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Asymptotics of the PDE

(equal mitosis)

Size-Structured Population Equation (asymptotics)
{

κ
∂

∂x

(

g(x)N(x)
)

+ λN(x) = L
(

BN
)

(x),

B(0)N(0) = 0,
∫

N(x)dx = 1,

where

for any real-valued function x  ϕ(x),
L
(

ϕ
)

(x) := 4ϕ(2x) − ϕ(x).

κ = λ

∫
R+

xN(x)dx
∫
R+

g(x)N(x)dx
.
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The inverse problem

Under the previous differential equation, we consider the inverse
problem of finding B given a ”noisy” version of N.
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The inverse problem

Under the previous differential equation, we consider the inverse
problem of finding B given a ”noisy” version of N.

Practical: biologists take a sample of, say, plankton in a lake,
and they look at the respective size of the cells. Then they
perform a preprocessing, by, say a kernel estimator. This is
Nǫ. (probably more approximation than that).

Analytical point of view: Nǫ is a noisy version of N, less
regular than N (it is likely that no derivative exists) and
||N − Nǫ||2 ≤ ǫ. (see Perthame, Zubelli, etc)

Statistical point of view: we observe a n-sample X1, ...,Xn of
iid variables with density N.
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Pro and Con

Analytical point of view

Pro: taking into account maybe more approximations (but not all),
results true for any Nǫ.
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The statistical problem

In the previous example(s) and more generally in inverse problems
through PDE based on densities, we need ”most of the time” to
find

a density estimate
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The statistical problem

In the previous example(s) and more generally in inverse problems
through PDE based on densities, we need ”most of the time” to
find

a density estimate

an estimate of the (nth) derivative of this density

in an Lp (usually L2) sense

To do so, we observe ”a n sample”, ie iid variables....
At the end, I will mention ”other” possible settings
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How to estimate a density N?

Kernel methods: the closest to filtering methods.
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How to estimate a density N?

Kernel methods: the closest to filtering methods.

Projection methods: histogram, wavelet, Fourier basis.

Others ....

7/32



Classical methods Adaptive methods For the derivatives Return on PDE Perspectives

Kernel methods

Given K a kernel (L1, symmetric), we set Kh(x) =
1
h
K
(

x
h

)

and

N̂h(x) :=
1

n

n
∑

i=1

Kh(x − Xi)
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∥

∥
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∥

∥
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N̂h(x) :=
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Kh(x − Xi)

Bias-Variance decomposition

E

[∥

∥

∥
N − N̂h

∥

∥

∥

2

]

≤ ‖N − Kh ⋆ N‖2 +
1√
nh

‖K‖2,

where Kh ⋆ N = E(N̂h)

Advantages : defined on R (Rd ),
∫

N̂h = 1 and if K positive, true
density
Problem : find a good h.
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Projection methods
Let Φ = {φ} be an orthonormal family for L2 (wavelet, Fourier if
on segment etc).
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Let Φ = {φ} be an orthonormal family for L2 (wavelet, Fourier if
on segment etc).

N̂Φ :=
∑

φ∈Φ
β̂φφ with β̂φ :=

1

n

n
∑

i=1

φ(Xi ).

Bias-Variance decomposition

E

[

∥

∥

∥
N − N̂Φ

∥

∥

∥

2

2

]

= ‖N − ΠΦ(N)‖22 +
1

n

∑

φ∈Φ
Var(β̂φ),

where ΠΦ(N) the orthogonal projection of N on Vect{Φ}.
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1
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∑

φ∈Φ
Var(β̂φ),

where ΠΦ(N) the orthogonal projection of N on Vect{Φ}.
1
n

∑

φ∈Φ Var(β̂φ) ≤ |Φ|
n
supR(N)

|Φ| (dimension) ↔ 1/h (in R
d , 1/hd ).

But the ”variance term” here depends on N → find a good Φ !
Also problem when infinite family → usually finite support.
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The ”old” Lepski’s method (1)

Monotonicity

If

K has m vanishing moments, m ≥ s

N is with regularity s (Hölder, Sobolev, ...)

then

Bias : ‖N − Kh ⋆ N‖2 ≤ Chs increases with h, C depends on
Hölder norm of N and K

Variance : C (nh)−1/2 decreases with h.

Hence optimum in hs ≃ n−
1

2s+1 and optimal (minimax) rate in

φ(s) = n−
s

2s+1 .
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The ”old” Lepski’s method (2)

family of H = {hk = hsk} for sk = a + k(lnn)−1 ∈ [a, b]
(m > s)

If l < k , then ||Khk ⋆ N − Khl ⋆ N||2 ≤ �φ(hl)
Hence

The ”old Lepski’s” method

k̂ = max{k ≥ 0/∀l < k , ||N̂hk − N̂hl || ≤ Cφ(hl )}

If C good (and generally depends on N) and if N is of regularity
sk0 (unknown to the user) then rate in φ(hk0). (adaptivity in the
minimax sense).
Remark : numerous variants .... (see Lepski, Spokoiny, 97 etc ...)
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The ”old” Lepski’s method (3)

Problems :

Procedure not data driven

only aim is rate : purely asymptotic point of view, no ”oracle”
inequality, nothing said if K has not enough vanishing
moments (for instance K positive).

What if no monotonocity ? what if choice on K too ?
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Model selection

Family of Φ and want to choose.

Least-square contrast : γ(f ) = −2/n
∑n

i=1 f (Xi ) +
∫

f 2 also
log likelihood...

Penalized criterion : γ(N̂Φ) + pen(Φ) to minimize on the
family

Remarks :

classically on bounded support : best Willett and Nowak
method (2007, penalized log likelihood + cart + piecewise
polynomial )

Estimation of the variance also possible, oracle inequalities
available.

Estimate classically non positive → clipped version

Time consuming (except WN)
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Thresholding rules

ONB {φλλ ∈ Λ}
N̂ =

∑

λ∈Γ β̂λ1|β̂λ|≥t
φλ

same thing as Model selection with Φ ⊂ Γ and
pen(Φ) = |Φ|t2

easy to compute

Version on R ! (Reynaud-Bouret, Rivoirard, Tuleau-Malot
2011), Oracle inequalities etc ...

Still if you want positivity, it is not very smooth (either Haar/
histograms or clipping)
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Goldenshluger and Lepski’s method

Set for any x and any h, h′ > 0,

N̂h,h′(x) := (Kh ⋆ N̂h′)(x) =
1

n

n
∑

i=1

(Kh ⋆ Kh′)(x − Xi),
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1

n

n
∑

i=1

(Kh ⋆ Kh′)(x − Xi),

”Estimator” of the bias term

A(h) := sup
h′∈H

{

‖N̂h,h′ − N̂h′‖2 −
χ√
nh′

‖K‖2
}

+

where, given ε > 0, χ := (1 + ε)(1 + ‖K‖1).

ĥ := arg min
h∈H

{

A(h) +
χ√
nh

‖K‖2
}

and N̂ := N̂
ĥ
.

...Uniform bounds ...
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GL’s oracle inequality

Oracle inequality

If H = {1/ℓ / ℓ = 1, ..., ℓmax} and if ℓmax = δn, if moreover
‖N‖∞ < ∞,
then for any q ≥ 1,

E

(

‖N̂ − N‖2q2
)

≤ �qχ
2q inf

h∈H

{

‖Kh ⋆ N − N‖2q2 +
‖K‖2q2
(hn)q

}

+

�q,ε,δ,‖K‖2,‖K‖1,‖N‖
∞

1

nq
.

Remark : toy version. One can do it in higher dimension, choose
the bandwidth according to direction, choose (under assumptions)
the kernel, continuum of bandwidths etc (see the three recent
papers of Goldenshluger and Lepski)
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More ad hoc rules that work remarkably well in practice

Silverman 86 : either assume it is ”almost gaussian” or cross
validation (see also V-fold cross-validation Arlot, Lerasle work
in progress)

Abramson 82 : for point wise estimation h(x) ∼ N(x)−1/2 or
other formula .... See also Giné and Sang (09).

Sain et Scott (96) bandwidth moved locally ... Based on
cross-validation ...
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What exists ?

Most of it in white noise models (but equivalence possible),

Possible to estimate simultaneously a signal and its derivative,
by the derivatives of the estimate. Use of Fourier transform
(Hall Patil 95, Efromovich 98). Nothing adaptive as far as I
know. on a finite interval !

Local polynomials : Estimate in one point x0 the curve by
local polynomials. Coefficients of higher order estimate the
derivatives. Possibility to do adaptation (Fan Gijbels 95,
Spokoiny 98). Need to find a bandwidth in an adaptive way,
see also ad hoc Lepski’s method.

Wavelet approaches via inverse problems : Abramovich
Silverman (98, thresholding), Cai (02, block thresholding) on
a finite interval !
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Estimation of D = ∂
∂x

(

g(x)N(x)
)

If K is differentiable,
∫

K = 1 and
∫

|K ′|2 < ∞.

D̂h(x) :=
1

n

n
∑

i=1

g(Xi)K
′
h(x − Xi )
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∫

K = 1 and
∫

|K ′|2 < ∞.

D̂h(x) :=
1

n

n
∑

i=1

g(Xi)K
′
h(x − Xi )

Bias-Variance decomposition:

E(
∥

∥

∥
D − D̂h

∥

∥

∥

2
) ≤ ‖D − Kh ⋆ D‖2 + 1√

nh3
‖g‖∞‖K ′‖2.

GL’s trick

D̂h,h′(x) :=
1
n

∑n
i=1 g(Xi )(Kh ⋆ Kh′)

′(x − Xi),

Ã(h) := sup
h′∈H̃

{

‖D̂h,h′ − D̂h′‖2 −
χ̃√
nh′3

‖g‖∞‖K ′‖2
}

+

,

where, given ε̃ > 0, χ̃ := (1 + ε̃)(1 + ‖K‖1).
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Ã(h) := sup
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{

‖D̂h,h′ − D̂h′‖2 −
χ̃√
nh′3

‖g‖∞‖K ′‖2
}

+

,

where, given ε̃ > 0, χ̃ := (1 + ε̃)(1 + ‖K‖1).

Finally, we estimate D by using D̂ := D̂h̃ with

h̃ := argminh∈H̃

{

Ã(h) +
χ̃√
nh3

‖g‖∞‖K ′‖2
}

.
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Result for the derivative D

Oracle inequality for D

If H̃ = {1/ℓ / ℓ = 1, ..., ℓmax} and if ℓmax =
√
δ′n, if moreover

‖N‖∞ and ‖g‖∞ < ∞, then for any q ≥ 1,

E

(

‖D̂ − D‖2q2
)

≤ �qχ̃
2q inf

h∈H̃

{

‖Kh ⋆D − D‖2q2 +

[‖g‖∞‖K ′‖2√
nh3

]2q
}

+�q,ε̃,δ′,‖K ′‖2,‖K‖1,‖K ′‖1,‖N‖
∞
,‖g‖

∞

1

nq
.
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The informal problem and the PDE translation for
size-structured population

A cell grows.
Depending on its size x , the cell has a certain chance to divide
itself in 2 offsprings, ie 2 cells of size x/2.
We are interesting by the evolution of the whole population of
cells, each of them having this behavior.
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The informal problem and the PDE translation for
size-structured population

A cell grows.
Depending on its size x , the cell has a certain chance to divide
itself in 2 offsprings, ie 2 cells of size x/2.
We are interesting by the evolution of the whole population of
cells, each of them having this behavior.

Size-Structured Population Equation (finite time)










∂

∂t

(

n(t, x)
)

+ κ
∂

∂x

(

g(x)n(t, x)
)

+ B(x)n(t, x) = 4B(2x)n(t, 2x),

n(t, x = 0) = 0, t > 0
n(0, x) = n0(x), x ≥ 0.

n(t, x) the ”amount” of cells with size x (6= density),

g the ”qualitative” growth rate of one cell: linear is g = 1 ...

B is the division rate, which depends on the size
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Asymptotics of the PDE
It can be shown (Perthame Ryzhik 2005 for instance) that

n(t, .) grows exponentially fast ie It =
∫

n(t, x)dx
asymptotically proportional to eλt ,

the renormalized n(t, x)/It tends to a density N, which
satisfies

Size-Structured Population Equation (asymptotics)
{

κ
∂

∂x

(

g(x)N(x)
)

+ λN(x) = L
(

BN
)

(x),

B(0)N(0) = 0,
∫

N(x)dx = 1,

where N step D step κ step L step H step B step

for any real-valued function x  ϕ(x),
L
(

ϕ
)

(x) := 4ϕ(2x) − ϕ(x).

κ = λ

∫
R+

xN(x)dx
∫
R+

g(x)N(x)dx
.
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Estimation of λ and κ

SSPE
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Estimation of λ and κ

SSPE λ is estimated via another (or simultaneous experiment).

Assumption on λ̂

There exist some q > 1 such that

ελ = E[|√n(λ̂− λ)|q] < ∞,

Rλ = E(λ̂2q) < ∞.

Let c > 0,

κ̂ = λ̂

∑n
i=1 Xi

∑n
i=1 g(Xi ) + c

.
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Oracle inequality for the estimation of H = BN

We establish an oracle inequality for H = BN which is true under
all previous assumptions.

Theorem

E

[

∥

∥

∥
Ĥ − H

∥

∥

∥

q

2,T

]

≤ C
{

ED + EN + Eλ + EL + n−
q
2

}
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∥
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Oracle inequality for the estimation of H = BN

We establish an oracle inequality for H = BN which is true under
all previous assumptions.

Theorem

E

[

∥

∥

∥
Ĥ − H

∥

∥

∥

q

2,T

]

≤ C
{

ED + EN + Eλ + EL + n−
q
2

}

with

ED =
√
Rλ infh∈H̃

{

‖Kh ⋆ D − D‖q2 +
(

‖g‖
∞
‖K ′‖2√
nh3

)q}

EN = infh∈H
{

‖Kh ⋆ N − N‖q2 +
(

‖K‖2√
nh

)q}

Eλ = ελn
− q

2

EL =
(

(‖N‖W1 + ‖gN‖W2) T√
k

)q

SSPS
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Rate of convergence for the estimation of B

here We finally set B̂ = Ĥ/N̂ and B̃ = max(min(B̂,
√
n),−√

n).
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Rate of convergence for the estimation of B

here We finally set B̂ = Ĥ/N̂ and B̃ = max(min(B̂,
√
n),−√

n).
If B ∈ Ws (s > 1/2) and g ∈ Ws+1, then (under suitable
assumptions and enough moments for the kernel) N ∈ Ws+1.

Theorem

one can choose a family of H and H′ independent of s such that
for any compact [a, b] of [0,T ] (under technical assumptions),

E

[
∥

∥

∥
(B̃ − B)1[a,b]

∥

∥

∥

q

2

]

= O
(

n−
qs

2s+3

)

.
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Why is it the good rate?(1)

In the deterministic set-up

we observe Nǫ = N + ǫζ, with ||ζ||2 ≤ 1 and

BN = L−1
(

κ∂x
(

g(x)N(x)
)

+ λN(x)
)

.

Since L−1 is continuous and the recovery of ∂xN is a more
difficult inverse problem than the recovery of N, hence the
ill-posedness is only due to ∂N (degree of ill-posedness =1)

Hence if N ∈ Ws , error in ǫ
s

s+1 .
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Why is it the good rate?(2)

In the n-sample set-up

problem well approximated by Nǫ = N + ǫB with B Gaussian
white noise and ǫ = n−1/2.

B is not in L2 but in W−1/2,

Hence one needs to integrate ie Zǫ = I1/2N + ǫI1/2
B to have

a noise in L2.

Hence Zǫ = I3/2(∂N) + ǫI1/2
B is of degree of ill-posedness

3/2.

Hence if N ∈ Ws , error in ǫ
s

s+3/2 = n−
s

2s+3 .
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Simulations

n=5000, Gaussian kernel, B = 3
√
x , g = 1.
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Reconstructed L(x)
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Simulations
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What if data not iid ?

data = all the times of division + all the sizes : work in
progress Doumic, Hoffmann, Krell etc : Kernel possible, no
adaptation

data = irreducible stationary Markov chain : Claire Lacour
(and co) adaptive estimate of stationary density and transition
density (on finite interval)

An analogue to Talagrand for Markov chain : Adamczak 08

Chaos propagation and control ?

Berbee’s lemma, mixing properties and being almost
independent ?
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For this particular PDE problem

Calibration and numerical optimization of the GL’s method

31/32



Classical methods Adaptive methods For the derivatives Return on PDE Perspectives

For this particular PDE problem

Calibration and numerical optimization of the GL’s method

To take into account noise in the measurements: Replace
observations Xi with Xi + Zi

31/32



Classical methods Adaptive methods For the derivatives Return on PDE Perspectives

For this particular PDE problem

Calibration and numerical optimization of the GL’s method

To take into account noise in the measurements: Replace
observations Xi with Xi + Zi

Extensions to fit with a more realistic biological model:

31/32



Classical methods Adaptive methods For the derivatives Return on PDE Perspectives

For this particular PDE problem

Calibration and numerical optimization of the GL’s method

To take into account noise in the measurements: Replace
observations Xi with Xi + Zi

Extensions to fit with a more realistic biological model:
The division law is given by a kernel k(x , y):

... = 2

∫

∞

x

B(y)k(x , y)n(t, y)dy − B(x)n(t, x),

Division of the cell of size y into 2 cells of size x and y − x with
probability density=k(x , y). Equal mitosis: k(x , y) = δx= y

2
, so

2
∫

∞

x
B(y)k(x , y)n(t, y)dy = 4B(2x)n(t, 2x)
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For this particular PDE problem

Calibration and numerical optimization of the GL’s method

To take into account noise in the measurements: Replace
observations Xi with Xi + Zi

Extensions to fit with a more realistic biological model:
The division law is given by a kernel k(x , y):

... = 2

∫

∞

x

B(y)k(x , y)n(t, y)dy − B(x)n(t, x),

Division of the cell of size y into 2 cells of size x and y − x with
probability density=k(x , y). Equal mitosis: k(x , y) = δx= y

2
, so

2
∫

∞

x
B(y)k(x , y)n(t, y)dy = 4B(2x)n(t, 2x)

Construct a microscopic stochastic system (PDMP) that
matches with the PDE’s approximation and that take
advantage of richer observation schemes (Probabilistic works
in progress studied by B. Cloez, V. Bansaye, M. Doumic, M.
Hoffmann, N. Krell, T. Lepoutre, L. Robert,...)

31/32



Classical methods Adaptive methods For the derivatives Return on PDE Perspectives

References
Doumic, M. and Gabriel, P. (2010) Eigenelements of a General

Aggregation-Fragmentation Model. Math. Models Methods Appl. Sci. 20(5),
757–783.

Doumic, M., Hoffmann, M., Reynaud-Bouret, P. and Rivoirard, V. (2011)
Nonparametric estimation of the division rate of a size-structured population.
To appear in SIAM J. Numer. Anal.

Doumic, M., Perthame, B. and Zubelli, J. (2009) Numerical Solution of an

Inverse Problem in Size-Structured Population Dynamics. Inverse Problems, 25,
25pp.

Goldenshluger, A. and Lepski, O. (2009) Uniform bounds for norms of sums of

independent random functions arXiv:0904.1950.

Goldenshluger, A. and Lepski, O. (2011) Bandwidth selection in kernel density

estimation: oracle inequalities and adaptive minimax optimality. Ann. Statist.
39(3), 1608–1632.

Perthame, B. (2007) Transport equations in biology. In Frontiers in

Mathematics, Frontiers in Mathematics. Birckhauser.

Perthame, B. and Ryzhik, L. (2005) Exponential decay for the fragmentation or

cell-division equation, J. of Diff. Eqns, 210, 155–177 .

Perthame, B. and Zubelli, J. P. (2007) On the inverse problem for a

size-structured population model, Inverse Problems, 23(3), 1037–1052.
32/32


	Classical methods
	Adaptive methods
	For the derivatives
	Return on PDE 
	Perspectives

