the fixed-point problem ?

G., Robert, and Verloop (NETCOOP 2009) prove

existence and uniqueness of the invariant law

by contraction and monotonicity methods,

under some assumptions, for topologies such as

- One node, several classes
- Linear networks with cross-traffic
- Trees
- Rings and toruses.

Assume moreover that

$$A_{jk} = \begin{cases} 1 & \text{if node } j \text{ is used by a class } k \text{ user,} \\ 0 & \text{otherwise,} \end{cases}$$
$$\beta_k(u) = \beta_k \left(\sum_{j=1}^J A_{jk} u_j \right).$$

(With slight abuse of notations.)

The fixed-point equation becomes

$$u_j = \sum_{k=1}^K A_{jk} p_k \psi(r_k) \frac{\sqrt{a_k(u)}}{\sqrt{\beta_k \left(\sum_{j=1}^J A_{jk} u_j\right)}}, \quad 1 \le j \le J.$$

We assume that $u \rightarrow \beta_k(u)$ is strictly increasing and Lipschitz and that $a_k(u) \equiv a_k$ is constant.

One node, several classes

There is a unique solution $u = u^*$ for the fixed-point equation

$$u = \sum_{k=1}^{K} \psi(r_k) p_k \sqrt{\frac{a_k}{\beta_k(u)}},$$

and a unique invariant law with density H_{r,ρ_k} and expectation

$$\psi(r_k)\sqrt{\frac{a_k}{\beta_k(u^*)}}$$

yielding the mean equilibrium output.

If moreover the classes vary only in their RTT's, *i.e.*,

$$\beta_k \equiv \beta$$
, $r_k \equiv r$, $1 \leq k \leq K$,

then the class **outputs** differ **only** by the factors

$$\sqrt{a_k} = 1/\sqrt{\mathsf{RTT}_k}$$
.

Linear network with cross-traffic

There are *J* nodes and K = J + 1 classes. For $1 \le j \le J$, class *j* transmissions use only node *j*. The transmissions of class J + 1 use all *J* nodes.

Is uniqueness always true if

$u \rightarrow \beta_k(u)$

is increasing ?

There exist examples when

not:

Raghunathan and Kumar (2007) in a wireless context.

Are there

meta-stability phenomena

in these networks ?

Known for

- Loss Networks: Gibbens et al. (1990), Marbukh (1993),
- Wireless Networks: Antunes et al. (2008).

Are there oscillations ?

Such possibilities have been suggested by the literature on the Internet and by simulations:

cyclic behavior in congested networks

e.g., mean-field study for a single node and a single class and delay equations in Baccelli, McDonald, and Reynier (2002)

5 A Conclusion

Representation of the interaction of flows

- Using an instantaneous fluid picture yields: An optimisation problem
 Data for Model : Utility function.
- Starting from microscopic dynamics yields: A fixed point equation
 Data for Model : Equation coefficients.

Perspectives

- Modeling transmissions arriving from the outside world and disappearing after completion. A different scaling.
- More on the invariant laws for on-off users. Transient behavior of on periods needs to be assessed.
- Convergence of invariant laws:

 $\lim_{N\to\infty}\lim_{t\to\infty}=\lim_{t\to\infty}\lim_{N\to\infty}?$

Always difficult, especially with multiple equilibria.

• Relations with the optimization problem approach.

Merci

pour votre attention !