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Chapter 1

Introduction

These notes are about a three hour course I gave during the Journées PDMP 2012 at
Marne-La-Vallée. This meeting was perfectly organized by Djalil Chafaï, Bertrand Cloez,
Dan Goreac, Marc Hoffmann and Miguel Martinez.

I would want to thank all my coauthors on this topic for the four past years: Jean-
Baptiste Bardet, Michel Benaïm, Djalil Chafaï, Alejandra Christen, Joaquin Fontbona,
Arnaud Guillin Stéphane Le Borgne, Pierre-André Zitt.

1.1 The setting

Piecewise deterministic Markov processes (PDMPs) were introduced in the literature by
Davis [Dav84, Dav93] as a general class of non diffusion stochastic models. PDMPs are a
family of Markov processes involving deterministic motion punctuated by random jumps.
The motion of the PDMP (Xt)t>0 depends on three local characteristics, namely, the flow
Φ, the jump rate λ and the transition measureQ. Starting from x, the motion of the process
follows the flow Φ(x, t) until the first jump time T1 which occurs either spontaneously in a
Poisson-like fashion with rate λ(x) or when the flow Φ(x, t) hits the boundary of the state
space ∂E. In either case, the location of the process at the jump time T1 is selected by
the transition measure Q(Φ(x, t), ·) and the motion restarts from this new point as before.
The boundary of the space ∂E can be seen as a region where the jump rate is infinite.

Let us consider the case when (Xt)t>0 is Rd-valued. Roughly speaking a PDMP (Xt)t>0

on E ⊂ Rd is driven by the generator

Lf(x) = Xf(x) + λ(x)

∫
E
(f(y)− f(x))Q(x, dy),

where X is a locally Lipschitz continuous vector field on E ⊂ Rd determining the flow Φ:{
∂tΦ(x, t) = XΦ(x, t) if t > 0,

Φ(x, 0) = x.

Further details are given in [Dav93] (in particular the domain of L). For any x ∈ E, let us
denote by t∗(x) the hitting time of the boundary

t∗(x) = inf {t > 0 : Φ(x, t) ∈ ∂E} ∈ [0,+∞].
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One can associate to (Xt)t>0 its embedded Markov chain i.e. the process observed at the
jump times. Let us define

Λ(x, t) =

∫ t

0
λ(Φ(x, s)) ds, (1.1)

for x ∈ E and t > 0. If X0 = x, the density function of L(T1) is given by s 7→
λ(Φ(x, s))e−Λ(x,s). In particular, the probability that no jump occurs before time t∗(x)
is equal to e−Λ(x,t∗(x)). At this time t∗(x), X hits ∂E and jumps. As a consequence, the
kernel of the embedded chain is given by:

I(x,A) = Px(XT1 ∈ A) (1.2)

=

∫ t∗(x)

0
λ(Φ(x, s))e−Λ(x,s)Q(Φ(x, s), A) ds+ e−Λ(x,t∗(x))Q(Φ(x, t∗(x)), A).

A PDMP has no diffusive part (by definition!) and is (in general) non reversible. For
the link with Poisson Point Processes, see for instance [Jac06].

1.2 Motivating examples

1.2.1 The TCP window size process and related examples

This process on R+ belongs to the subclass of the AIMD (Additive Increase Multiplicative
Decrease) processes. Its infinitesimal generator is given by

Lf(x) = f ′(x) + λ(x)

∫ 1

0
(f(ux)− f(x)) ν(du), (1.3)

where ν is a probability measure on [0, 1] and λ can be constant (easy case, see [LvL08])
or affine (tricky case). It can be viewed as the limit behavior of the congestion of a sin-
gle channel (see [DGR02, GRZ04] for a rigorous derivation of this limit). [MZ09] gives
a generalization of the scaling procedure to interpret various PDMPs as the limit of dis-
crete time Markov chains and in [vLLO09] more general increase and decrease profiles
are considered as models for TCP. In the real world (Internet), the AIMD mechanism
allows a good compromise between the minimization of network congestion time and the
maximization of mean throughput. See also [BDRS02] for a simplified TCP windows size
model. See [vLLO09, MZ06, OK08, OKM96, OS07, Ott06, Hes05] for other works dedi-
cated to this process. Generalization to interacting multi-class transmissions are considered
in [GR09, GR10].

It is shown in [DGR02] that the invariant measure of the process (1.3) with λ(x) = x
and ν is the Dirac mass at δ ∈ [0, 1) is given by

x 7→
√

2/π∏+∞
n=0(1− δ2n+1)

+∞∑
n=0

δ−2n

(1− δ−2k)
e−δ

−2nx2/2

see Figure 1.1. This result may follow from the expression of the density function of the
invariant measure of the embedded chain and the relation

E(f(W∞)) =
1

E(TV∞)
E
(∫ TV∞

0
f(V∞ + s) ds

)
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Figure 1.1: Density funtion of the invariant measure associated to the generator (1.3) when
λ(x) = x and ν is the Dirac mass at δ.

where L(W∞) is the invariant measure associated to (1.3), and where V∞ is drawn according
to the invariant law of the embedded chain and Tv is a jump time for the continuous-time
process starting at v.

In [CMP10], a first attemp to get quantitative bounds for the convergence to the
invariant measure is proposed. The work [BCG+12] provides good improvement for the
estimates in Wasserstein distance and total variation distance.

This process is studied in Chapter 2.

1.2.2 Chemotaxis

Let us briefly describe how bacteria move [ODA88, EO05, EO05]. They alternate two
basic behavioral modes: a more or less linear motion, called a run, and a highly erratic
motion, called tumbling, the purpose of which is to reorient the cell. During a run the
bacteria move at approximately constant speed in the most recently chosen direction. Run
times are typically much longer than the time spent tumbling. In practice, the tumbling
time is neglected. An appropriate stochastic process for describing the motion of cells is
called the velocity jump process which is deeply studied in [ODA88]. The velocity belongs
to a compact set (the unit sphere for example) and changes by random jumps at random
instants of time and the position is deduced by integration of the velocity. The jump rates
may depend on the position when the medium is not homogeneous: when bacteria move
in a favorable direction i.e. either in the direction of foodstuffs or away from harmful
substances the run times are increased further. Sometimes, a diffusive approximation is
available [ODA88, RS10].

In a one dimensional simple model studied in [FGM10], the particle evolves in R and
its velocity belongs to {−1,+1}. Its infinitesimal generator is given by:

Af(x, v) = v∂xf(x, v) +
(
a+ (b− a)1{xv>0}

)
(f(x,−v)− f(x, v)), (1.4)

with 0 < a < b. The dynamics of the process is simple: when X go aways from 0, (resp. go
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to 0), V flips to −V with rate b (resp. a). This process is reminiscent of the study [HV10]
on a generalized telegraph process.

It is shown in [FGM10] that the invariant measure µ of (X,V ) driven by (1.4) is the
product measure on R+ × {−1,+1} given by

µ(dx, dv) = (b− a)e−(b−a)x dx⊗ 1

2
(δ−1 + δ+1)(dv).

One can also construct an explicit coupling to get explicit bounds for the convergence to
the invariant measure in total variation norm [FGM10].

1.2.3 Reliability

See the works of Dufour and his team.

1.2.4 Neuron activity

The paper [PTW09] establishes limit theorems for a class of stochastic hybrid systems
(continuous deterministic dynamic coupled with jump Markov processes) in the fluid limit
(small jumps at high frequency), thus extending known results for jump Markov processes.
The main results are a functional law of large numbers with exponential convergence speed,
a diffusion approximation, and a functional central limit theorem. These results are then
applied to neuron models with stochastic ion channels, as the number of channels goes to
infinity, estimating the convergence to the deterministic model. In terms of neural coding,
the central limit theorems allows to estimate numerically the impact of channel noise both
on frequency and spike timing coding.

1.2.5 Chemical reactions

Let E be the set {1, 2, . . . , n}, (λ(·, i))i∈E be n nonnegative continuous functions on Rd, P
be an irreducible stochastic matrix on E and, for any i ∈ E, F i(·) : Rd 7→ Rd be a smooth
vector field such that the ordinary differential equation{

ẋt = F i(xt) for t > 0,

x0 = x

has an unique and global solution t 7→ φit(x) on [0,+∞) for any initial condition x ∈ Rd.
Let us consider the Markov process

(Zt)t>0 = ((Xt, It))t>0 on Rd × E

defined by its infinitesimal generator L as follows:

Lf(x, i) = F i(x)∇xf(x, i) + λ(x, i)
∑
j̃∈E

P (i, j)(f(x, j)− f(x, i))

for any smooth function f : Rd × E → R.
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Chapter 2

The TCP window size process and
related examples

The TCP window size process appears in the modeling of the famous Transmission Control
Protocol used for data transmission over the Internet. This continuous time Markov process
takes its values in [0,∞), is ergodic and irreversible. The sample paths are piecewise linear
deterministic and the whole randomness of the dynamics comes from the jump mechanism.
The aim of this chapter is to provide quantitative estimates for the exponential convergence
to equilibrium, in terms of the total variation and Wasserstein distances. The main results
are established in [CMP10, BCG+12].

2.1 The TCP model with constant jump rate

A baby model of the TCP process it obtained assuming that the jump rate is constant.
The infinitesimal generator of the process is given by:

Lf(x) = f ′(x) + λ(f(x/2)− f(x)) (x > 0).

The jump times of this process are the ones of a homogeneous Poisson process with inten-
sity λ. The convergence in Wasserstein distance is obvious.

Lemma 2.1.1 ([PR05, CMP10]). For any p > 1,

Wp(δxPt, δyPt) 6 |x− y|e−λpt with λp =
λ(1− 2−p)

p
. (2.1)

Remark 2.1.2. The case p = 1 is obtained in [PR05] by PDEs estimates using the following
alternative formulation of the Wasserstein distance on R. If the cumulative distribution
functions of the two probability measures ν and ν̃ are F and F̃ then

W1(ν, ν̃) =

∫
R
|F (x)− F̃ (x)| dx.

The general case p > 1 is obvious from the probabilistic point of view: choosing the
same Poisson process (Nt)t>0 to drive the two processes provides that the two coordinates
jump simultaneously and

|Xt − Yt| = |x− y|2−Nt .
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As a consequence, since the law of Nt is the Poisson distribution with parameter λt, one
has

Ex,y(|Xt − Yt|p) = |x− y|pE
(
2−pNt

)
= |x− y|pe−pλpt.

This coupling turns out to be sharp. Indeed, one can compute explicitly the moments
of Xt (see [LL08, OK08]): for every n > 0, every x > 0, and every t > 0,

Ex((Xt)
n) =

n!∏n
k=1 θk

+ n!

n∑
m=1

( m∑
k=0

xk

k!

n∏
j=k
j 6=m

1

θj − θm

)
e−θmt, (2.2)

where θn = λ(1− 2−n) = nλn for any n > 1. Obviously, assuming for example that x > y,

Wn(δxPt, δyPt)
n > Ex((Xt)

n)− Ey((Yt)n)

∼
t→∞

n!

( n∑
k=0

xk − yk

k!

n−1∏
j=k

1

θj − θn

)
e−θnt.

As a consequence, the rate of convergence in Equation (2.1) is optimal for any n > 1.
Nevertheless this estimate for the Wasserstein rate of convergence does not provide

on its own any information about the total variation distance between δxPt and δyPt. It
turns out that this rate of convergence is the one of the W1 distance. This is established
in [PR05, Thm 1.1]. Let us provide here an improvement of this result by a probabilistic
argument.

Proposition 2.1.3. For any x, y > 0 and t > 0,

‖δxPt − δyPt‖TV 6 λe−λt/2|x− y|+ e−λt. (2.3)

As a consequence, for any measure ν with a finite first moment and t > 0,

‖νPt − µ‖TV 6 λe−λt/2W1(ν, µ) + e−λt‖ν − µ‖TV. (2.4)

Remark 2.1.4. Note that the upper bound obtained in Equation (2.3) is non-null even
for x = y. This is due to the persistence of a Dirac mass at any time, which implies
that taking y arbitrarily close to x for initial conditions does not make the total variation
distance arbitrarily small, even for large times.

Proof of Proposition 2.1.3. The coupling is a slight modification of the Wasserstein one.
The paths of (Xs)06s6t and (Ys)06s6t starting respectively from x and y are determined
by their jump times (TXn )n>0 and (T Yn )n>0 up to time t. These sequences have the same
distribution than the jump times of a Poisson process with intensity λ.

Let (Nt)t>0 be a Poisson process with intensity λ and (Tn)n>0 its jump times with the
convention T0 = 0. Let us now construct the jump times of X and Y . Both processes
make exactly Nt jumps before time t. If Nt = 0, then

Xs = x+ s and Ys = y + s for 0 6 s 6 t.

Assume now that Nt > 1. The Nt−1 first jump times of X and Y are the ones of (Nt)t>0:

TXk = T Yk = Tk 0 6 k 6 Nt − 1.
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In other words, the Wasserstein coupling acts until the penultimate jump time TNt−1. At
that time, we have

XTNt−1
− YTNt−1

=
x− y
2Nt−1

.

Then we have to define the last jump time for each process. If they are such that

TXNt = T YNt +XTNt−1
− YTNt−1

then the paths of X and Y are equal on the interval (TXNt , t) and can be chosen to be equal
for any time larger than t.

Recall that conditionally on the event {Nt = 1}, the law of T1 is the uniform distribu-
tion on (0, t). More generally, if n > 2, conditionally on the set {Nt = n}, the law of the
penultimate jump time Tn−1 has a density s 7→ n(n− 1)t−n(t− s)sn−21(0,t)(s) and condi-
tionally on the event {Nt = n, Tn−1 = s}, the law of Tn is uniform on the interval (s, t).

Conditionally on Nt = n > 1 and Tn−1, TXn and T Yn are uniformly distributed on
(Tn−1, t) and can be chosen such that

P
(
TXn = T Yn +

x− y
2n−1

∣∣∣NX
t = NY

t = n, TXn−1 = T Yn−1 = Tn−1

)
=

(
1− |x− y|

2n−1(t− Tn−1)

)
∨ 0 > 1− |x− y|

2n−1(t− Tn−1)
.

This coupling provides that

‖δxPt − δyPt‖TV 6 1− E
[(

1− |x− y|
2Nt−1(t− TNt−1)

)
1{Nt>1}

]
6 e−λt + |x− y|E

(
2−Nt+1

(t− TNt−1)
1{Nt>1}

)
.

For any n > 2,

E
(

1

t− TNt−1

∣∣∣Nt = n

)
=
n(n− 1)

tn

∫ t

0
un−2 du =

n

t
.

This equality also holds for n = 1. Thus we get that

E
(

2−Nt+1

(t− TNt−1)
1{Nt>1}

)
=

1

t
E
(
Nt2

−Nt+1
)

= λe−λt/2,

since Nt is distributed according to the Poisson law with parameter λt. This provides the
estimate (2.3). The general case (2.4) is a straightforward consequence: if Nt is equal to 0,
a coupling in total variation of the initial measures is done, otherwise, we use the coupling
above.

2.2 The TCP process

Let us come back to the "true" TCP process driven by the infinitesimal generator (1.3)
with ν = δ1/2. One of the fine properties of the TCP process is that "it comes back from
infinity in finite time". More precisely, one can establish the following result.
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Lemma 2.2.1. For any p > 1 and t > 0

Mp,t := sup
x>0

Ex(Xp
t ) 6

(√
2p+

2p

t

)p
.

One can get an exponential rate of convergence in Wasserstein distance.

Theorem 2.2.2. Let us define

M =

√
2(3 +

√
3)

8
∼ 0.84 and λ =

√
2(1−

√
M) ∼ 0.12. (2.5)

For any λ̃ < λ, any p > 1 and any t0 > 0, there is a constant C = C(p, λ̃, t0) such that,
for any initial probability measures ν and ν̃ and any t > t0,

Wp(νt, ν̃t) 6 Ce−(λ̃/p)t.

Sketch of proof. The main idea of the proof is to choose an good coupling of two paths
starting from two different points and to study its fine properties. This coupling was
introduced in [CMP10]. It is defined by the following generator

Lf(x, y) = (∂x + ∂y)f(x, y) + y
(
f(x/2, y/2)− f(x, y)

)
+ (x− y)

(
f(x/2, y)− f(x, y)

)
when x > y and symmetric expression for x < y. We will call the dynamical coupling
defined by this generator the Wasserstein coupling of the TCP process (see Figure 2.1 for
a graphical illustration of this coupling). This coupling is the only one such that the lower
component never jumps alone. Let us give the pathwise interpretation of this coupling.
Between two jump times, the two coordinates increase linearly with rate 1. Moreover, two
"jump processes" are simultaneously in action:

1. with a rate equal to the minimum of the two coordinates, they jump (i.e. they are
divided by 2) simultaneously,

2. with a rate equal to the distance between the two coordinates (which is constant
between two jump times), the bigger one jumps alone.

At last, one has to overcome the difficulties that come from the fact that the jump rate is
equal to 0 at the origin. This can be done using the constant drift that drive the process
away from 0.

Total variation estimates can also be derived from the Wasserstein ones and a coalescent
coupling with a unique try (see [BCG+12] for more details).

Theorem 2.2.3. For any λ̃ < λ and any t0 > 0, there exists C such that, for any initial
probability measures ν and ν̃ and any t > t0,

‖νt − ν̃t‖TV 6 Ce−(2λ̃/3)t,

where λ is given by (2.5).

Remark 2.2.4. In both Theorems 2.2.2 and 2.2.3, no assumption is required on the moments
nor regularity of the initial measures. In particular they hold uniformly over the Dirac
measures. If ν̃ is chosen to be the invariant measure µ, these theorems provide exponential
convergence to equilibrium.
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Figure 2.1: Two trajectories following the Wasserstein coupling; the bigger jumping alone
can be good, making the distance between both trajectories smaller, or bad.

2.3 A bound via small sets

We describe here briefly the approach of [RR96] (which essentially consists in an kind
adaptation of the Meyn-Tweedie method) and compare it with the hybrid Wasserstein/total
variation coupling described above. The idea is once more to build a successful coupling
between two copies X and Y of the process. In algorithmic terms, the approach is the
following:

• wait until X and Y both reach a given set C,

• once they are in C, try to stick them together,

• repeat until the previous step is successful.

The first step is done by independent coupling, until the joint process hits a product set
C × C. To get a succesful coupling afterwards, the idea is to find a time t?, a probability
measure ν and an α > 0 such that

∀x ∈ C, L(Xt? |X0 = x) > αν. (2.6)

If this holds, once the processes hit C together, we have a probability at least α of coupling
them in a time t?. The set C is called a “small set”.

One can weaken the condition and ask for the existence of an α, a t? and measures νxy
such that

∀x, y ∈ C2, L(Xt|X0 = x) > ανxy and L(Xt|X0 = y) > ανxy. (2.7)

In other words, the measure ν in (2.6) may depend on the starting points x and y. In this
situation C is called “pseudo-small”.

To control the time to come back to C×C, [RR96] proposes an approach via a Lyapunov
function. Their result can be stated as follows1.

1In fact, in [RR96], the result is given with A instead of A′ in the upper bound. Joaquin Fontbona
pointed out to us that Lemma 6 from [RR96] has to be corrected, adding the exponential term eδt

?

to the
estimate. We thank him for this remark.
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Theorem 2.3.1 ([RR96], Theorem 3, Corollary 4 and Theorem 8). Suppose that there
exists a set C, a function V > 1, and positive constants λ,Λ such that

LV 6 −λV + Λ1C . (2.8)

Suppose that δ = λ − Λ/ infx/∈C V > 0. Suppose additionally that C is pseudo-small, with
constant α.

Then for A = Λ
δ + e−δt

?
supx∈C V , A′ = Aeδt

?, and for any r < 1/t?,

‖L(Xt)− µ‖TV 6 (1− α)brtc + e−δ(t−t
?)(A′)brtc−1EV (X0).

If A′ is finite, this gives exponential convergence: just choose r small enough so that
(A′)rte−δt decreases exponentially fast.

Let us try to apply this approach. Choose V (x) = 1
x + ex. It is easy to check that

(2.8) holds for example with C = [0.45, 1.85], Λ = 3 and λ = 0.25. For δ being positive,
one has to enlarge C. For example, the interval C = [0.04, 3.2] gives infx/∈C V = 24 and
δ = 0.125. This makes the set C much too large to get a good coupling bound in (2.6):
the α obtained is around 2.10−19. For a value of t = 3.4, we obtain a value α ≈ 4.10−14. . .
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Chapter 3

Explosive switched vector fields

This chapter is dedicated to an instructive subclass of switched vector fields presented
in Section 1.2.5. The first section present an example for which the computations are
explicit. Section 3.2 provides a general result in this framework. This chapter is inspired
by [BLBMZ12a].

3.1 An example with phase transition

Let a and b be two positive real numbers and set

A0 =

(
−1 ab
−a/b −1

)
A1 =

(
−1 −a/b
ab −1

)
and

A1/2 =
A1 +A0

2
=

(
−1 a(b− 1/b)/2

a(b− 1/b)/2 −1

)
.

The eigenvalues of A0 and A1 are equal to −1 ± ia whereas the eigenvalues of A1/2 are
−1 ± a(b − 1/b)/2. If a(b − 1/b) > 2, i.e. b > 1 +

√
1 + a2, the matrix A1/2 admits a

positive and a negative eigenvalue. The associated eigenvectors are (1, 1) and (1,−1).
For any β > 0, Let us define the Markov process (X, I) on R2 × {0, 1} driven by the

generator Lβ :
Lβf(x, i) = LCf(x, i) + βLJf(x, i)

where
LCf(x, i) = Ai∇f(x, i) and LJf(x, i) =

1

2
(f(x, 1− i)− f(x, i)).

The operator LC corresponds to the “continuous” part (the first component x evolves along
the flow of the vector field x 7→ Aix) and LJ gives the jumps on the second component. If
ν is a probability measure on R2 × {0, 1}, we denote by Pν the law of the process (X, I)
when the law of (X0, I0) is ν.

3.1.1 A polar decomposition

We begin by decomposing the deterministic dynamics. Let A be a matrix on R2 and
x ∈ R2\{0}. Consider (xt)t>0 the solution of{

ẋt = Axt,

x0 = x.

12



First of all, since x is not 0, xt never reaches 0. Therefore it is possible to define polar
coordinates (rt, θt) of xt. Call eθ the unit vector (cos θ, sin θ) and define ut = eθt : xt may
be written rtut. Since r2

t = 〈xt, xt〉, we have:

rtṙt = 〈xt, Axt〉
A(rtut) = ẋt = ṙtut + rtu̇t.

Therefore:

ṙt = rt〈ut, Aut〉 (3.1)
u̇t = Aut − 〈ut, Aut〉ut. (3.2)

The evolution of ut on the circle is autonomous. It may be rewritten in terms of θt. Since
u̇t = θ̇teθt+π/2, the scalar product of (3.2) with eθt+π/2 gives:

θ̇t =
〈
Aeθt , eθt+π/2

〉
= (A22 −A11) sin(θt) cos(θt) +A21 cos2(θt)−A12 sin2(θt). (3.3)

The critical points of this differential equation are related to the eigenvector of A as it is
pointed out in the following (easy) lemma.

Lemma 3.1.1. For any matrix A, the function

d : θ 7→ d(θ) =
〈
Aeθ, eθ+π/2

〉
given by (3.3) is π-periodic and d(θ) = 0 iff uθ is an eigenvector of A. As a consequence,
the equation d(θ) = 0 admits

• four solutions iff A admits two different eigenvalues,

• two solutions iff A is a Jordan matrix,

• no solution iff the eigenvalues of A are not real.

Finally, the function d is zero iff A = λI2.

Proof. From (3.3), it is obvious that d is π-periodic. Moreover, d(θ) = 0 iff Aeθ is orthog-
onal to eθ+π/2. This happens if and only if eθ is an eignevector of A.

3.1.2 The angular process

Now we come back to our stochastic process. Between jumps, the process follows the
deterministic dynamics described above, with A ∈ {A0, A1}. Since the evolution of the
angle θ is autonomous for each dynamics, the process (Θ, I) is a Markov process on R ×
{0, 1}. The evolution of (Rt)t>0 is determined by the one of the process ((Θt, It))t>0, by
solving Equation (3.1) between the jumps. If we call A(θ, i) = 〈Aieθ, eθ〉, then

Rt = R0 exp

(∫ t

0
A(Θs, Is)ds

)
. (3.4)

and Rt appears as a multiplicative functional of ((Θs, Is))06s6t. Let us define, for i ∈ {0, 1}
and λ ∈ (0, 1),

di(θ) =
〈
Aieθ, eθ+π/2

〉
,

dλ(θ) = (1− λ)d0(θ) + λd1(θ).

13



In our setting,

d0(θ) = −a/b cos2(θ)− ab sin2(θ) < 0

d1(θ) = ab cos2(θ) + a/b sin2(θ) > 0.

The generator of the Markov process (Θ, I) is given by:

Lβf(θ, i) = di(θ)∂θf(θ, i) +
β

2
(f(θ, 1− i)− f(θ, i)),

3.1.3 The invariant measure of the angular process

The Markov process (Θ, I) admits a unique invariant measure and it can be expressed as
follows.

Lemma 3.1.2. The invariant measure µβ of the angular process is given by

µβ(dθ, i) =
1

C(β)

1

|di(θ)|
eβv(θ)1[0,2π](θ) dθ,

where

v(θ) =


1

2a
(arctan(b tan(θ))− arctan(b−1 tan(θ))) if θ 6= ±π

2
,

0 otherwise.
(3.5)

and

C(β) =

∫ 2π

0

[
1

d1(θ)
− 1

d0(θ)

]
eβv(θ) dθ.

Remark 3.1.3. Notice that v belongs to C∞(T) and is π-periodic. Moreover, v′(θ) = 0 if
and only if θ = ±π/4 + kπ. Finally, the function v reaches its maximum at π/4 + kπ and
its minimum at −π/4 + kπ.

Proof of Lemma 3.1.2. If µβ is an invariant measure for (Θ, I), then, for any smooth func-
tion f on T× {0, 1}, one has ∫

T×{0,1}
Lβf(θ, i)dµβ(θ, i) = 0.

Let us look for an invariant measure µβ on T× {0, 1} that can be written as

µβ(dθ, i) = ρ0(θ)10(i) dθ + ρ1(θ)11(i) dθ,

where ρ0 and ρ1 are two smooth and 2π-periodic functions. If f does not depend on the
discrete variable i ∈ {0, 1}, i.e. f(θ, i) = f(θ), then∫

T×{0,1}
Lβf(θ)dµβ(θ, i) =

∫
T
∂θf(θ)(d0ρ0)(θ)dθ +

∫
T
∂θf(θ)(d1ρ1)(θ)dθ,

and an integration by parts leads to∫
T×{0,1}

Lβf(θ)dµβ(θ, i) = −
∫
T
f(θ)[d0ρ0 + d1ρ1]′(θ)dθ

14



This ensures that d0ρ0 + d1ρ1 must be constant. Let us assume that one can find ρ0 and
ρ1 such that d0ρ0 + d1ρ1 = 0. Now, if f is such that f(θ, 0) = f(θ) et f(θ, 1) = 0, we get∫

T×{0,1}
Lβf(θ, i)dµβ(θ, i) =

∫
T

[
d0(θ)∂θf(θ)− β

2
f(θ)

]
ρ0(θ)dθ +

∫
T

β

2
f(θ)ρ1(θ)dθ

and, after an integration by parts,∫
T×{0,1}

Lβf(θ, i)dµβ(θ, i) =

∫
T
f(θ)

[
−(d0ρ0)′(θ) +

β

2
(ρ1(θ)− ρ0(θ))

]
dθ.

Let us define φ = d0ρ0. Then ρ0 = φ
d0

and ρ1 = − φ
d1
. The function φ is solution of the

following ordinary differential equation:

φ′ = −β
2

(
1

d1
+

1

d0

)
φ. (3.6)

This equation admits a solution on T (i.e. 2π-periodic) since the integral of 1
d1

+ 1
d0

on
[−π, π] is equal to 0. In fact this is already true on [−π/2, π/2]. Since d0 and d1 are explicit
trigonometric functions, one can find an explicit expression for φ. Notice that

[
arctan

(
b−1 tan(θ)

)]′
=

1

b

1 + tan2(θ)

1 + tan2(θ)
b2

=
1

b cos2(θ) + 1
b sin2(θ)

=
a

d1(θ)

[arctan(b tan(θ))]′ = − a

d0(θ)
.

The differential equation (3.6) becomes φ′ = βv′φ where v is given by (3.5) and its solutions
are given by

φ = K exp(βv).

This relation provides the expression of ρ0 and ρ1 up to the multiplicative constant K.
Since we are looking for probability measures, K is such that

K

∫
T

(
1

d0(θ)
− 1

d1(θ)

)
φ(θ)dθ = 1

Conversely, it is easy to check that the measure given in Lemma 3.1.2 is invariant for Lβ .

3.1.4 The Lyapunov exponent

Let us recall that we are interested in the function χ given by

χ(β) =

∫
A(θ, i) dµβ(θ, i).

Lemma 3.1.4. The function β 7→ χ(β) is C1 and monotonous application on [0,+∞) such
that χ′ has the sign of b2 − 1 and

χ(0) = −1, lim
β→∞

χ(β) =
a(b2 − 1)

2b
− 1.
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Proof. From the definition of Ai and A, we get that, for i ∈ {0, 1},

A(θ, i) = 〈Aieθ, eθ〉 =
a(b2 − 1)

2b
sin(2θ)− 1.

For sake of simplicity, A(θ) stands for A(θ, 0) = A(θ, 1). Thus, χ(β) is given by

χ(β) =

∫ 2π

0
A(θ)µ̃β(dθ),

where
µ̃β(dθ) =

1

C(β)

(
1

d1(θ)
− 1

d0(θ)

)
eβv(θ)1[0,2π] dθ.

Its derivative is given by

χ′(β) =

∫ 2π

0
A(θ)v(θ)µ̃β(dθ)− C ′(β)

C(β)

∫ 2π

0
A(θ)µ̃β(dθ)

=

∫ 2π

0
A(θ)v(θ)µ̃β(dθ)−

∫ 2π

0
v(θ)µ̃β(dθ)

∫ 2π

0
A(θ)µ̃β(dθ).

In other words, one has

χ′(β) = Covµ̃β (A(·), v(·))

=
a(b2 − 1)

2b
Covµ̃β (sin(2·), v(·)).

The mean of sin(2·) with respect to µ̃β is equal to 0. Besides, θ 7→ v(θ) sin(2θ) is nonneg-
ative (and non constant) on T. Thus, χ′ has the sign of b2 − 1.

If β = 0, one has

χ(0) =
1

C(0)

∫ 2π

0

(
a(b2 − 1)

2b
sin(2θ)− 1

)(
1

d1(θ)
− 1

d0(θ)

)
dθ

= − 1

C(0)

∫ 2π

0

(
1

d1(θ)
− 1

d0(θ)

)
dθ = −1 < 0.

Finally, as β goes to ∞, the probability measure νβ converges to a probability measure
concentrated on the points {π/4, 5π/4, } where v reaches its maximum. We get

lim
β→+∞

χ(β) =
a(b2 − 1)

2b
− 1.

This concludes the proof.

Corollary 3.1.5. If b > 1+
√

1 + a2, then there exists βc ∈ (0,+∞) such that χ is negative
on (0, βc) and positive on (βc,+∞).

3.2 The general case

Let A0, A1 ∈ R2×2 be two real matrices which admit two eigenvalues with negative real
parts: A0 and A1 are said to be Hurwitz matrices. In [BBM09], the authors deal with
the stability problem for the planar linear switching system ẋt = (1 − ut)A0xt + utA1xt,
where u: [0,∞) → {0, 1} is a measurable function. They provide necessary and sufficient
conditions on A0 and A1 for the system to be asymptotically stable for arbitrary switching
function u. The main hypothesis that ensures the existence of a control u such that the
system is not asymptotically stable is the following.

16



Assumption 3.2.1. There exists λ ∈ (0, 1) such that the matrix Aλ = (1 − λ)A0 + λA1

has two real eigenvalues −λ− < 0 < λ+ with opposite signs. Let us denote by u−, u+ two
associated (real, unit) eigenvectors.

Under Assumption 3.2.1 the norm of the continuous component X goes to zero if the
jumps are rare and to +∞ if the jumps are sufficiently numerous (and X0 6= 0).

Theorem 3.2.2. Under Assumption 3.2.1, there exists χ(β) ∈ R such that, for any initial
measure ν such that ν({0} × {0, 1}) = 0,

1

t
log ‖Xt‖

Pν−a.s.−−−−−→
t→∞

χ(β). (3.7)

Moreover, there exist two constants 0 < β1 6 β2 <∞ such that:

• if β < β1, then χ(β) is negative and ‖Xt‖
Pν−a.s.−−−−−→
t→∞

0,

• if β > β2, then χ(β) is positive and ‖Xt‖
Pν−a.s.−−−−−→
t→∞

∞.
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Chapter 4

Switched vector fields: quantitative
estimates

This chapter is essentially inspired by [BLBMZ12c]. Let E be a finite set, (λ(·, i))i∈E be
n nonnegative continuous functions on Rd, P be an irreducible stochastic matrix and, for
any i ∈ E, F i : Rd 7→ Rd be a smooth vector field such that the ordinary differential
equation {

x′t = F i(xt), t > 0;

x0 = x,

has a unique and global solution t 7→ ϕit(x) on [0,∞) for any initial condition x ∈ Rd. Let
us consider the Markov process

(Zt)t>0 = ((Xt, It))t>0 on Rd × E

defined by its extended generator L as follows:

Lf(x, i) =
〈
F i(x),∇xf(x, i)

〉
+ λ(x, i)

∑
j∈E

P (i, j)(f(x, j)− f(x, i)) (4.1)

for any smooth function f : Rd × E → R Let us describe the dynamics of this process.
Assume that (X0, I0) = (x, i) ∈ Rd × E. Before the first jump time T1 of I, the first
component X is driven by the vector field F i and then Xt = ϕit(x). The time T1 can be
defined by:

T1 = inf

{
t > 0 :

∫ t

0
λ(Xs, i) ds > E1

}
,

where E1 is an exponential random variable with parameter 1. Since the paths of X are
deterministic between the jump times of I, the randomness of T1 comes from the one of
E1 and

T1 = inf

{
t > 0 :

∫ t

0
λ(ϕis(x), i) ds > E1

}
.

Remark 4.0.3. Notice that P(x,i)(T1 = +∞) > 0 if and only if∫ +∞

0
λ(ϕis(x), i) ds < +∞.

If we assume that λ := inf(x,i) λ(x, i) > 0 then the process I will jump infinitely often. Of
course this assumption is not necessary.
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At time T1, the second coordinate I performs a jump with the law P (i, ·) and the vector
fields that drives the evolution of X is switched...

In order to get explicit rates of convergence, we have to assume that the jump rates
are smooth and that each vector field F i has a unique stable point.

Assumption 4.0.4. There exist 0 < λ 6 λ and κ > 0 such that, for any x, x̃ ∈ Rd and
i ∈ E,

λ(x, i) ∈ [λ, λ] and |λ(x, i)− λ(x̃, i)| 6 κ|x− x̃|,

Assumption 4.0.5. Assume that there exists α > 0 such that,〈
x− x̃, F i(x)− F i(x̃)

〉
6 −α|x− x̃|2, x, x̃ ∈ Rd, i ∈ E. (4.2)

Assumption 4.0.5 ensures that, for any i ∈ E,∣∣ϕit(x)− ϕit(x̃)
∣∣ 6 e−αt|x− x̃|, x, x̃ ∈ Rd.

As a consequence, the vector fields F i has exactly one critical point σ(i) ∈ Rd. Moreover
it is exponentially stable since, for any x ∈ Rd,∣∣ϕit(x)− σ(i)

∣∣ 6 e−αt|x− σ(i)|.

In particular, X cannot escape from a sufficiently large ball. Let us now state the main
result of this chapter

Theorem 4.0.6. Assume that Assumptions 4.0.4 and 4.0.5 hold and that the supports of
µ0 and µ̃0 are included in the ball B̄(0, r) where r is given by (4.3). Then

W1(µt, µ̃t) 6 2r(1 + ct) exp

(
− α

1 + α/γ
t

)
where

γ =
(α+ 2λ)−

√
(α+ 2λ)2 − 8pαλ

2
and c =

α

α+ γ

2epαλ√
(α+ 2λ)2 − 8pαλ

,

with p = e−κ/α and e = exp(1).

Corollary 4.0.7. Under Assumptions 4.0.4 and 4.0.5, the process Z admits a unique
invariant measure µ and

W1(µt, µ) 6 2r(1 + ct) exp

(
− α

1 + α/γ
t

)
.

As for the TCP process, it is not possible to construct a coupling such that the discrete
components I and Ĩ jump always together: once I and Ĩ are equal, they can go appart
with positive probability since the jump rates depend also on X and X̃. Nevertheless, the
main idea is the following: if I and Ĩ are equal, the distance between X and X̃ decreases
exponentially fast and then it should be more and more easier to make the processes I and
Ĩ jump simultaneously since the jump rates are Lipschitz functions of X.

This section is organized as follows. We firstly we prove Lemma 4.0.8 that ensures that
the process X cannot escape from a sufficiently large ball. In particular, the support of
the invariant law of X is included in this ball. Then we construct the coupling of two
processes (X, I) and (X̃, Ĩ) driven by the same infinitesimal generator (4.1) with different
initial condition. At last we compare the distance between X and X̃ to an companion
process that goes to 0 exponentially fast.
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A preliminary estimate

Lemma 4.0.8. Under Assumtions 4.0.4 and 4.0.5, the process Z cannot escape from the
compact set B̄(0, r)×E where B̄(0, r) is the (closed) ball centered in 0 ∈ Rd with radius r
given by

r =
maxi∈E

∣∣F i(0)
∣∣

α
. (4.3)

Moreover, if |X0| > r then X hits B̄(0, r) exponentially fast.

Proof of Lemma 4.0.8. Setting x̃ = 0 in (4.2) ensures that, for ε ∈ (0, α),

〈f(x, y), x〉 6 −α|x|2 + 〈f(0, y), x〉 6 −(α− ε)|x|2 + C(ε),

if C(ε) = maxy∈E |f(0, y)|2/(4ε). In other words,

|Xt|2 − |Xs|2 =

∫ t

s
2〈f(Xu, Yu), Xu〉 du 6 −2(α− ε)

∫ t

s
|Xu|2 du+ 2C(ε).

As a consequence,

|Xt|2 6
C(ε)

α− ε
(1− e−2(α−ε)t) + |X0|2e−2(α−ε)t.

With ε = α/2, one gets that X cannot escape from the centered closed ball with radius
r =

√
2C(α/2)/α. With ε = α/4, one gets that if |X0| > r, then X will hit B̄(0, r)

exponentially fast.

The coupling

Let us construct a Markov process on (Rd × E)2 with marginals driven by (4.1) starting
respectively from (x, i) and (x̃, j). This is done via its infinitesimal generator which is
defined as follows:

• if i 6= j

Af(x, i, x̃, j) =
〈
F i(x),∇xf(x, i, x̃, j)

〉
+
〈
F j(x̃),∇x̃f(x, i, x̃, j)

〉
+ λ(x, i)

∑
i′∈E

P (i, i′)(f(x, i′, x̃, j)− f(x, i, x̃, j))

+ λ(x̃, j)
∑
j′∈E

P (j, j′)(f(x, y, x̃, j′)− f(x, y, x̃, j)).

• if i = j and λ(x, i) > λ(x̃, i):

Af(x, i, x̃, j) =
〈
F i(x),∇xf(x, i, x̃, i)

〉
+
〈
F i(x̃),∇x̃f(x, i, x̃, i)

〉
+ λ(x̃, i)

∑
i′∈E

P (i, i′)(f(x, i′, x̃, i′)− f(x, i, x̃, i))

+ (λ(x, i)− λ(x̃, i))
∑
i′∈E

P (i, i′)(f(x, i′, x̃, i)− f(x, i, x̃, i)),
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• if i = j and λ(x, i) < λ(x̃, i):

Af(x, i, x̃, j) =
〈
F i(x),∇xf(x, i, x̃, i)

〉
+
〈
F i(x̃),∇x̃f(x, i, x̃, i)

〉
+ λ(x, i)

∑
i′∈E

P (i, i′)(f(x, i′, x̃, i′)− f(x, i, x̃, i))

+ (λ(x̃, i)− λ(x, i))
∑
i′∈E

P (i, i′)(f(x, i, x̃, i′)− f(x, i, x̃, i)).

Notice that if f depends only on (x, i) or on (x̃, j), then Af = Lf . Let us explain how this
coupling works. When I and Ĩ are different, the two processes (X, I) and (X̃, Ĩ) evolve
independently. If I = Ĩ then two jump processes are in competition: a single jump vs
two simultaneous jumps. The rate of arrival of a single jump is given by |λ(x, i)− λ(x̃, i)|.
It is bounded above by κ|x− x̃|. The rate of arrival of a simultaneous jump is given by
λ(x, i) ∧ λ(x̃, i).

Assume firstly that X0 and X̃0 belongs to the ball B̄(0, r) where r is given by (4.3).
Let us define Dt as the distance between Xt and X̃t for any t > 0. The process (Dt)t>0 is
not Markovian. Nevertheless, as long as I = Ĩ, Dt decreases with a rate which is greater
than α. If it is no longer the case, then Dt can increase. Nevertheless it is still smaller
than d = 2r. After the coalescent time TI of two independent independent copies of Y , D
decreases once again. If E = {0, 1}, then TI is equal to the minimum of the jump times
of the two independent processes which are both stochastically greater than a random
variable of law E(λ). Thus TI is (stochastically) smaller than E(2λ). Then E(Dt) 6 E(Ut)
where the Markov process (Ut)t>0 on [0, d]∪{d+ ε} is driven by the infinitesimal generator

Gf(x) =

{
−αxf ′(x) + κx(f(d+ ε)− f(x)) if x ∈ [0, d],

2λ(f(d)− f(d+ ε)) if x = d+ ε.

The companion process

Let us consider the Markov process V = (Vt)t>0 on [0, 1]∪{1 + ε} defined by its infinitesimal
generator:

Hf(x) =

{
−αxf ′(x) + κx(f(1 + ε)− f(x)) if x ∈ [0, 1],

b(f(1)− f(1 + ε)) if x = 1 + ε.

Theorem 4.0.9. For any t > 0,

E(Vt|V0 = 1) 6

(
1 + (1 + ε)

(
pαbe√

(α+ b)2 − 4pαb

)
αt

α+ γ

)
exp

(
− 1

1 + α/γ
αt

)
(4.4)

where

p = e−κ/α and γ =
(α+ b)−

√
(α+ b)2 − 4pαb

2
=

(α+ b)−
√

(α− b)2 + 4(1− p)αb
2

.

Remark 4.0.10. If α goes to ∞, then γ goes to 1 whereas γ ∼ pα/b if b goes to ∞.

Proof. Starting from 1 + ε, the process V jumps after a random time with law E(b) to 1
and then goes to zero exponentially fast until it (possibly) goes back to 1 + ε. The first
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jump time T starting from 1 can be constructed as follows: let E be a random variable
with law E(1). Then

T
L
=

−
1

α
log

(
1− αE

κ

)
if E <

κ

α
,

+∞ otherwise.

Indeed, conditionally on {V0 = 1},∫ t

0
λ(Vs)ds =

∫ t

0
κe−αs ds =

κ

α
(1− e−αt).

In other words, the cumulative distribution function FT of T is such that, for any t > 0,

1− FT (t) = P(T > t) = exp
(
−κ
α

(1− e−αt)
)
.

Let us define p = e−κ/α. The law of T is the mixture with respective weights p and 1− p
of a Dirac mass at +∞ and a probability measure on R with density

f : t 7→ f(t) =
κ

1− p
e−αte−

κ
α

(1−e−αt)1(0,+∞)(t) (4.5)

and cumulative density function

F : t 7→ F (t) =

(
1− e−

κ
α

(1−e−αt)

1− e−
κ
α

)
1(0,+∞)(t).

Starting at 1, X will return to 1 with probability 1−p. The Markov property ensures that
the number N of returns of X to 1 is a random variable with geometric law with parameter
p. The length of a finite loop from 1 to 1 can be written as the sum S+E where the law of
S has the density function f given in (4.5), the law of E is the exponential measure with
parameter b and S and E are independent.
Remark 4.0.11. In the general case, E is not distributed as an exponential variable but as
the coalescent time of a finite Markov chain. Its Laplace transform is finite on a neigh-
bourhood of the origin.

Lemma 4.0.12. The variable S is stochastically smaller than an exponential random vari-
able with parameter α i.e. for any t > 0, F (t) > Fα(t) where Fα(t) = (1− e−αt)1{t>0}.

Proof of Lemma 4.0.12. Recall that eux − 1 6 (ex − 1)u for any x > 0 and u ∈ [0, 1].
Indeed,

eux − 1 = u
∑
k>1

uk−1x
k

k!
6 u

∑
k>1

xk

k!
= (ex − 1)u.

As a consequence, for any t > 0,

1− F (t) =
e
κ
α
e−αt − 1

e
κ
α − 1

6 e−αt = 1− Fα(t).

This ensures the stochastic bound.
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As a consequence, the Laplace transform LS of S with density f is smaller than the
one of an exponential variable with parameter α: for any s < α,

LS(s) 6
α

α− s
.

If Le is the Laplace transform of S + E, then, for any s < α ∧ b, we have

Le(s) 6
α

α− s
b

b− s
.

Let us denote by T the last hitting time of 1 i.e. the last jump time of X and by L its
Laplace transform. Let us introduce N ∼ G(p), (Si)i>1 with density f and (Ei)i>1 with
law E(b). All the random variables are assumed to be independent. Then

T
L
=

N∑
i=1

(Si + Ei).

Classically, for any s ∈ R such that (1− p)Le(s) < 1, one has

L(s) = E
(
esT
)

=
pLe(s)

1− (1− p)Le(s)
=

p

1− p

(
1

1− (1− p)Le(s)
− 1

)
.

Let us denote by

γ =
(α+ b)−

√
(α+ b)2 − 4pαb

2
and γ̃ =

(α+ b) +
√

(α+ b)2 − 4pαb

2

the two roots of X2 − (α+ b)X + pαb = 0. Notice that γ < α ∧ b < γ̃. For any s < γ, one
has (1− p)Le(s) < 1 and

L(s) 6
pαb

(γ − s)(γ̃ − s)
6

pαb

γ̃ − s
1

γ − s
. (4.6)

Let us now turn to the control of E(Vt|V0 = 1). The idea is to discuss wether T > βt
or not for some β ∈ (0, 1) (and then to choose β as good as possible):

• if T < βt, then Vt 6 e−(1−β)αt,

• the event {T > βt} will have a small probability for large t since T has a finite Laplace
transform on a neighbourhood of the origin.

For any β ∈ (0, 1) and s > 0,

E(Vt|X0 = 1) = E
(
Vt1{T6βt}

)
+ E

(
Vt1{T>βt}

)
6 e−(1−β)αt + (1 + ε)L(s)e−sβt. (4.7)

From Equation (4.6), we get that, for any s < γ, logL(s)− βts 6 h(s) where

h(s) = log

(
pαb

γ̃ − γ

)
− log(γ − s)− βts.

The function h reaches its minimun at s(t) = γ − (βt)−1 and

h(s(t)) = log

(
pαb

γ̃ − γ

)
+ log(βt) + 1− γβt.
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For t > 0 and β ∈ (0, 1), choose s(t) = γ − (βt)−1 in (4.7) to get

E(Vt) 6 e−(1−β)αt + (1 + ε)eh(γ(t))

6 e−(1−β)αt + (1 + ε)

(
pαbe

γ̃ − γ

)
βte−γβt.

At last, one can choose β = α(α+ γ)−1 in order to have (1− β)α = γβ. This ensures that

E(Vt) 6

(
1 + (1 + ε)

(
pαbe

γ̃ − γ

)
αt

α+ γ

)
exp

(
− αγ

α+ γ
t

)
.

Replacing γ̃ − γ by its expression as a function of α, b and p provides (4.4).
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Chapter 5

Switched vector fields: qualitative
estimates

This chapter presents an overview of the papers [BH12] and [BLBMZ12b]. The process
under study is a continuous time Markov process (Zt = (Xt, Yt)) living on M × E (where
M is a subset of Rd and E is a finite set) whose infinitesimal generator acts on functions

g : M × E → R,
(x, i) 7→ g(x, i),

smooth1 in x, according to the formula

Lg(x, i) = 〈F i(x),∇g(x, i)〉+
∑
j∈E

λ(x, i, j)(g(x, j)− g(x, i)) (5.1)

where

(i) x 7→ λ(x, i, j) is continuous;

(ii) λ(x, i, j) > 0 for i 6= j and λ(x, i, i) = 0;

(iii) For each x ∈M , the matrix (λ(x, i, j))ij is irreducible.

5.1 What can be shown in general ?

The support of the law of the process can be described in term of the solutions set of a
differential inclusion induced by the collection {F i : i ∈ E} (see [BLBMZ12b]).

A natural candidate to support invariant probabilities is the set of the points that can
be reached from any other starting point. For all n ∈ N∗ let Tn = En+1 × Rn+. Given

(i, t) = ((i0, . . . , in); (t1, . . . , tn)) ∈ Tn

and x ∈M we let
Φi

t(x) = Φ
in−1

tn ◦ . . . ◦ Φi0
t1

(x). (5.2)

The positive trajectory of x is the set

γ+(x) = {Φi
t(x) : (i, t) ∈

⋃
n∈N∗

Tn}.

1meaning that gi is the restriction to M of a smooth function on Rm
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The accessible set of (Xt) is the (possibly empty) compact set Γ ⊂M defined as

Γ =
⋂
x∈M

γ+(x).

It can be shown that this accessible set Γ is compact, connected, strongly positively in-
variant and invariant under the differential inclusion induced by {F i : i ∈ E}.

Under some Hörmander bracket conditions, the law of jump chain and the process
converge exponentially in total variation toward the unique invariant probability of the
process.

Let F0 the collection of vector fields (F i : i ∈ E). Let Fk = Fk−1∪{[F i, V ], V ∈ Fk−1},
and Fk(x) the vector space (included in TxM) spanned by {V (x), V ∈ Fk}.

Similarly, starting from G0 = {F i − F j , i 6= j}, we define Gk by taking Lie brackets
with the F i, and Gk(x) the corresponding subspace of TxM .

Definition 5.1.1. We say that the weak bracket condition is satisfied at x if there exists
k such that Fk(x) = TxM . If for some k, Gk(x) = TxM , we say that the strong bracket
condition holds.

Since Gk(x) is a subspace of Fk(x), the strong condition implies the weak one. The
converse is false, a counter-example is given below in Section 5.2.1.

These two conditions are called A (for the stronger) and B (for the weaker) in [BH12].
The following result is a version of Theorem 2 from [BH12], with an additional uniformity
with respect to the initial point and the time t.

Theorem 5.1.2 (Regularity — local form, bracket condition). If the weak bracket condi-
tion holds at x0, then the process is partly regular at jump times: there exist an integer K ′,
a constant c > 0 and non-empty open sets U0, V0 such that

∀x ∈ U ′0, ∀i, Px,i
[
XTK′ ∈ ·

]
> cλRm(· ∩ V0). (5.3)

If the strong bracket condition holds, the process is partly regular: there is a t0, two
constants c > 0 and ε > 0, and two non-empty open sets U0, V0 such that

∀x ∈ U0, ∀i,∀t ∈ [t0, t0 + ε], Px,i[Xt ∈ ·] > cλRm(· ∩ V0). (5.4)

Thanks to this theorem one can easily deduce some exponential convergence to equi-
librium with respect to the total variation distance for both the embedded chain and the
continuous time process.

Moreover, under the weak bracket condition, the invariant measures of the embedded
chain and the continuous time process are unique and absolutely continous.

5.2 Elementary examples

We give here a few examples of systems given by (5.1).

5.2.1 On the torus

Consider the system defined on the torus Tn = Rn/Zn by the constant vector fields F i = ei,
where (e1, . . . en) is the standard basis on Rn. Then, as argued in [BH12], the weak bracket
condition holds everywhere, and the strong condition does not hold. Therefore the chain
Z̃ is ergodic and converges exponentially fast, the empirical means of Z̃n and Zt converge,
but the law of Zt is singular with respect to the invariant measure.
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5.2.2 Two planar linear flows

Let A be a 2×2 real matrix whose eigenvalues η1, η2 have negative real parts. Set E = {0, 1}
and consider the process defined on R2 × E by

F 0(x) = Ax and F 1(x) = A(x− a)

for some a ∈ R2. The associated flows are Φ0
t (x) = etAx and Φ1

t (x) = etA(x− a) + a.
First note that, by using the Jordan decomposition of A, it is possible to find a scalar

product 〈· 〉 on R2 (depending on A) and some number 0 < α 6 min(−Re(η1),−Re(η2))
such that 〈Ax, x〉 6 −α〈x, x〉. Therefore

〈A(x− a), x〉 6 −α〈x, x〉 − 〈Aa, x〉 6 ‖x‖(−α‖x‖+ ‖Aa‖).

This shows that, for R > ‖Aa‖/α, the ball M = {x ∈ R2, ‖x‖ 6 R} is positively invariant
by Φ0 and Φ1. Moreover every solution to the differential inclusion induced by {F 0, F 1}
eventually enters M. In particular M × E is an absorbing set for the process (Zt).

Another remark that will prove useful in our analysis is that

det(F 0(x), F 1(x)) = det(A) det(a, x),

so that
det(F 0(x), F 1(x)) > 0 (resp. = 0)⇔ det(a, x) > 0 (resp. = 0). (5.5)

Case 1: a is an eigenvector

If a is an eigenvector of A the line Ra is invariant by both flows, so that

Γ = γ+(0) = [0, a]

and there is one unique invariant probability π (whose support has to be Γ). Indeed,
it is easily seen that Γ is an attractor for the set-valued dynamics induced by F 0 and
F 1. Therefore the support of every invariant measure equals Γ. If we consider the process
restricted to Γ, it becomes one-dimensional and the strong bracket condition holds, proving
uniqueness.
Remark 5.2.1. If X(0) 6∈ Ra, X will never reach Γ. As a consequence, the law of Xt and π
are singular. In particular, their total variation distance is constant, equal to 1. Note also
that the strong bracket condition being satisfied everywhere except on Ra, the law of Xt

at finite times has a regular part.
Remark 5.2.2. Consider the following example: A = −Id, a = (1, 0) and Ra is identified to
R. If the jump rates are constant and equal to λ, it is easy to check (see [KB04, RMC07])
that the invariant measure µ on [0, 1]× {0, 1} is given by:

µ =
1

2
(µ0 × δ0 + µ1 × δ1) ,

where µ0 and µ1 are Beta laws on [0, 1],

µ0(dx) = Cλx
λ−1(1− x)λ,

µ1(dx) = Cλx
λ(1− x)λ−1.

In particular, this example shows that the density of the invariant measure (with respect
to the Lebesgue measure) may be unbounded: when the jump rate λ is smaller than 1, the
densities blow up at 0 and 1.

27



Case 2: Eigenvalues are reals and a is not an eigenvector

Suppose η1, η2 < 0 and that a is not an eigenvector.
Let γ0 = {Φ0

t (a), t > 0}, γ1 = {Φ1
t (0), t > 0}. Note that γ1 and γ0 are image of each

other by the transformation T (x) = a− x. The curve γ0 (respectively γ1) crosses the line
Ra only at point a (respectively 0). For, otherwise, the trajectory t 7→ Φ0

t (a) would have to
cross the line Ker(A− λ1I) which is invariant. This makes the curve γ = γ0 ∪ γ1 a simple
closed curve in R2 crossing Ra at 0 and a. By Jordan curve Theorem, R2 \ γ = B ∪ U
where B is a bounded component and U an unbounded one. We claim that

Γ = B.

To prove this claim, observe that thanks to (5.5), F 0 and F 1 both point inward B at every
point of γ. This makes B positively invariant by Φ0 and Φ1. Thus Γ ⊂ B. Conversely,
γ ⊂ Γ (because 0 and a are accessibles from everywhere). If x ∈ B there exists s > 0
such that Φ0

−s(x) ∈ γ (because limt→−∞Φ0
t (a) = −∞) and necessarily Φ0

−s(x) ∈ γ1. This
proves that x ∈ γ+(0). Finally note that the strong bracket condition is verified in Γ \ Ra
proving uniqueness and absolute continuity of the invariant probability.

Case 3: Eigenvalues are complex conjugates

Suppose now that the eigenvalues have a nonzero imaginary part. By Jordan decomposi-
tion, it is easily seen that trajectories of Φi converge in spiralling, so that the mappings
τ i(x) = inf{t > 0 : Φi

t(x) ∈ Ra} and hi(x) = Φi
τ i(x)

are well defined and continuous.
Let H : Ra 7→ Ra be the map h0 ◦ h1 restricted to Ra. Since two different trajecto-
ries of the same flow have empty intersection, the sequence xn = Hn(0) is decreasing
(for the ordering on Ra inherited from R.) Being bounded (recall that M is compact
and positively invariant), it converges to x∗ ∈ Ra such that x∗ = H(x∗). Let now
γ0 = {Φ1

t (x
∗), 0 6 t 6 τ1(x∗)}, γ1 = {Φ0

t (h
1(x∗)), 0 6 t 6 τ0(h1(x∗))} and γ = γ0 ∪ γ1.

Reasoning as previously shows that Γ is the bounded component of R2 \ γ and that there
is a unique invariant and absolutely continuous invariant probability.

We illustrate this situation in Figure 5.1, with

A =

(
−1 −1
1 −1

)
and a =

(
1
0

)
.

Remark 5.2.3. Note that if the jump rates are small, the situation is similar to the one
described in Remark 5.2.2, the process spends most of its time near the attractive points,
and the density is unbounded at these points. Since they are in the interior of Γ, the
density is not even continuous in the interior of Γ.

5.3 Knowing the flows is not enough

In this section we study in detail a PDMP on R2, where the strong bracket condition
holds everywhere except on Γ, and where there may be one or more invariant measures,
depending on the dynamics of the discrete part of the process.

This model has been suggested by O. Radulescu. The continuous part of the process
takes its values on R2 whereas its discrete part belongs to {0, 1}. For sake of simplicity we
will denote (in a different way than in the beginning of the paper) by (Xt, Yt) ∈ R2 the
continuous component. The discrete component (It)t>0 is a continuous time Markov chain
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Figure 5.1: Double rotation.

on E = {0, 1} with jump rates (λi)i∈E . Let α > 0. The two vector fields F 0 and F 1 are
given by

F 0(x, y) =

(
−x+ α
−y + α

)
and F 1(x, y) =

 −x+
α

1 + y2

−y +
α

1 + x2


with (x, y) ∈ R2. Notice that the quarter plane (0,+∞)2 is invariant under the action
of the vector fields F 0 and F 1. If the support of the initial law of (X,Y ) is included in
the quarter plane (which is assumed from now on), then it is still the case for the law of
(Xt, Yt) at any time.

5.3.1 General properties of the two vector fields

Obviously, the vector fields F 0 has a unique stable point (α, α), whereas F 1 may admits
one or three critical points, according to the value of α.

Lemma 5.3.1. Let us define

a =
α+

√
|α2 − 4|
2

and b =

(√
4/27 + α2 + α

2

)1/3

−

(√
4/27 + α2 − α

2

)1/3

.

Notice that b is positive and is the unique real solution of b3 + b = α. Then

• if α 6 2, then F 1 admits a unique critical point (b, b) and it is stable,
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• if α > 2, then F 1 admits three critical points: (b, b) is unstable whereas (a, a−1) and
(a−1, a) are stable.

Proof. If (x, y) is a critical point of F 1 then (x, y) is solution of{
x(1 + y2) = α

y(1 + x2) = α.

As a consequence, x is solution of

0 = x5 − αx4 + 2x3 − 2αx2 + (1 + α2)x− α = (x2 − αx+ 1)(x3 + x− α).

The equation x3 +x−α admits a unique real solution b. It belongs to (0, α). Obviously, if
α 6 2, (b, b) is the unique critical point of F 1 whereas, if α > 2 and a and a−1 are the roots
of x2 − αx + 1 = 0, then F 1 admits the three critical points: (b, b), (a, a−1) and (a−1, a).
Let us have a look to the stability of (b, b). The Jacobian matrix of F 1 at (x, y) is given by

Jac(F 1)(x, y) =

 −1 − 2αy

(1 + y2)2

− 2αx

(1 + x2)2
−1

.
Since 1 + b2 = α/b one gets that

Jac(F 1)(b, b) =

 −1 −2 +
2b

α

−2 +
2b

α
−1


and its eigenvalues are given by

η1 = −3 +
2b

α
= −1− 2

α− b
α

and η2 = 1− 2b

α
=
b3 − b
α

and are respectively associated to the eigenvectors (1, 1) and (1,−1). Since b < α, η1 is
smaller than −1. Moreover, η2 has the same sign than b− 1 i.e. the same sign than α− 2.
As a conclusion, (b, b) is stable (resp. unstable) if α < 2 (resp. α > 2).

Assume now that α > 2. Then

Jac(F 1)(a, a−1) =

 −1 −2a

α

− 2

αa
−1


and its two eigenvalues −1 ± 2α−1 are negative. The critical points (a, a−1) and (a−1, a)
are stable.

In the sequel, we assume that α > 2. The sets

D = {(x, x) : x > 0},
L = {(x, y) : x > 0 and 0 < y < x},
U = {(x, y) : y > 0 and 0 < x < y}

are invariant under the action of the flows F 0 and F 1. Moreover, the set D (and in
particular the unique stable point (α, α) of F 0) is included in the stable manifold of the
unstable equilibrium (b, b) of F 1.

What happens if (X,Y ) starts at a point (x, y) ∈ L? The answer may depend on the
parameters λ0, λ1, α.
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5.3.2 Transience

Lemma 5.3.2. Assume that (X0, Y0) ∈ L. Then, for any t > 0,

0 6 Xt − Yt 6 (X0 − Y0) exp

(
−
∫ t

0
α(Is) ds

)
,

with α(0) = 1 and α(1) = 1− cα < 0 with c = (3/8)
√

3.

Proof. If It = 0 then
d

dt
(Xt − Yt) = −(Xt − Yt).

On the other hand, if It = 1 then

d

dt
(Xt − Yt) = −(Xt − Yt) + α

X2
t − Y 2

t

(1 +X2
t )(1 + Y 2

t )

= −(1− αh(Xt, Yt))(Xt − Yt)

where the function h is defined on [0,∞)2 by

h(x, y) =
x+ y

(1 + x2)(1 + y2)
.

The unique critical point of h on [0,∞)2 is (1/
√

3, 1/
√

3) and h reaches its maximum at
this point:

c := sup
x,y>0

h(x, y) =
3
√

3

8
.

As a consequence, for any t > 0,

d

dt
(Xt − Yt) 6 −α(It)(Xt − Yt) where

{
α(0) = 1,

α(1) = 1− cα.

Integrating this relation concludes the proof.

Corollary 5.3.3. Assume that (X0, Y0) ∈ L. If λ1 > λ0(cα − 1) then (Xt, Yt) converges
exponentially fast to D almost surely. More precisely,

lim sup
t→∞

1

t
log (Xt − Yt) 6 −

λ1 − (cα− 1)λ0

λ0 + λ1
< 0 a.s. (5.6)

In particular, the process (X,Y, I) admits a unique invariant measure µ which support is
the set

S = {(x, x) : x ∈ [b, α]}.

Proof. The ergodic theorem for the Markov process (It)t>0 ensures that

1

t

∫ t

0
α(Is) ds

a.s.−−−→
t→∞

∫
α(i)dν(i)

where the invariant measure ν of the process (It)t>0 is the Bernoulli measure with parame-
ter λ0/(λ0 +λ1). The upper bound (5.6) is a straightforward consequence of Lemma 5.3.2.
This ensures that the sets L and U are transient. At last, it is quite obvious that the set
of recurrent points in D is exactly S.
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Figure 5.2: Trajectory of (X,Y ) (red line) in the plane with λ0 = 1, λ1 = 0.6 and α = 5.

One can also get an estimate for the pth moment of Xt − Yt.

Corollary 5.3.4. Assume that (X0, Y0) ∈ L. Let p > 0 such that

λ1 > (λ0 + p)(cα− 1). (5.7)

Then there exists two positive constants cp, µp such that

E(|Xt − Yt|p) 6 cpE(|X0 − Y0|p)e−µpt.

Proof. Once again, Lemma 5.3.2 ensures that

0 6 E(|Xt − Yt|p) 6 E(|X0 − Y0|p)E
[
exp

(
−
∫ t

0
pα(Is) ds

)]
.

According to [BGM10, Prop. 4.1], there exists cp > 1 such that, for any t > 0,

1

cp
e−µpt 6 E

[
exp

(
−
∫ t

0
pα(Is) ds

)]
6 cpe

−µpt

where µp = −max {Re η : η ∈ Spec(Mp)} and

Mp =

(
−λ0 − p λ0

λ1 −λ1 + p(cα− 1)

)
.

The real parts of the eigenvalues of Mp are negative if and only if their sum S is negative
and their product P is positive with

−S = λ0 + λ1 + p(2− cα),

P = p(λ1 − (cα− 1)(λ0 + p)).

The sum S is always negative and the positivity of P is given by (5.7).
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Figure 5.3: Trajectories of X (blue line) and Y (red line) with λ0 = 1, λ1 = 0.6 and α = 5.

5.3.3 Recurrence

In this section, we aim to show that (X,Y, I) may admit several invariant measures if the
jump rate λ0 is large enough. Let us define

Ut =
Xt + Yt

2
and Vt =

Xt − Yt
2

.

Of course (U, V, I) is still a PDMP. If

d

dt

(
Xt

Yt

)
= F 1(Xt, Yt) then

d

dt

(
Ut
Vt

)
= G1(Ut, Vt),

with

G1(u, v) =
1

2

(
1 1
1 −1

)
F 1(u+ v, u− v) =


−u+

α(1 + u2 + v2)

(1 + (u+ v)2)(1 + (u− v)2)

−v +
2αuv

(1 + (u+ v)2)(1 + (u− v)2)

 .

Corollary 5.3.3 ensures that, if λ1/λ0 is large enough, then Vt goes to 0 exponentially fast.
Let us show that this is no longer true if λ1/λ0 is small enough. Let ε > 0. Assume

that, with positive probability, Vt ∈ (0, ε) for any t > 0. Then, for any time t > 0,
(Ut, Vt) ∈ [b, α] × [0, ε]. Indeed, one can show that the set Xt + Yt > 2b for any t > 0 as
soon as it is true at the initial time.

Lemma 5.3.5. Assume that (u, v) ∈ [b, α] × [0, ε]. Then there exists uc ∈ (b, α) and
K, δ, γ, γ̃ > 0 (that do not depend on ε) such that bε = b+Kε2 and

G1
1(u, v) 6 H1

1 (u, v) with H1
1 (u, v) = −δ(u− bε).
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and
G1

2(u, v) > H1
2 (u, v) with H1

2 (u, v) =
(
(γ + γ̃)1{u6uc} − γ̃

)
v.

Proof. Notice firstly that∣∣(1 + (u+ v)2)(1 + (u− v)2)− (1 + u2)2
∣∣ 6 Kε2. (5.8)

Thus, using that u3 + u− α = (u− b)(u2 + bu+ α/b) we get that

G1
1(u, v) 6 −u+

α

1 + u2
+Kε2

6 −(u− b)u
2 + bu+ α/b

1 + u2
+Kε2

6 −(u− b)2b2 + α/b

1 + α2
+Kε2.

We get the desired upper bound for G1
1 with

δ =
2b2 + α/b

1 + α2
and bε = b+ (K/δ)ε2.

Similarly, Equation (5.8) ensures that

G1
2(u, v) > vk(u) with k(u) =

2αu

(1 + u2)2
− 1−Kε2.

Obviously, if ε is small enough, k(b) > 0, k(α) < 0 and k is decreasing. Thus, if ũ is the
unique zero of k on (b, α), then one can choose

uc =
ũ+ b

2
, γ = k(uc) and γ̃ = k(α).

To get a simpler bound in the sequel we can even set γ̃ = k(α) ∨ 1.

Finally, define H0
1 (u, v) = G0

1(u, v) = −(u − α) and H0
2 (u, v) = G0

2(u, v) = −v and
introduce the PDMP (Ũ , Ṽ , Ĩ) where Ĩ = I is the switching process of (U, V, I) and (Ũ , Ṽ )
is driven by H0 and H1 instead of G0 and G1. From Lemma 5.3.5, we get that

Ut 6 Ũt and Ṽt 6 Vt (t > 0)

assuming that (Ũ0, Ṽ0, Ĩ0) = (U0, V0, I0). The last step is to study briefly the process
(Ũ , Ṽ , Ĩ). Let us firstly notice that if λ1/λ0 is small enough, then (Is, Ũs) spends an
arbitrary large amount of time near (1, bε) (and bε can be assumed smaller than uc if ε is
small enough). Thus

1

t
log

Ṽt

Ṽ0

>
1

t

∫ t

0
((γ + γ̃)1{Is=1,Ũs<uc} − γ̃) ds

since γ̃ > 1. The right hand side converges almost surely to a positive limit as soon as
λ1/λ0 is small enough. This implies that V cannot be bounded by ε forever.

Corollary 5.3.6. If λ1/λ0 is small enough, the process (X,Y, I) admits three ergodic
measures.
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