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1 Emergence of entropy in combinatorics, probability, statistics, analysis

1.1 Combinatorics

Number of microstates compatible with a macrostate, degree of freedom, disorder, volume, Stirling :

nj

1 n Vi=St—pi r
_1 n—’S = — 1 ).
n Og(nl,...,nr) (p) ;Pt og(pi)

n=n1+-+n;—oo

If A={1,...,r}and n = ny +---+ n, then Card{(xy,...,x) € A":V1<i<r: Y} ly-i=nj}= (n1 " nr).
Boltzmann observation in kinetic gas theory at the start of statistical physics.
Shannon information theory : average length per symbol with code of optimal length.

1.2 Probability
If Xi,..., X, arei.i.d. oflaw p on a finite set A = {ay,...,a,} then for all xy,...,x, € A,
o Tia Ve _ T v _ oY vilogp _ —n(SM)+HVIW)
[I:D((Xl)---)Xn):(xlv-“rxn)):l_[ui - l:nui ‘=e i=1"1 g'ul:e H .
i=1 i=1
where we have used the Boltzmann-Shannon entropy and Kullback-Leibler divergence or relative entropy :
r r Vi r Vi Vi
S(v):=-) vilogv; and H(v|w:=) vilog— =3} flog;pi.
i=1 i=1 i i=1 Mi i

Boltzmann-Gibbsfication. At the heart of the Sanov large deviations principle via Laplace method.



1.3 Statistics

IfYyy,..., Y, areii.d. oflaw /.1(9) on a finite set A, then Fisher likelihood of data (x;,...,x,) € A" is
a0 :=P(Yy = x1,..., ¥y = xp) = ]_[,u(e).
If Xj,..., X, are observed i.i.d. of law ,LL(B «) with 6, unknown then maximum likelihood estimator is

-------------

Asymptotic analysis via law of large numbers and entropy as asymptotic contrast

_1 ¢ 1 ¢ 6 (CH] © _ 6 0 0
log?x,,.. n(9) = E lo ©) _as. | E lo —S( ( *))—H( ( *)| ( )).
86Xxy,..X = gH Hy gHy U u H

Xi n oo =
const

1.4 Analysis

£20, oplflh=0 ff”d,u 4 fepl‘)g(f)du ff”log(f)dy— ff”log(fp)dp

2 Boltzmann-Gibbs measures and free energy
Boltzmann-Shannon differential or continuous entropy of a probability measure u on R” :
S —ff(x) log(f(x))dx ifdu(x) = f(x)dx and flog f € L! (dx)
H) =
+00 otherwise

Gaussian case and Shannon exponential entropy

23(u)
S(A& (m,K)) =logy/ (2ne)*detK and N(A (m,K)):= e2ne

= (detK)".
Kullback-Leibler relative entropy between two probability measures on the same space :
Hv|w:= f logd—dp =0with=iffu=v.
Jensen inequality (and its equality case) for strictly convex function x € Ry — xlog(x).
We take V : R" or A— R, interpreted as an energy, such that Zg := fe‘ﬁV(x) dx <ooforall §>0.
Maximizing u— S(u) over the constraint of average energy [ Vdu = v gives the maximizer
1
— —ﬁVd
Up: Z e X,

provided that v is an admissive energy, typically v = minV when V has a unique global minimum. In the
Gaussian case, V is quadratic while 1/ = v is the variance. Here dx is the Lebesgue or counting measure.

Theorem 2.1. Variational characterization : maximum entropy at fixed average energy.
f Vdu= f Vdug = S(ug)—S(w) =H(u|up).

Dual point of view : instead of fixing the average energy, let us fix the inverse temperature § and introduce

1
F(u) = f Vi 550

which is the Helmholtz free energy. Lagrangian point of view, the constraint is added to the functional.
1 .
Flug) = —Elog(Zﬁ) since  S(ug) = ,3[ Vdug +log Zg.

2



Theorem 2.2. Variational characterization : minimum free energy at fixed temperature.
1
F(u) —F(ug) = BH(u [ 1p).

This explains why H is often called free energy instead of relative entropy or Kulback-Leibler divergence.

3 Emergence of log-Sobolev : Markov diffusion processes

(X1) s reversible ergodic Markov process with state space R”.
Invariant probability measure p. Semigroup (Py);>q, P:(f)(x) = E(f(X;) | Xo = x) and infinitesimal generator
L=0;=9P;. We set f; = P:(f), for fy = f = 0. For simplicity we focus on Langevin type diffusion process :

t
Xe=Xo+ VEB, - [ WVIX)ds, LU0 = A~ (TV 00, VA0, ) = eV dx
0

Integration by parts
[ r1gau= [ grrau=-[wr.vgdn
Dyson-Ornstein-Uhlenbeck example :
V(x) = || x||? -p Z log(x; —x;) with V(x)=+oo outside {x;<---<x,}
i<j
3.1 Boltzmann H-theorem, Bakry-Emery criterion, Gross hypercontractivity

Ifdyo = fdu, f=0, [ fdu=1, then X; ~ u; with dy, := fydu. Boltzmann H-theorem by integration by parts :

\v4 2
0H(u: | W) :atfftlog(ft)dll:f(l+10g(ft))dll: —f%dpm —I(ue )
t

where we have used the Fisher information

Vf? d
I(vlu):=f| ]J:l dp, f:=d—;-

Theorem 3.1. Exponential decay of relative entropy < LSI.

For all constant ¢ > 0, the following properties are equivalent :

4

(i) Exponential decay of entropy: Yo, V=0, H(u, | p) <e” < H(ug | w).

(ii) Logarithmic Sobolev Inequality (LSI) : Vv, H(v | u) < £1(v | w).
Proof. We get (i) from (ii) by Gronwall since 0/ H(u; | @) = —I(u: | @) = —%H(,ut | ) (we used LSI for v = ).
Conversely, if a(?) := et "H(uo | ) —H(u, | p) then a(0) =0, a(t) = 0 for all £ = 0 thus a’(0) = 0 (LSI for yo!). O

Theorem 3.2. Bakry-Emery criterion for LSI : role of convexity.

Ifv= # I-1I2 + C with C convex, then p satisfies LSI: Vv, H(v | y) < %ZI(V | ).

In particular by taking C = 0 we get that the Gaussian .4 (0,0°%1,) satisfies LSI. Moreover, a multivariate
Gaussian & (m, K) satisfies the same LSI as .4 (0, IIKII(Z,p I,) (just use the the Lipschitz map x — vK(x — m)).

Proof. By using integration by parts, we get, after some algebra, a sort of H-theorem for Fisher :
1
Ol (ke | ) = =2 f To(log(f)dp:  where T(f):= V" fllys +(VVVS, V) = —IVFI®.
By Gronwall this gives an exponential decay of Fisher information :

_2
Vo, V=0, I(uelw<e o (uo | .



Finally, the LSI for v = yy comes from

oo oo °© _3, 0-2
H(uolu)=—fo atH(mlu)dt=fo I(mlu)dtsl(uolu)fo e o dt=71(uo|u).

We also get the convexity of t — H(u, | p) via 6%H(u ¢ | 1) = 0, arefinement of the Boltzmann H-theorem. O

For all f: E — R, we define (analogy with the variance, replacing x> with xlog(x))

Ent, (f) :=fflog(f)du—ffd,ulogffduzH(vlu)ffd/.t where dv:= —f]{dud#'

Theorem 3.3. Leonard Gross : Hypercontractivity of Markov semigroup < LSI.
For all constant ¢ > 0 the following properties are equivalent (the norms are with respect to ) :
. . . 4
(i) Hypercontractivity of semigroup: V¢ =0,V f,Vp =1, || ftlp@ < fllp where p() :=1+(p—1ec 4
(i) Logarithmic Sobolev inequality (LS : V f, Ent,(f%) < ¢ [ IV f*dp.

The term comes from the fact that p(¢) > p = p(0) for all £ > 0.

Proof. Same idea as for exponential decay with this time a(z) :=log|l f¢ |l p(»-
Involves crucially the fact that 8, [ fPdu = [ fPlog(f)du for f = 0.
We can assume that f =0 since | f;| < |f|;. For all £ > 0, we find

! 2
/ 1 Pl 4 P 1 ( Pl L P p-14 )
« 0= ( lo f ) p(1)? ffpmd ntulfs p'(1) (L]

Now p(t) — 1 = £ p'(1), while by LSI and integration by parts we get

Ent (g”)<— A idi dp=- f( ggr du.
. g? 4 (P D
Therefore a' () < 0 for any ¢ = 0 is equivalent to LSL. O

LSI can also be deduced geometrically from Sobolev inequality on spheres (Beckner).

LSI can also be deduced from isoperimetric inequality (Ledoux, Bobkov).

LSI is inspiring for Hamilton Ricci flow for Poincaré conjecture (Perelman).

LSI is related to transportation of measure (Talagrand, Otto—Villani, Bobkov—Gentil-Ledoux)

3.2 Variational formula and tenrosization

Lemma 3.4. Variational formula.

For all probability measure g on E and all f: E — R,, f € L' (u), we have the linearization

Ent,(f) = sup{ffgdu : fegdu < 1}, supremum achieved for g =log(f) —logffdu.

In particular, the inequality < 1 can be replaced by the equality = 1.

Proof. Follows from the convexity uv < ulog(u) —u+e”, u=0, veR.
Alternatively, reduce by homogeneity to [ fdu = 1, and then use Jensen for the concave log and the law fdu :

| redu= [ rrognaus [ log(%fdu < [ r10gtf1du-+10g [ ?fdu < [ rogtap
O

Replacing g such that [e8du =1 by g —log [ e du without constraint on g, we get that relative entropy and
log-Laplace transform are the Legendre transform of each other :

Hv | =sup{fgdv—logfegdu} and sup{[gdv—H(vlu)} =logfegdu.
g v



Lemma 3.5. Tensorisation.

If u=p ®---® uy, is a product probability measure on a product space E = E; x --- x E,, then

Ent,(f)< Y [ Enty,(f)du forall feL'(yE—R,).
i=1

Proof. By induction on n, it suffices to consider the case n =2. Let g : E — R be such that [e€du = 1. Then

g=g1+g avec glzzg—logfegdul et gg::logfegdpl,

in such a way that fe8'dy; =1 and [ e82dy; = 1. The variational formula of Lemma 3.4 for y; and g; gives

ffgldy1+ffg2dpgsEntul (f) +Enty, (f), hence ffgdystntu1 (fHduy +[Ent#2(f)dp2,

and it remains to use the variational formula of Lemma 3.4 this time for y and g. O

3.3 Log-Sobolev for Gaussian from two-points space via tensorization and CLT
Theorem 3.6. Logarithmic Sobolev inequality (LSI) for the Gaussian.

Forall n =1, denotingy,, := A (0, I,) = y$", we have, for all f € L?(y") n6*(R",R), in [0, +oo] :

Entyn (f?) < 2[ IV fI2dy".

Moreover the constant 2 is optimal in the sense that equality is achieved for f?(x) = e»?, 1 e R".

* By analogy with classical Sobolev inequalities we can rewrite LSI as
f fPlog(fAdy" = f f?dy"log [ fPdy"+2 f IV f12dy™,
stating that f2 log(fz) € Ll(}f”) as soon as f2 el (y™) and |Vf|2 € Ll(y”).

* By an affine change of variable we get that .4 (m, X) satisfies an ISL with constant IIZII(Z)p.

* The linearization of LSI via f? = (1 + £g)? gives a Poincaré inequality of constant 1 :
2 3.1 n 2 23,10
Varyn (f) :=ff dy —(ffdy ) sflVfl dy".

Proof following Gross and Bobkov. The idea is to start from the two-points space, tensorize to the cube, and
then use the CLT. Namely, let us consider the uniform law v = %(6_1 +07) on {—1,1}. Then

(g() - g(-1))?

Ent, (g% < 5

forallg:{-1,1} - R.

We can assume without loss of generality that g = 0, and by homogeneity that g(1)? + g(—1)? = 2, which reduces
the inequality to the optimal univariate inequality (checkable by direct calculus, equality achieved for u = 1)

ulog(u) + 2—wlog2—u) < Vu-v2—-uw?, 0sus<2.

Now, let us take f € ‘662([1@, R) and let us define g: {-1,1}" — Ras

x1+~--+x,,)
VI

Let i := v®" be the uniform law on the cube {-1,1}"*. By tensorisation (Lemma 3.5) and the inequality on {—1, 1},

g(xl,...,xn)::f(

1 n . .
Ent,(g%) < 3 Y (gx™*) - g(x"7)*du
i=1



it

where x;* := x; ifj;éiand::ilifj:i.ATaylorformulaatorderlforfat%gives
. - 2 X1+ -+ Xp 1
Kty (b= S (AL T e

with an o uniform in x since f is €2 and thus with bounded second derivative. Therefore, thanks to the CLT,

Enty, (f%) <2 f f2dyt.

We can weaken the conditions on f by approximation arguments.
We can generalize to y” = (y!)®" for all n > 1 by using tensorization again ! O

* Stability of LSI by tensorization or dimension free statements : if u, v satisfy to LSI with constants c;, and
cy then p ® v satisfies to LSI with constant max(cy, ¢y). In particular if y satisfies LSI with constant ¢ then
u®! satisfies to LSI with same constant c for all N. The constant depend on the class of test functions.
The tensorization works if the class of test functions as well as the LHS are both stable by tensorization.

e Stability by Lipschitz deformation. If u satisfies LSI with constant ¢ and then its image with a map F satis-
fies LSI with constant c||F||iip. In particular Uniform([0, 1]) satisfies LSI, and LSI is stable by convolution.

¢ Optimal transportation. Caffarelli showed using the Monge-Ampere equation and the maximum princi-
ple that the Bakry-Emery condition implies that y is the image of y,, with F such that || | ;p < 0, leading
to LSI via Lipschitz deformation from the Gaussian case. On the other hand, Cordero-Erausquin used
Monge-Ampere to get LSI directly in this case, still via Monge-Ampere and an exploit of convexity.

¢ There is also a stability by bounded perturbation on V, due to Holley-Stroock.
This was generalized by Bodineau-Helffer to V convex + bounded.
Generalized by Zegarlinski to spin systems with exponential decay of correlations.
Generalized by Bauerschmidt-Bodineau recently, in the spirit of high dimentional convexification. ..

* Tails beyond Gaussians. The probability measure Zlae"xladx onR, @ >0, Zy:= [re”¥"dx < oo, satisfies
LSIiff @ = 2, and a Poincaré inequality iff a = 1. The Gaussian corresponds to the critical case a = 2.

Log-Sobolev and concentration of measure

Theorem 4.1. LSI = sub-Gaussian Laplace transform of Lipschitz functions.

If u € 22(R") satisfies to LSI with constant c :
AceR:, VfeL*(WnE*R"R), Ent,(f) < cf IVf1?du.
then Lipschitz functions have sub-Gaussian Laplace transform :

Vf:R" — R Lipschitz and in L' (), V0 € R, L(0) := fexp(@f)d,u <exp (ezgnfufip + Hffdu) .

Proof following Herbst. First of all we reduce to f bounded, €°, centered for y, || f lLip =1,and 6 > 0.

Now, for all @ > 0, the LSI with e/ instead of f? gives, via |[Ve?/| = |0V f1e%/ and ||V flloo = Il fllLip < 1, that

OL'(0) — L) log L(6) < A—EBZL(H), in other words K’ < 2 where K(0) := 1 log L(0).

The result follows from K (0) = (logL)’(0) = L' (0)/L(0) = u(f), which comes from L(0) = 1 and L'(0) = u(f).

Corollary 4.2. LSI = Sub-Gaussian concentration for Lipschitz functions.

If p e 22(R") satisfies to LSI of constant ¢ as in Theorem 4.1,

O



then forall X ~ y, r 20, and f:R"” — Rin L' (u),

2
[P’(‘f(X) —[E(f(X))) > r) < 2exp( I )
Lip

More generally, if Xj,..., Xy, N =1, are i.i.d. of law g, then

P(f(X1)+"'+f(XN)

—[E(f(Xl))‘>r)<2exp Nr?
= >r|< .

clfIZ,

¢ Dimension free rewrite :

2
P(m)f(X1)+...+f(XN)—[E(f(Xl))‘zr)SZexp( .
N C||f||L1p

¢ A consequence is the exponential integrability for the square of Y := f(X) - E(Y) :

o 1
[E(EBYZ) zgf reerZP(|Y| =r)dr <oco assoonasf < .
A clfIZ,

Proof. For the first, we reduce to || fllLip = 1 and u(f) = Jfdp =0 pas translation et dilatation, then for all r = 0
and 0 > 0, the Markov inequality and Theorem 4.1 give
2

u(f=r =,u(e9f zeer) se_grfegfd,use_e”gg2 <e ©,

where the last inequality comes from the optimal choice 8 = 2r/c. By using the result on + f we get

2
|f ffdu|>r <Ze p( 2||f||Llp)'

For the second inequality, we observe that x € (R")N — F(x) := % (f(x1) +---+ f(xn)) is Lipschitz with

- N =y .
| Fllup < I fllLip up Yoo lxi—yil § ||f||L1p.
Zl 1|xl yi|2 m

Moreover E(F(Xy, ..., Xn)) = E(f(X1)). Furthermore (X3, ..., XN) ~ p®N satisfies LSI with same constant 2¢ (di-
mension free : does not depend on N), thanks to the tensorization method used for proving Theorem 3.6. O

¢ Unstability by tensor product of sub-Gaussiannity of Laplace transform of Lipschitz functions and sub-
Gaussian concentration, hence the usefulness of LSI when it holds!

4.1 Wigner Ensembles
Let S:= (Sij)lsi,jsn
Let ¢;; € [0, +00] be the LSI constant of the law of S;; (sparsity: take c¢;; = 0if S;; is constant (possibly = 0).
Thenforall f:R—Randallr =0,

be an n x n real symmetric random matrix, n = 1.

S S n’r?
P ’Tr fl—=|-ETr, f| —= |2r <2exp| - ———|.
( ! (\/ﬁ) " (\/ﬁ) ) ( ||f||fipmaXijCij)
LSI tensorization and spectrum of a symmetric matrix is a Lipschitz wrt its entries (Weyl inequalities) :
[Ai(A)—A;(B) < lA— Bllop.

Special case : if S is Gaussian, say GOE, we can use the Gaussian LSI and the Lipschitz stability.



4.2 Beta-Ensembles

Let us consider the probability measure p on R" given by

1A _ 1 —(Zr, Uan+BLicjlog 2
— z?le(xl)H(xi_xj)ﬁlxls---sxn:Z_e ( i=1 BYi<jlogz; x])lxlg---sx,,

Zn =1 i<j n

where U : R — Ris such that U(x) = C(x) + # I x|I1%, C is €2 and convex and where og,8>0.
Satisfies LSI with constant 202, by Bakry—Emery or Caffarelli thanks to the convexity of

n
(X1, Xn) — 3 Clx;) = B Y log(x; — x;).
i=1

i<j
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